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Abstract Tidal interactions between Planet and its satellites are known to be the main

phenomena, which are determining the orbital evolution of the satellites. The modern

ansatz in the theory of tidal dissipation in Saturn was developed previously by the inter-

national team of scientists from various countries in the field of celestial mechanics. Our

applying to the theory of tidal dissipation concerns the investigating of the system of ODE-

equations (ordinary differential equations) that govern the orbital evolution of the satel-

lites; such an extremely non-linear system of 2 ordinary differential equations describes the

mutual internal dynamics for the eccentricity of the orbit along with involving the semi-

major axis of the proper satellite into such a monstrous equations. In our derivation, we

have presented the elegant analytical solutions to the system above; so, the motivation of

our ansatz is to transform the previously presented system of equations to the convenient

form, in which the minimum of numerical calculations are required to obtain the final

solutions. Preferably, it should be the analytical solutions; we have presented the solution

as a set of quasi-periodic cycles via re-inversing of the proper ultra-elliptical integral. It
means a quasi-periodic character of the evolution of the eccentricity, of the semi-major

axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation

in the Planet.
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1 Introduction, the System of Equations

Recently, an epochal analyses were executed over a lot of data of circa 130-years obser-

vations regarding the Saturn positions in a space, accomplished with the very accurate

observations of positions for all the satellites of Saturn. It was a hard work to find a proper

information (in various sources of data) about the appropriate observations, to check their

validity, then to combine it for future analysis in the united data-base for computations.

Such an analyses were made by the international group of scientists in the comprehensive

articles (Lainey et al. 2012, 2015). Authors used a numerical methods to obtain a theo-

retical solutions, then they compared it with the data of all the reasonable observations. For

example, in Appendix of Lainey et al. (2012, 2015) a systems of equations (A1), (A2) have

been stated for mutual evolution of the eccentricity e along with the semi-major axis a of

the moons of Saturn. Here and below we note that the tidal effects are introduced by means

of the Love number k2, which is describing the response of the potential of the distorted

body in regard to the experiencing tides, as well as by the quality factor Q, which is

inversely proportional to the amount of energy dissipated essentially as heat by tidal

friction (Lainey et al. 2009); so, tidal effects are introduced in the combination k2/Q for

Saturn and satellite.

In particular, we recall that we have (as a first approximation) for the tides raised in the

primary (a case of tidal interaction between Saturn and Titan in Kaula (1964) was

considered):

da

dt
¼ 3k2mnR

5

QMa4
1þ 51

4
e2

� �
;

de

dt
¼ 57k2mn

8QM

R

a

� �5

e;

ðA1Þ

here m is the mass of satellite, M is the mass of Saturn, n is the osculating mean motion,

R is equatorial radius.

But we also recall that we have (as a first approximation) for the tides raised in the 1:1

spin–orbit satellite (Peale and Cassen 1978):

da

dt
¼ � 21ks2MnR5

s

Qsma4
e2;

de

dt
¼ � 21ks2Mn

2Qsm

Rs

a

� �5

e

ðA2Þ

here sign “s” denotes the case of satellite.

Besides, we should note that, according to the Kepler’s law of orbital motion, the square

of mean motion:

n2 ¼ GðM þ mÞ
a3

; ð�Þ

where G—gravitational constant of the Newton’s law of universal gravitation.

2 Reduction of the System of Equations (A2)

We could present system of equations (A2) as below
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da
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¼ �

21ks2M �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

Qsm

1

a

� �4

�e2;

de

dt
¼ �

21ks2M �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

2Qsm

1

a

� �5

� e

ð2:1Þ

Let us denote just for simplicity

B ¼ 21ks2M � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞp� � � Rsð Þ5
Qsm

:

Mathematical procedure for reduction of the system of Eqs. (2.1) has been moved to an

“Appendix”, with only the resulting formulae left in the main text ({a0, e0} = {a(0), e
(0)} = const):

a ¼ a0 � expðe2 � e20Þ; ð2:2Þ
Thus, if we consider the case of eccentricity e → 0, we could obtain in “Appendix” from

Eqs. (2.3)–(2.5) (here below Δt should be considered as long time-period scale):

e ffi e0 � exp �B

2
� exp

13
2
e20

� �
ða0Þ

13
2

� Dt
 !

; ð2:6Þ

just compare it with the appropriate plot at Fig. 3 in Lainey et al. (2012); as well as we

could obtain the appropriate expression for the semi-major axis from (2.2), using (2.6):

a ¼ a0 � exp e0 � exp �B

2
� exp

13
2
e20

� �
ða0Þ

13
2

� Dt
 ! !

ð2:7Þ

where the scale-factor a0 should be given by the initial conditions. We schematically
imagine the plot of solution (2.7) at Fig. 1 as presented below.

