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Abstract
Auffinger and Chen (J Stat Phys 157:40–59, 2014) proved a variational formula for
the free energy of the spherical bipartite spin glass in terms of a global minimum over
the overlaps. We show that a different optimisation procedure leads to a saddle point,
similar to the one achieved for models on the vertices of the hypercube.
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1 Introduction

Let σN (dx) denote the uniform probability measure on SN := {x ∈ R
N : ‖x‖22 =

N }, where ‖x‖2 is the Euclidean norm. For x := (x1, . . . xN1) ∈ R
N1 and y :=

(y1, . . . , yN2) ∈ R
N2 the bipartite spin glass is defined by the energy function

HN1,N2(x, y; ξ) := − 1√
N

N2∑

j=1

N1∑

i=1

ξi j xi y j . (1)

Here {ξi j }i∈[N1], j∈[N2] are N (0, 1) i.i.d. quenched r.vs. and we set N := N1 + N2.
The object of interest of this note is the free energy

AN1,N2 (β, ξ) := 1

N
log

∫
σN1(dx)σN2(dy) exp(−βHN1,N2 (x, y; ξ) − b1(x, 1) − b2(y, 1))

(2)
in the limit in which N1, N2 → ∞ with N1/N → α ∈ (0, 1). Here β � 0 is the
inverse temperature, b1, b2 ∈ R are external fields and (·, ·) denotes the Euclidean
inner product. By concentration of Lipschitz functions of Gaussian random variables
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one reduces to study the average free energy AN1,N2(β) := E[AN1,N2(β, ξ)], whose
limit we denote by A(α, β).

Auffinger and Chen proved in [1] the following variational formula for A(α, β) for
β small enough

A(α, β) = min
q1,q2∈[0,1]2

P(q1, q2) (3)

P(q1, q2) = β2α(1 − α)

2
(1 − q1q2) + α

2

(
b21(1 − q1) + q1

1 − q1
+ log(1 − q1)

)

+1 − α

2

(
b22(1 − q2) + q2

1 − q2
+ log(1 − q2)

)
(4)

(the normalisation in (1) leads to different constants w.r.t. [1]). The above formula was
successively proved to hold in the whole range of β � 0 in [2, 9]. Yet these proofs
are indirect, as in both cases one obtains a formula for the free energy and then verifies
a posteriori (analytically for [2] and numerically [14] for [9]) that it coincides with
(3). We just mention that the results in [1] have been recently extended in [10, 11] for
the complexity and in [5, 6] for the free energy.

The convex variational principle found by Auffinger and Chen appears to be in
contrast with the minmax characterisation given in [4, 7] for models on the vertices of
the hypercube (see also [3] for the Hopfieldmodel). The aim of this note is to show that
the Auffinger and Chen formula can be equivalently expressed in terms of a minmax.

One disadvantage of the spherical prior is that the associated moment generating
function

�N (h) := 1

N
log

∫
σN (dx)e(h,x) , h ∈ R

N , (5)

is not easy to compute. If h is random with i.i.d.N (b, q) components it is convenient
to set

�(b, q) := lim
N

E�N (h) . (6)

The so-called Crisanti–Sommers variational characterisation of it as N → ∞ reads
as follows.

Lemma 1 Let b ∈ R, q > 0, h ∈ R
N with i.i.d N (b,

√
q) components. Then

�(b, q) = 1

2
min

r∈[0,1)

(
(b2 + q)(1 − r) + r

1 − r
+ log(1 − r)

)
(7)

At the end of this note we give a simple proof of this statement, based on the method
of [8, 9]. We first get a variational characterisation of the moment generating function
of a Gaussian distribution (whose variance is Legendre conjugate to q) and then use
concentration of measure.

A direct computation shows that the minimum of (7) is attained for

r

(1 − r)2
= q + b2 . (8)
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A standard replica symmetric interpolation gives that for any q1, q2 ∈ [0, 1]

AN1,N2(β)=β2α(1 − α)

2
(1 − q1)(1 − q2) + (1 − α)�(b2, β

2αq1)

+α�(b1, β
2(1 − α)q2) + ErrorN (q1, q2) . (9)

The last summand is an error term whose specific form is not important here. What
matters is that by [1, Lemma 1] there is a choice of (q1, q2) (see below) for which this
remainder goes to zero as N → ∞ if β is small enough. Combining (7) and (8) we
can rewrite the first line of (9) as

RS(q1, q2) := β2α(1 − α)

2
(1 − q1)(1 − q2)

+β2α(1 − α)

2

((
q2 + b21

β2(1 − α)

)
(1 − r1) +

(
q1 + b22

β2α

)
(1 − r2)

)

+α

2

r1
1 − r1

+ α

2
log(1 − r1) + 1 − α

2

r2
1 − r2

+ 1 − α

2
log(1 − r2) , (10)

under the condition

r1
(1 − r1)2

= β2(1 − α)q2 + b21 ,
r2

(1 − r2)2
= β2αq1 + b22 . (11)

Here we used that there is a sequence oN → 0 uniformly in q1, q2, β, α such that

β2α(1 − α)

2
(1−q1)(1−q2)+ (1−α)�N (β2αq1)+α�N (β2(1−α)q2) = RS(q1, q2)+oN .

