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Abstract
We find a novel one-parameter family of integrable quadratic Cremona maps of the
plane preserving a pencil of curves of degree 6 and of genus 1. They turn out to serve
as Kahan-type discretizations of a novel family of quadratic vector fields possessing a
polynomial integral of degree 6whose level curves are of genus 1, aswell. These vector
fields are non-homogeneous generalizations of reduced Nahm systems for magnetic
monopoles with icosahedral symmetry, introduced by Hitchin, Manton and Murray.
The straightforward Kahan discretization of these novel non-homogeneous systems
is non-integrable. However, this drawback is repaired by introducing adjustments of
order O(ε2) in the coefficients of the discretization, where ε is the stepsize.

Keywords Birational maps · Discrete integrable systems · Elliptic pencil · Rational
elliptic surface · Integrable discretization

1 Introduction

The problem of integrable discretization [37] consists of finding, for a given integrable
system, a discretization which remains integrable. All conventional general-purpose
discretization methods for ODEs, like Runge–Kutta methods etc., applicable to arbi-
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trary ODEs, fail to preserve integrability when applied to a general integrable system.
However, there exist “unconventional” numerical methods applicable to certain par-
ticular classes of ODEs which possess, on these classes, special properties, see [22].
One of such “unconventional” methods, known alternatively as Hirota–Kimura dis-
cretization or Kahan discretization, attracted recently much attention. It is applicable
to any ODE on R

n with a quadratic vector field, and possesses remarkable proper-
ties concerning preservation of integrals and integral invariants. Consider a quadratic
ODE

ẋ = Q(x) + Bx + c, (1)

where Q : R
n → R

n is a vector of quadratic forms, B is an n × n matrix, and
c ∈ R

n . The Hirota-Kimura discretization method, or Kahan’s discretization method,
consists in replacing the time derivative on the left-hand side by the first difference of
the numerical approximation x : εZ → R

n , while the quadratic expressions on the
right-hand side are replaced by symmetric bilinear expressions in terms of x = x(t)
and x̃ = x(t + ε):

x̃ − x

ε
= Q(x, x̃) + 1

2
B(x + x̃) + c, (2)

where

Q(x, x̃) = 1

2

(

Q(x + x̃) − Q(x) − Q(̃x)
)

is the symmetric bilinear form corresponding to the quadratic form Q. Equation (2) is
linear with respect to x̃ and therefore defines a rational map x̃ = f (x, ε). Due to the
symmetry of equation (2) with respect to interchanging x ↔ x̃ accompanied by sign
inversion ε �→ −ε, the map f is reversible:

f −1(x, ε) = f (x,−ε) (3)

(in numerical analysis, discretization schemes with this property are called self-
adjoint). Thus, the map f is birational.

The origin of this discretization method can be seen in the pioneering work of
Hirota in 1970s. One of his main contributions to the theory of solitons is an ingenious
transformation of the majority, if not all, integrable PDEs to the so called bilinear form
(which turned out to have extremely deep relations to various branches ofmathematics,
especially to infinite dimensional Lie algebras and their representation theory). He then
invented a bilinear discretization of integrable PDEs presented in the bilinear form [11–
15], culminating in the discovery of the so called Hirota bilinear equation which is
one of the most fundamental integrable systems [16]. In the context of ODEs, the
bilinear discretization was applied to the Euler top and to the Lagrange top by Hirota
and Kimura [17,21], who observed that the resulting maps are integrable.

Independently and in the general framework of quadratic ODEs (not necessarily
integrable), the bilinear discretizationwas introduced byKahan [20]. For some reasons
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which remain not completely clarified up to now, Kahan’s method tends to preserve
integrals of motion and integral invariants much more often than any other known
general purpose discretization scheme, which was confirmed by extensive studies,
see [23–30,32,33,36,40] and [2,3,5,6,38,39]. Generalizations of Kahan’s method for
higher order ODEs and/or to polynomial vector fields of higher degree were studied in
[4,19]. Integrability is preserved by Kahan’s method in an amazing number of cases
(but not always!). It seems reasonable to reserve the term “Hirota–Kimura method”
for this method in the context of integrable discretization. In this article, we use the
term “Kahan’s method”.

Simple counterexamples to preservation of integrability by Kahan’s method are
available already in dimension n = 2, and can be found among non-homogeneous
extensions of the so called reduced Nahm equations introduced in [18]. These are the
systems of the form

(

ẋ
ẏ

)

= 1

ρ(x, y)

(

∂H/∂ y
−∂H/∂x

)

, (4)

where

H(x, y)=�
γ1
1 (x, y)�γ2

2 (x, y)�γ3
3 (x, y), ρ(x, y) = �

γ1−1
1 (x, y)�γ2−1

2 (x, y)�γ3−1
3 (x, y),

with γ1, γ2, γ3 ∈ R\{0}, and �i (x, y) = ai x+bi y are linear forms. Integrability takes
place for (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), and (1, 2, 3). In all three cases, all integral
curves of the system (4) are of genus 1. In [5,24,32] integrability was established for
the Kahan discretization of all three cases of the reduced Nahm equations.

If (γ1, γ2, γ3) = (1, 1, 1), one is dealing with a canonical Hamiltonian system with
a homogeneous cubic Hamilton function. As discovered in [2], in this situation the
Kahan discretization remains integrable for arbitrary (i.e., also for non-homogeneous)
cubic Hamilton functions.

If (γ1, γ2, γ3) = (1, 1, 2), one can find non-homogeneous perturbations of the
quartic polynomial H(x, y) so that the resulting differential equations (4) still have the
abovementioned property: all integral curves are of genus 1. AKahan discretization of
the perturbed (non-homogeneous) system is non-integrable. However, it was shown in
[33] that one can adjust the coefficients of the discretization (making them dependent
on ε in a non-trivial way) to obtain an integrable Kahan-type discretization.

The present paper is devoted to a similar result for systems of the class (γ1, γ2, γ3) =
(1, 2, 3). The homogeneous system can be taken as

{

ẋ = −2x2 + 2xy,
ẏ = −y2 + 2xy.

(5)

It possesses an integral of motion of degree 6:

H(x, y) = x2y3
(

− 2

3
x + 1

2
y
)

, (6)
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whose level sets are curves of genus 1. The Kahan discretization of this system reads:

{

(̃x − x)/ε = −2x̃ x + (̃x y + x ỹ),
(ỹ − y)/ε = −ỹ y + (̃x y + x ỹ).

(7)

It is integrable, with an integral of motion

H1(x, y) = H(x, y)
(

1 − ε2x2
)(

1 − ε2(x − y)2
)(

1 − ε2(x2 + y2)
) . (8)

Consider the following non-homogeneous perturbation of system (5):

{

ẋ = −2x2 + 2xy + c,
ẏ = −y2 + 2xy.

(9)

It has the following integral of motion:

H(x, y) = (xy + c)2
(

−2

3
xy + 1

2
y2 + 1

3
c

)

, (10)

with the same property as above (all level sets are curves of genus 1). The Kahan
discretization of this system,

{

(̃x − x)/ε = −2x x̃ + (̃x y + x ỹ) + c,

(ỹ − y)/ε = −y ỹ + (̃x y + x ỹ),
(11)

generates a non-integrable map. However, the coefficients of this discretization can
be adjusted via O(ε2) terms, to produce an integrable map:

{

(̃x − x)/ε = −(2 − ε2c)x x̃ + (1 + ε2c)(̃x y + x ỹ) + c − ε2c(2 + ε2c)y ỹ,

(ỹ − y)/ε = −(1 + ε2c)y ỹ + (̃x y + x ỹ).
(12)

This map, like the unperturbed one (7), has an integral of motion whose level sets are
curves of degree 6 and of genus 1 (the irreducible ones).