(12)
Indeed (12) follows easily once we use Lemma 1 for the limit of the functions �N and
we note that (11) are the critical point equations related to the minimisation of (7).

The main observation of this note is that (10) under (11) is optimised as a minmax.

Proposition 1 Assume b21 + b22 > 0. The function RS(q1, q2) has a unique stationary
point (q̄1, q̄2). It solves

q2
(1 − q2)2

= β2αq1 + b21 ,
q1

(1 − q1)2
= β2(1 − α)q2 + b22 . (13)

Moreover
RS(q̄1, q̄2) = min

q2∈[0,1] max
q1∈[0,1]RS(q1, q2) . (14)

If b1 = b2 = 0 and
β4α(1 − α) < 1 (15)

the origin is the unique solution of (13) and

RS(0, 0) = min
q2∈[0,1] max

q1∈[0,1]RS(q1, q2) . (16)
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If b1 = b2 = 0 and
β4α(1 − α) > 1 (17)

there is a unique (q̄1, q̄2) �= (0, 0)which solves (13)and such that (14)holds.Moreover

RS(0, 0) = max
q2∈[0,1] max

q1∈[0,1]RS(q1, q2) . (18)

The crucial point of [1, Lemma 1] (for us) is that from the Latala argument [13, Sect.
1.4] it follows that the overlaps self-average as N → ∞ at a point (q̃1, q̃2) uniquely
given by

q̃1
(1 − q̃1)2

= β2(1 − α)q̃2 + b21 ,
q̃2

(1 − q̃2)2
= β2αq̃1 + b22 , (19)

which (see [12, Lemma 7]) are indeed asymptotically equivalent to

q1,N := 1

N
E

[∫
σN1(dy)σN1(dy

′)(y, y′)eβ
√
q2(y+y′,h)

(∫
σN1(dy)e

β
√
q2(y,h)

)2

]
, (20)

q2,N := 1

N
E

[∫
σN2(dx)σN2(dx

′)(x, x ′)eβ
√
q1(x+x ′,h)

(∫
σN2(dx)e

β
√
q1(x,h)

)2

]
, (21)

naturally arising from the replica symmetric interpolation (here h is random with
i.i.d. N (0, 1) entries). Comparing (11) and (19) readily implies that we can plug
(r1, r2) = (q1, q2) into (10) and obtain the convex function P(q1, q2) of [1, Theorem
1], optimised by (19).

On the other hand, without using the Latala method one might still optimise (10)
as a function of four variables, ignoring (11). Taking derivatives first in q1, q2, the
critical point equations (24), (24) below select exactly (q1, q2) = (r1, r2). This proce-
dure is however unjustified a priori and this particular application of Latala’s method
legitimises the exchange in the order of the optimisation of the q and the r variables
for small β, which a posteriori can be extended to all β [2, 9].

We stress that by itself the Latala method is not variational, it only gives the self-
consistent equations for the critical points. It is the Crisanti–Sommers formula (7)
whichmakes it implicitly variational. Such a variational representation is not necessary
in other cases of interest, for instance for the bipartite SK model (namely Hamiltonian
(1) with ±1 spins), for which one simply has the log cosh. Indeed in this case a direct
use of the Latala method yields the validity of the minmax formula of [4] for β and
|b1|, |b2| small enough. The proof is essentially an exercise after [13, Proposition
1.4.8] and [1, Formula (9)] and will not be reproduced here in details. The replica
symmetric sum-rule for the free energy (analogue of formula (9)) reads as
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AN1,N2(β) = β2α(1 − α)

2
(1 − q1)(1 − q2) + (1 − α)E log cosh(b2 + β

√
αq1g)

+ αE log cosh(b1 + β
√

(1 − α)q2g)

+ ErrorN (q1, q2) , (22)

(here g ∼ N (0, 1)) and the error term can be shown by the Latala method to vanish
for small β, |b1|, |b2|, if (q1, q2) = (q̄1, q̄2) are given by

q̄1 = E[tanh(b1 + β
√

(1 − α)q̄2g)] , q̄2 = E[tanh(b2 + β
√

αq̄1g)] . (23)

Therefore the free energy equals the first two lines on the r.h.s. of (22) evaluated in
(q1, q2) = (q̄1, q̄2), which is the value attained at the minmax, as shown in [4, 7].