The presentation is organized as follows. In Sect. 2, we consider in detail system (5)
and its Kahan discretization (7), paying special attention to the singularity confinement
property of the latter map. In Sect. 3, we perform, following [31], a reduction of
the pencil of invariant curves of degree 6 of the Kahan discretization to a pencil of
biquadratic curves. Thisway, themap is shown to be birationally equivalent to a special
QRT root (cf. [10,35]). In Sect. 4, we show that the relevant geometric and dynamical
properties of this QRT root can be found in a one-parameter family of such maps, and
then find a corresponding one-parameter family of birationally equivalent Kahan-type
maps preserving a pencil of curves of degree 6 and of genus 1. Finally, in Sect. 5, a
continuous limit is performed in those Kahan-type maps, leading to a novel integrable
system (9), with a pencil of invariant curves with the same property (level sets of the
non-homogeneous sextic polynomial (10) are of genus 1).
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2 A Homogeneous (1,2,3) System and Its Kahan Discretization

We start with a reduced Nahm system (5) with (γ1, γ2, γ3) = (1, 2, 3), obtained by
the following choice of the corresponding linear forms:

�1(x, y) = −2

3
x + 1

2
y, �2(x, y) = x, �3(x, y) = y,

so that H(x, y) is as given in (6), and ρ(x, y) = xy2.
Its Kahan discretization is given in (7). Due to homogeneity, we can restrict our-

selves to the case ε = 1,

{

x̃ − x = −2x̃ x + (̃x y + x ỹ),
ỹ − y = −ỹ y + (̃x y + x ỹ).

(13)

The general case is obtained from this by the re-scaling (x, y) �→ (εx, εy). A simple
computation gives an explicit formula for the map f :

(

x̃
ỹ

)

=
(

1 + 2x − y −x
−y 1 − x + y

)−1 (

x
y

)

= 1

�

(

1 − x + y x
y 1 + 2x − y

)(

x
y

)

,

or

x̃ = x(1 − x + 2y)

�
, ỹ = y(1 + 3x − y)

�
, � = 1 + x − 2x2 + 2xy − y2.

(14)

In homogeneous coordinates,

f (x, y, z) =
[

x(z − x + 2y) : y(z + 3x − y) : z2 + zx − 2x2 + 2xy − y2
]

.

(15)

In the following proposition, we collect the relevant information about this map, as
found in [5,24,32,40].

Proposition 1 The map f given in (14) admits an integral of motion

H1(x, y) = H(x, y)
(

1 − x2
)(

1 − (x − y)2
)(

1 − (x2 + y2)
) , (16)

with H(x, y) = x2y3(− 2
3 x + 1

2 y). The pencil of the level curves H1(x, y) = λ, i.e.,

H(x, y) − λ
(

1 − x2
)(

1 − (x − y)2
)(

1 − (x2 + y2)
) = 0, (17)

of deg = 6 possesses eleven (distinct) base points given by:
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• six finite base points of multiplicity 1 on the line �1 = 0:

p1 = −p6 =
(3

5
,
4

5

)

, p2 = −p5 =
(

1,
4

3

)

, p3 = −p4 = (3, 4), (18)

• three base points of multiplicity 2 on the line �2 = 0, two finite and one at infinity:

p7 = −p9 = (0,−1), p8 = [0 : 1 : 0], (19)

• and two finite base points of multiplicity 3 on the line �3 = 0:

p10 = −p11 = (−1, 0). (20)

See Fig. 1 for an illustration. One has: I( f ) = {p6, p9, p11} and I( f −1) =
{p1, p7, p10}. All base points participate in three confined singular orbits of the map
f :

(p9 p11) −→ p1 −→ p2 −→ p3 −→ p4 −→ p5 −→ p6 −→ (p7 p10),

(p6 p11) −→ p7 −→ p8 −→ p9 −→ (p1 p10),

(p6 p9) −→ p10 −→ p11 −→ (p1 p7).

(21)

We refer the reader to [1,7–9] for general information about birational (Cremona)
maps of CP2, including the notion of confined singular orbits (related to degree-
lowering curves and dynamical degree, or algebraic entropy).

3 Reduction of theMap f to a Special QRT Root

We use notation

E6 = P(6; p1, . . . , p6, p27, p28, p29, p310, p311) (22)

for the pencil of curves of degree 6 with simple base boints p1, . . . , p6, double base
points p7, p8, p9, and triple base points p10, p11. One can simplify such a pencil by
applying a quadratic Cremona map φ with the fundamental points p9, p10, p11 (the
both triple base points and one of the double base points), cf. [31].

Proposition 2 Consider a quadraticCremonamapφ blowing down the lines (p10 p11),
(p9 p11), (p9 p10) to points denoted by q9, q10, q11, respectively, and blowing up the
points p9, p10, p11 to the lines (q10q11), (q9q11), (q9q10). All other base points pi ,
i = 1, . . . , 8 are regular points of φ and their images are denoted by qi = φ(pi ). The
change of variables φ maps pencil (22) of sextic curves to the pencil

E4 = P(4; q1, . . . , q6, q10, q11, q27 , q28 ) (23)

of quartic curves with eight simple base points and two double base points. The point
q9 is not a base point of the latter pencil.
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Fig. 1 Some invariant curves of the sextic pencil (17). Blue: three lines (one of them double and one
triple)—the vanishing set of the numerator of H1(x, y), i.e., λ = 0. Green: four lines and a conic—the
vanishing set of the denominator of H1(x, y), i.e., λ = ∞. Red: a generic curve

Proof The total image of a curveC ∈ E6 is a curve of degree 12. SinceC passes through
p9, p10, p11 with multiplicities 2,3,3, its total image contains the lines (q10q11),
(q9q11), (q9q10) with the same multiplicities. Dividing by the linear defining poly-
nomials of all these lines, we see that the proper image of C is a curve of degree
12 − 8 = 4. This curve passes through all points qi , i = 1, . . . , 8 (for i = 7, 8
with multiplicity 2). The curve C of degree 6 has no other intersections with the line
(p10 p11) different from two triple points p10 and p11, therefore its proper image does
not pass through q9. On the other hand, the curve C of degree 6 has one additional
intersection point with each of the lines (p9 p10) and (p9 p11), different from the dou-
ble point p9 and the triple point p10, respectively p11. Therefore, its proper image
passes through q11, resp. q10, with multiplicity 1. ��

For the proof of the following Proposition, we will repeatedly use the following
lemma.

Lemma 3 Let F be a quadratic Cremona map with I(F) = {a, b, c}, and let F blow
down the lines (ab), (bc), (ca) to the points C, A, B, respectively. Then the image
of a generic line under F is a conic through A, B,C. The (proper) image of a line
through one of the indeterminacy points, say of the line (ad), is the line (AD), where
D = F(d).
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Proof The total image of the line (ad) is a conic, but since a is blown up to a line, the
proper image is a line. This line has to pass through D = F(d) and through A (since
the line (ad) intersects the line (bc) which is blown down to A). ��
Proposition 4 The map g = φ ◦ f ◦ φ−1 has three confined singular orbits:

(q6q8) −→ q10 −→ q1 −→ q2 −→ q3 −→ q4 −→ q5 −→ q6 −→ (q7q10),

(q6q11) −→ q7 −→ q8 −→ (q10q11),

(q8q11) −→ q11 −→ (q7q11).

(24)

The point q9 is its fixed point, and lies on the line (q7q8). Moreover, the points q3 and
q11 are infinitely near.

Proof We have:

qi
φ−1

−−→ pi
f−→ pi+1

φ−→ qi+1, i = 1, . . . , 5.

Further,

q6
φ−1

−−→ p6
f−→ (p7 p10)

φ−→ (q7q10)

(applying Lemma 3 for φ);

q7
φ−1

−−→ p7
f−→ p8

φ−→ q8;
q8

φ−1

−−→ p8
f−→ p9

φ−→ (q10q11);
q9

φ−1

−−→ (p10 p11)
f−→ (p10 p11)

φ−→ q9

(applying Lemma 3 for f );

q10
φ−1

−−→ (p9 p11)
f−→ p1

φ−→ q1;
q11

φ−1

−−→ (p9 p10)
f−→ (p7 p11)

φ−→ (q7q11)

(applying Lemma 3 for f , then for φ).
Next, we consider lines which are blown down by g:

(q6q8)
φ−1

−−→ C(p6, p8, p9, p10, p11)
f−→ (p9 p11)

φ−→ q10

(indeed, the total f -image of the conic is a curve of degree 4; however, three lines
split off, being the blow-ups of p6, p9, p11; thus, the proper image is the line through
f (p8) = p9 and f (p10) = p11);

(q6q11)
φ−1

−−→ (p6 p11)
f−→ p7

φ−→ q7
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(applying Lemma 3 for φ−1);

(q8q11)
φ−1

−−→ (p8 p11)
f−→ (p9 p10)