2 Proofs

Proof of Proposition 1 Assume first b21 + b22 > 0. We differentiate (10) and by (11) we
get

∂q1 RS = β2α(1 − α)

2
(q2 − r2(q1)) (24)

∂q2 RS = β2α(1 − α)

2
(q1 − r1(q2)) . (25)

The functions r1, r2 write explicitly as

r1(q2) =
√
1 + 4(β2(1 − α)q2 + b21) − 1

√
1 + 4(β2(1 − α)q2 + b21) + 1

(26)

r2(q1) =
√
1 + 4(β2αq1 + b22) − 1

√
1 + 4(β2αq1 + b22) + 1

. (27)

We easily see that r1, r2 are increasing from r1(0), r2(0) > 0 (obviously computable
by the formulas above) to 1 and concave. Moreover we record for later use that if
b1 = b2 = 0 we have

d

dq2
r1(q2)

∣∣∣
q2=0

= β2(1 − α) ,
d

dq1
r2(q1)

∣∣∣
q1=0

= β2α . (28)

Now we take the derivative w.r.t. q1 and note that the r.h.s. of (24) is decreasing as
a function of q1, thus ∂2q1 RS < 0. Therefore by the implicit function theorem there is
a unique function q1 such that q2 = r2(q1). As a function of q2, q1 is non-negative,
increasing and convex and it is q1(r2(0)) = 0. We set
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RS1(q2) := max
q1

RS(q1, q2) = RS(q1(q2), q2) (29)

and compute

∂q2 RS1(q2) = β2α(1 − α)

2
(q1(q2) − r1(q2)) . (30)

By the properties of the functions q1 and r1 it is clear that there is a unique intersection
point q̄2; moreover q1 � r1 for q2 � q̄2 and otherwise q1 � r1. There-
fore ∂q2 RS1(q2) is increasing in a neighbourhood of q̄2 which allows us to conclude
∂2q2 RS1 > 0. This finishes the proof if b21 + b22 > 0.

If b1 = b2 = 0 the origin is always a stationary point. It is unique if

[
d

dq1
r2(q1)

∣∣
q1=0

]−1

= d

dq2
q1(q2)

∣∣
q2=0 >

d

dq2
r1(q2)

∣∣
q2=0 , (31)

which, bearing in mind (28), amounts to ask (15).
Since r2 is increasing around the origin, we have ∂2q1 RS < 0 and by the implicit

function theoremwedefine locally a function q1(q2) increasing and positive, vanishing
at the origin. We set

RS1(q2) := max
q1

RS(q1, q2) = RS(q1(q2), q2) (32)

and compute

∂q2 RS1(q2) = β2α(1 − α)

2
(q1(q2) − r1(q2)) . (33)

By (31) we have ∂2q2 RS1
∣∣
q2=0 > 0 , whence we obtain (16).

If (17) holds, then

d

dq2
q1(q2)

∣∣
q2=0 <

d

dq2
r1(q2)

∣∣
q2=0 , (34)

which proceeding as before leads to (18).
However also in the case b1 = b2 = 0 we can repeat all the steps done in the case

b21 + b22 > 0, showing the existence of a point (q̄1, q̄2) in which a minmax of RS is
attained. If (31) (i.e. (15)) holds then it must be (q̄1, q̄2) = (0, 0). If (17) holds, then
(34) enforces

q1(q2) − r1(q2) � 0

in a neighbourhood of the origin (as q1(0) = r1(0) = 0), which implies that the critical
point (q̄1, q̄2) must fall elsewhere. 
�
Proof of Lemma 1 We will prove that for all u ∈ √

qSN

�(σ)(q) := lim
N

�N (u) = 1

2
min

r∈[0,1)

(
q(1 − r) + r

1 − r
+ log(1 − r)

)
. (35)
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We show first that (35) implies the assertion. Let h be a random vector with i.i.d.
N (0, q) entries. (As customary we write X � Y if there are constants c,C > 0 such
that cY � X � CY ). The classical estimates

�N (h) � ‖h‖2√
N

, P

(∣∣∣∣
‖h‖2√

N
− √

q

∣∣∣∣ � t

)
� e− t2N

2 (36)

permit us to write for all t > 0 (small)

|E[�N ] − �(σ)(q)| � |E[�N1{∣∣∣ ‖h‖√
N

−√
q
∣∣∣<t

}] − �(σ)(q)| +
∣∣∣∣E

[‖h‖2√
N

1{∣∣∣ ‖h‖√
N

−√
q
∣∣∣ � t

}
]∣∣∣∣

�
∣∣∣∣�N (u∗)P

(∣∣∣∣
‖h‖2√

N
− √

q

∣∣∣∣ < t

)
− �(σ)(q)

∣∣∣∣ + o(t) + e−t2N/2

�
∣∣∣�N (u∗) − �(σ)(q)

∣∣∣ + o(t) + e−t2N/2 , (37)

for some u∗ ∈ √
qSN and o(t) → 0 as t → 0. Since t > 0 is arbitrary we obtain

|E[�N ] − �(σ)(q)| �
∣∣∣�N (u∗) − �(σ)(q)

∣∣∣ .