φ−→ q11

(applying Lemma 3 for φ−1, then for f ).
The fact that q3 and q11 are infinitely near follows from the fact that p3 ∈ (p9 p10),

the latter line being blown down to q11 by φ.
It remains to show that q9 ∈ (q7q8). For this, observe that the total φ-image of

(p7 p8) is the conic C(q7, q8, q9, q10, q11). However, since p9 ∈ (p7 p8), the blow-up
of p9 splits off this conic. This is the line (q10q11), and it does not contain any of the
points q7, q8, q9. Thus, the proper φ-image of (p7 p8) is a line containing the latter
three points, which are therefore collinear. ��

For an actual computation of the map φ, we can assume, without loss of generality,
that pencil (23) consists of symmetric biquadratics, i.e., its double points are

q7 = φ(p7) = [0 : 1 : 0], q8 = φ(p8) = [1 : 0 : 0],

while the points

q9 = φ((p10 p11)) = φ({y = 0}), q11 = φ((p9 p10)) = φ({y − x = 1})

lie on the symmetry axis u = v. This still leaves us with one free parameter. It can be
chosen so that

φ(x, y, z) = [

z2 − x2 − y2 + xy : z2 − x2 − yz : xy]. (25)

A direct computation with this formula gives:

q1 = (

1,− 1
3

)

, q2 = ( − 1
3 ,−1

)

, q4 = ( − 1,− 1
3

)

, q5 = ( − 1
3 , 1

)

,

q6 = (1, 3), q7 = [0 : 1 : 0], q8 = [1 : 0 : 0], q9 = [1 : 1 : 0], q10 = (3, 1),

q11 = (−1,−1), q3 > q11 (slope − 1).

The latter notation means that the point q3 is infinitely near to q11 and corresponds to
the tangent line {v = −u − 2} there.

Now it remains to compute the map g = φ−1 ◦ f ◦ φ, i.e., the map f in the
coordinates [u : v : w]. A direct computation shows that, in the non-homogeneous
coordinates, g(u, v, 1) = [̃u : ṽ : 1] with

ũ = v, ṽ = uv − u − 2

2u − v + 1
, (26)

and admits an integral of motion

K (u, v) = 3(u − v)2 − 2(u + v) − 4

(u2 − 1)(v2 − 1)
. (27)
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Fig. 2 Two biquadratics of the pencil {K (u, v) = λ} with K (u, v) from (27). All biquadratics pass through
q11 = (−1,−1) with the slope −1 (corresponding to q3). Yellow: the conic through the eight base points
q1, . . . , q6, q10, q11. Green: four lines {u = ±1}, {v = ±1}

Thus, all base points lie on the four lines {u = ±1}, {v = ±1}, while the eight finite
base points q1, . . . , q6, q10, q11 lie on the conic (parabola) {3(u−v)2−2(u+v)−4 =
0}. See Fig. 2.

4 Generalization of the QRT Root

We try to generalize the map of the previous section. All objects found here will be
one-parameter perturbations (with the parameter c) of the corresponding objects from
the previous section. We will refrain from indicating this by an extra c in the notation
(to keep it as brief as possible). However, the reader should keep in mind that the
unperturbed situation corresponds to c = 0.

The idea is to stay in the class of symmetric QRT roots of deg = 2: in non-
homogeneous coordinates, g(u, v, 1) = [̃u : ṽ : 1] with

ũ = v, ṽ = αuv + βu − 1

u − αv − β
, (28)

which admit an integral of motion

K (u, v) = α(α + 1)(u2 + v2 − 1) − (α + 1)uv + β(u + v) − β2

(u2 − 1)(v2 − 1)
. (29)
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Note that map (26) corresponds to α = 1/2, β = −1/2. As a characteristic feature
we choose the existence of a short singular orbit (the third one in (24)):

(q8q11) −→ q11 −→ (q7q11),

i.e., of a point q11 which belongs both to I(g) and to I(g−1). One easily computes:

I(g) =
{

q8,
(

1,
1 − β

α

)

,
(

− 1,−1 + β

α

)}

,

I(g−1) =
{

q7,
(1 − β

α
, 1

)

,
(

− 1 + β

α
,−1

)}

,

where

q7 = [0 : 1 : 0], q8 = [1 : 0 : 0].