It remains to show (35). Given ε > 0 we introduce the spherical shell

SN ,ε := SN +
√

ε

N
SN

and the measure σ
(ε)
N as the uniform probability on it. For any θ > 0 we have

∫
σ

(ε)
N (dx)e(u,x) � e

θ(N+ε)
2

∫
σ

(ε)
N (dx)e− θ

2 ‖x‖22+(u,x)

� e
θ(N+ε)

2

√
2π

N

θ
N
2 |SN ,ε|

∫
e− θ

2 ‖x‖22+(u,x) dx√
2π

N

= e
θ(N+ε)

2 + qN
2θ

√
2π

N

θ
N
2 |SN ,ε|

. (38)

Therefore for C > 0 large enough

1

N
log

∫
σ

(ε)
N (dx)e(u,x) � θ

2
+ q

2θ
− 1

2
(log θ + 1) + Cθ

ε

N
. (39)

Since this inequality holds for all θ > 0 and ε > 0 we have

lim sup
N

�N (u) � inf
θ>0

(
q

2θ
+ θ − 1

2
− 1

2
log θ

)
. (40)
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We set for brevity

�1(θ) := q

2θ
+ θ − 1

2
− 1

2
log θ

and notice that �1 is uniformly convex in all the intervals (0, θ0) for finite θ0 > 0.
For the reverse bound, again we let θ > 0 and write

∫
σ

(ε)
N (dx)e(u,x) � e

θ
2 N

∫

RN

dx

|SN ,ε|e
− θ

2 ‖x‖22+(u,x) − e
θ
2 N

∫

(SN ,ε)c

dx

|SN ,ε|e
− θ

2 ‖x‖22+(u,x) .

(41)
The first summand on the r.h.s. can be written as before

e
θ
2 N

∫

RN

dx

|SN ,ε|e
− θ

2 ‖x‖22+(u,x) = e
θN
2 + qN

2θ

√
2π

N

θ
N
2 |SN ,ε|

. (42)

For the second summand we introduce η ∈ (0, θ
2 ) and bound

e
θ
2 N

∫

‖x‖2 � N−ε

dx

|SN ,ε|e
− θ

2 ‖x‖22+(u,x) � e
θ
2 N+(N−ε)

η
2+ qN

2(θ+η)

√
2π

N

θ
N
2 |SN ,ε|

(43)

e
θ
2 N

∫

‖x‖2 � N+ε

dx

|SN ,ε|e
− θ

2 ‖x‖22+(u,x) � e
θ
2 N−(N+ε)

η
2+ qN

2(θ−η)

√
2π

N

θ
N
2 |SN ,ε|

. (44)

Thus

lim inf
N

1

N
log

∫
σ

(ε)
N (dx)e(u,x) � max(�1, �2, �3) (45)

with

�2(η, θ) := q

2(θ − η)
+ η(1 − ε

N )

2
+ θ − 1

2
− 1

2
log θ ,

�3(η, θ) := q

2(θ + η)
− η(1 + ε

N )

2
+ θ − 1

2
− 1

2
log θ.

Now we define

�12(η, θ) := �1(θ) − �2(η, θ) , �13(η, θ) := �1(θ) − �3(η, θ) , (46)

and we seek θ̄ > 0 for which �12,�13 � 0 for sufficiently small η. Since
�12(0, θ) = �13(0, θ) = 0 it suffices to study

d

dη
�12

∣∣∣
η=0

,
d

dη
�13

∣∣∣
η=0

. (47)
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A direct computation shows

d

dη
�12

∣∣∣
η=0

= ε

2N
− ∂θ�1(θ) , (48)

d

dη
�13

∣∣∣
η=0

= ε

2N
+ ∂θ�1(θ) . (49)

Combining (47), (48) and (49) we see that plugging θ̄ = argmin�1 into (45) we arrive
to

lim inf
N

�N (u) � min
θ>0

(
q

2θ
+ θ − 1

2
− 1

2
log θ

)
. (50)

Therefore (40) and (50) give

lim
N

�N (u) = min
θ>0

(
q

2θ
+ θ − 1

2
− 1

2
log θ

)

and changing variable θ = (1 − r)−1 we obtain (35). 
�
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