We have a one-parameter generalization of the previous case, with

q11 = (−1,−1) ∈ I(g) ∩ I(g−1),

under the condition

α = 1 + β. (30)

In what follows, we parametrize the coefficients α, β according to

β = c − 1

2
, α = c + 1

2
. (31)

Proposition 5 Under condition (31), the map g given in (26) has three confined sin-
gular orbits as in (24). Moreover, the point q3 is infinitely near to q11 (with the slope
−1). The map g has a fixed point

q9 =
(1

c
,
1

c

)

.

The pencil of invariant curves {K (u, v) = λ} of the map g is as in (23). The eight finite
base points q1, . . . , q6, q10, q11 lie on the conic given by the numerator of K (u, v).

Proof The second singular orbit in (24) is confirmed by an easy computation. Let us
compute the first (long) singular orbit, starting with the remaining point from I(g−1),
that is, with

q10 =
(3 − c

1 + c
, 1

)

∈ I(g−1).
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Fig. 3 Geometry of base points of the biquadratic pencil {K (u, v) = λ} with K (u, v) from (29) with
β = −2/3, α = 1/3, that is, c = −1/3. All biquadratics pass through q11 = (−1, −1) with the slope −1
(corresponding to q3). Yellow: the conic through the eight base points q1, . . . , q6, q10, q11. Green: four
lines {u = ±1}, {v = ±1}

We compute:

g(q10) = q1 =
(

1,−1 − c

3 + c

)

, g(q1) = q2 =
(

− 1 − c

3 + c
,−1

)

,

g(q2) = q3 > q11 = (−1,−1) with slope − 1,

g(q3) = q4 =
(

− 1,−1 − c

3 + c

)

, g(q4) = q5 =
(

− 1 − c

3 + c
, 1

)

,

g(q5) = q6 =
(

1,
3 − c

1 + c

)

∈ I(g).

One easily computes also that g−1 blows up the point q10 to the line (q6q8), while g
blows up the point q6 to the line (q7q10).

The fixed point q9 is given by a straightforward computation (note that for c �= 0,
the point q9 does not lie on (q7q8), the line at infinity). ��
All this is illustrated on Fig. 3.

There holds the following converse to Proposition 2. We perform a quadratic Cre-
mona change of variables based at q9, q10, q11 (recall that q9 is not a base point of the
pencil of invariant curves, while q10 and q11 are simple base points, the latter having
an infinitely close base point q3).

Proposition 6 Consider a quadratic Cremona map φ−1 blowing down the lines
(q10q11), (q9q11), (q9q10) to points denoted by p9, p10, p11, respectively, and blow-
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ing up the points q9, q10, q11 to the lines (p10 p11), (p9 p11), (p9 p10). All other base
points qi , i = 1, . . . , 8 are regular points of φ−1 and their images are denoted by
pi = φ−1(qi ). The change of variables φ−1 maps the pencil (23) of biquadratics to
the pencil (22) of sextic curves.

Proof The total image of a curve C of the pencil (23) is a curve of degree 8. Since C
passes through q10, q11, its total image contains the lines (p9 p11), (p9 p10). Dividing
by the linear defining polynomials of these two lines, we see that the proper image of
C is a curve of degree 6. This curve passes through all points pi , i = 1, . . . , 8 (for
i = 7, 8 with multiplicity 2). The curve C of degree 4 intersects the line (q10q11) at
two points q10, q11, and two further points, therefore its proper image passes through
p9 with multiplicity 2. On the other hand, the curve C of degree 4 has three additional
intersection points with each of the lines (q9q10) and (q9q11), different from the points
q10, respectively q11. Therefore, its proper image passes through p11, resp. p10, with
multiplicity 3. ��

It remains to conjugate the QRT root g by the quadratic change of variables φ−1.

Proposition 7 The map f = φ−1 ◦ g ◦ φ is a quadratic Cremona map with three
confined singular orbits, as in (21). The eight base points pi , i = 1, . . . , 6, 10, 11 lie
on a conic.

Proof We have:

pi
φ−→ qi

g−→ qi+1
φ−1

−−→ pi+1, i = 1, . . . , 5.

Further,

p6
φ−→ q6

g−→ (q7q10)
φ−1

−−→ (p7 p10)

(apply Lemma 3 for φ−1);

p7
φ−→ q7

g−→ q8
φ−1

−−→ p8;
p8

φ−→ q8
g−→ (q10q11)

φ−1

−−→ p9;
p9

φ−→ (q10q11)
g−→ (q1q10)

φ−1

−−→ (p1 p10)

(apply Lemma 3 first for g, then for φ−1);

p10
φ−→ (q9q11)

g−→ (q9q10)
φ−1

−−→ p11

(apply Lemma 3 for g, taking into account that q9 is a fixed point);

p11
φ−→ (q9q10)

g−→ C(q9, q1, q10, q7, q11)
φ−1

−−→ (p1 p7)
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(apply Lemma 3 first for g, taking into account that q9 is a fixed point and q1 = g(q10);
then, the total φ−1-image of the conic is a curve of degree 4; however, three lines split
off, being the blow-ups of q9, q10, q11; thus, the proper image is the line through
φ−1(q1) = p1 and φ−1(q7) = p7).

Next, we consider lines which are blown down by f :

(p6 p9)
φ−→ (q6q9)

g−→ (q11q9)
φ−1

−−→ p10

(apply Lemma 3 first for φ, then for g, taking into account that q9 is a fixed point);

(p6 p11)
φ−→ (q6q11)

g−→ q7
φ−1

−−→ p7

(apply Lemma 3 for φ);

(p9 p11)
φ−→ q10

g−→ q1
φ−1

−−→ p1.

It remains to show that the points p1, . . . , p6, p10, p11 lie on a conic. For this,
we observe that the total φ−1-image of the conic C through q1, . . . , q6, q10, q11 is
a curve of deg = 4, from which two lines split off (blow-ups of q10, q11). Thus,
the proper image is a conic. This conic contains p1 = φ−1(q1), . . . , p6 = φ−1(q6).
It also contains p10 and p11 as the consequence of the fact that C has additional
intersection points with both blown-down lines (q9q11) and (q9q10), apart from q11
and q10, respectively. ��

To make concrete computations, we normalize φ−1 by the following conditions:

p9 = (0, 1), p10 = (−1, 0), p11 = (1, 0), (32)

and

p7 = (0,−1). (33)

Then a straightforward computation gives:

φ(x, y, z) =
[

(1 + 2c − c2)xy − x2 − y2 + z2 :
2cxy − (1 − c2)yz − c2y2 − x2 + z2 :
(1 + c2)xy − c(x2 + y2 − z2)

]

,

(34)

and for the further base points given by pi = φ−1(qi ), we find:

p1 = −p6 =
(

(1 + c)(3 + c)

5 − c2
,

4

5 − c2

)

, (35)
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p2 = −p5 =
(

(1 + c)(3 − c)

(1 − c)(3 + c)
,

4

(3 + c)(1 − c)

)

, (36)

p3 = −p4 =
(

3 + c

1 − c
,

4

1 − c

)

, (37)

p8 = [c : 1 : 0]. (38)

Theorem 8 The map f = φ−1 ◦ g ◦ φ is given by

f =
[

(

x − c(y − z)
)(

z − x + (2 + c)y
) :

y
(

(1 + c)(z − y) + (3 − c)x
) :

z2 + (1 − c)xz − (2 − c)x2 + (1 + c)(2 − c)xy − y2
]

.

(39)

In the non-homogeneous coordinates, the map f (x, y, 1) = [̃x : ỹ : 1] satisfies the
following bilinear (Kahan-type) relations:

{

x̃ − x = −(2 − c)x x̃ − c(2 + c)y ỹ + (1 + c)(̃x y + x ỹ) + c,

ỹ − y = −(1 + c)y ỹ + (̃x y + x ỹ).
(40)

It possesses an integral of motion

H1(x, y) =
(

C1(x, y)
)2
C2(x, y)

(

1 − (x − cy)2
)(

1 − (x − y)2
)(

1 − (x2 + y2 − 2cxy)
) , (41)

where

C1(x, y) = (1 + c2)xy + c(1 − x2 − y2), (42)

C2(x, y) = −2(1 − c − c2)xy + 1

2
(3 − c − 3c2 − c3)y2 − cx2 + c. (43)

The base points of the pencil of invariant curves {H1(x, y) = λ} are given in (32),
(33), and (35)–(38). The conic {C1(x, y) = 0} passes through p7, p8, p9, p10, p11 (it
is the φ−1-image of the line (q7q8)), while the conic {C2(x, y) = 0} passes through
eight base points p1, . . . , p6, p10, p11.

Proof A straightforward symbolic computation. ��

On Fig. 4 one can see several invariant curves {H1(x, y) = λ} of the map f .
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Fig. 4 Some invariant curves of the sextic pencil H1(x, y) = λ with H1(x, y) from (41), c = −1/3. Blue:
two conics (one of them with multiplicity 2)—the vanishing set of the numerator of H1(x, y), i.e., λ = 0.
Green: four lines and a conic—the vanishing set of the denominator of H1(x, y), i.e., λ = ∞. Red: a generic
curve

5 Continuous Limit

Re-scaling (x, y) �→ (εx, εy) and c �→ ε2c, we arrive at system (12), which in the
limit ε → 0 is a discretization of system (9). The latter can be written as

(

ẋ
ẏ

)

= 1

(xy + c)y

(

∂H/∂ y
−∂H/∂x

)

(44)

with

H(x, y) = (xy + c)2
(

−2

3
xy + 1

2
y2 + 1

3
c

)

. (45)

This is a one-parameter (inhomogeneous) perturbation of system (5). Like for the
unperturbed system, all level sets {H(x, y) = λ} of the integral of motion (45) are
curves of genus 1 (and of degree 6). Thus, map (12) is a non-trivial integrable Kahan-
type discretization of (9).
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Integrability of map (12) is in contrast to non-integrability of the straightforward
Kahan discretization (11) of (9).We say that singularities of a birational map f ofCP2

are not confined, if the orbits of I( f −1) are disjoint from I( f ). The non-integrability
of maps with non-confined singularities is well studied, see [7]. The better the orbits
of I( f −1) are separated from I( f ), the stronger non-integrability properties hold.

Proposition 9 The map f generated by bilinear equations (11) is non-integrable, in
the sense that its singularities are not confined.

Proof To show this, we restrict ourselves to the case ε = 1. The resulting quadratic
Cremona map has three singularities, p+ = (1, 0) and two further points not lying
on the line {y = 0}. Likewise, the inverse map has three singularities, p− = (−1, 0)
and two further points not lying on the line {y = 0}. Observe that the line {y = 0} is
invariant. Thus, for the singularities to be confined, we need that some f n(p−) = p+
for some n ∈ N. The restriction of the map to the line {y = 0} is given by x̃ − x =
−2x x̃ + c, or x̃ = ϕ(x) = (x + c)/(2x + 1). One easily sees that, for a generic c,
the orbit of x = −1 under this Möbius transformation does not hit x = 1. Indeed,
ϕn(−1) = 1 is a polynomial equation of degree n for c. Thus, for all c but a countable
set this equation is not satisfied for any n ∈ N. ��

6 Conclusions

The results of the present paper confirm that the phenomenon discovered and described
in [33] is not isolated, namely that in case of non-integrability of the standard Kahan
discretization (when applied to an integrable system), its coefficients can be adjusted
to restore integrability. Recall that in the definition of Kahan’s discretization the small
stepsize ε only appears in the denominator of the differences (̃x − x)/ε which approx-
imate the derivatives ẋ , compare (1) and (2). On the contrary, the bilinear expressions
on the right hand side of (2) are the exact polarizations of the quadratic vector fields
on the right hand side of (1). This discretization method preserves integrability much
more frequently than one would expect a priori, but not always. Our examples show
that, if the straightforward recipe fails to preserve integrability, certain adjustments of
the coefficients by quantities of the magnitude O(ε2) may allow to restore integra-
bility. Further extending the list of examples and finding their systematic explanation
in terms of addition laws on Abelian varieties remains an important and entertaining
task for the future. Note that some further examples of discretizations with coefficients
depending on the stepsize ε can be found in [22, Sect. 6.5], while an example of a sys-
tem where polarization yields an integrable discretization in the homogeneous case,
but must be adjusted to achieve an integrable discretization in the inhomogeneous
case, was given in [34].
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