3 Reduction of the System of Equations (A1)

Let us consider the more complicated case of system of equations (A1) as below

da

dt
¼

3k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

QMa4
1þ 51

4
e2

� �
;

de

dt
¼

57k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

8QM

1

a

� �5

�e;

ð3:1Þ

Let us also denote just for simplicity
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A ¼ k2m � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞp� � � R5

QM
:

Mathematical procedure for reduction of the system of Eq. (3.1) has also been moved to an

“Appendix”, with only the resulting formulae left in the main text ({a1, e1} = {a(0), e
(0)} = const):

a ¼ a1 � e

e1

� � 8
19

� exp 51

19
ðe2 � e21Þ

� �
; ð3:2Þ

where the term: exp ((51/19)·(e2 − e1
2)) ≅ 1. So, using (3.2), we could obtain from the 2nd

of Eqs. (3.1) (here below Δt should be considered as long time–period scale):

e ¼ e1 � 39

2
� A � a1ð Þ� 13

2 �Dt
� �19

52

ð3:3Þ

where the scale-factor a1 should be given by the initial conditions according to the

assumption e → 0.

We schematically imagine an approximation of the solution (3.3) dynamics at Fig. 2

(where we assume the extent (19/52) ≅ 1/2 just for simplicity of presentation below):
Analyzing the contributions (2.6) and (3.3) into the effect of tidal dissipation (in regard

to the evolution of the orbit of satellite motion around the planet), we can see that such the

contributions apparently differ from each other.

Indeed, the contribution of tidal dissipation in planet (2.6)–(2.7) tends to decrease the

eccentricity as well as the semi-major axis of the satellite orbit [depending on the sign of

mean motion (*)], but a proper contribution of tidal dissipation in satellite (3.2)–(3.3) tends

to increase the eccentricity as well as the semi-major axis of the satellite orbit [and vice

versa, depending on the sign of mean motion (*)].

Thus, we should evaluate the combined contribution of the effects of tidal dissipation

both in the planet and satellite.

Fig. 1 Schematically imagined the plot of solution (2.7) for the function a(t)
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4 Reduction of the Combined System of Equations (A1) + (A2)

Let us consider the case of the combined system of equations (A1) + (A2) in the sense of

combined contributions to the tidal dissipation (of the planet + satellite) as below

da

dt
¼

3k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

QMa4
1þ 51

4
e2

� �
�
21ks2M �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

Qsm

1

a

� �4

� e2;

de

dt
¼

57k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

8QM

1

a

� � 5

�e�
21ks2M �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

2Qsm

1

a

� �5

� e:

The last system could be transformed to the form below

da

dt
¼ C

a
11
2

� �
� Dþ E � e2� �

;

de

dt
¼ C

2a
13
2

� �
� F � e;

ð4:1Þ

where we have denoted (just for simplicity) the appropriate constants:

C ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞ

p
; D ¼ k2m � R5

QM
; E ¼ k2m � R5

QM
� 51
4
� 7ks2M � Rsð Þ5

Qsm

 !
;

F ¼ 19k2mR
5

4QM
� 7ks2M � Rsð Þ5

Qsm

 !
:

ð4:2Þ

Also, the mathematical procedure for reduction of the system (3.1) has been moved to

an “Appendix”, with only the resulting formulae left in the main text ({a2, e2} = {a(0), e
(0)} = const):

Fig. 2 Schematically imagined the plot of solution (3.3) for the function e(t)
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a ¼ a2 � e

e2

� �2 D
Fð Þ
� exp E

F

� �
� ðe2 � e22Þ

� �
; ð4:3Þ

where the term: exp ((E/F)·(e2 − e2
2)) ≅ 1. So, using (4.3), we could obtain from the 2nd of

Eq. (4.1) (here below Δt should be considered as long time-period scale):

e ¼ e2 � 13C � D
2

� a2ð Þ�13
2 �Dt

� � F
13D

ð4:4Þ

where the scale-factor a2 should be given by the initial conditions according to the

assumption e → 0.

If we assume the extent (F/(13D)) ≅ 1/2 in (4.4) (just for simplicity of presentation), we

should conclude that the approximate dynamics of the solution (4.4) coincide to the

dynamics of previously discussed solution (3.3) which was imagined at Fig. 2.

The last but not least, we should especially note that the resulting combined contri-

butions of tidal dissipation of both the Planet and satellite depend on the ratio (F/D) (4.2)
(see the appropriate expressions for solution (4.3)–(4.4)), which is obviously not depending

on the sign of mean motion (*):

F ¼ 19k2mR
5

4QM
� 7ks2M � Rsð Þ5

Qsm

 !
; D ¼ k2m � R5

QM

5 Discussions

Tidal interactions between Planet and its satellites are known to be the main phenomena,

which are determining the orbital evolution of the satellites. There are a lot of theories of

tidal dissipation, but most of them could be associated with two main types: (1) tidal

friction for bodies with fluid layers, (2) solid tidal dissipation. Indeed, the rheological law

for the actual rheological parameters, obeyed by the material of the bodies, and their role in

dissipation differ from one aforementioned types to another.

Definitely, a short review on the applicability over formulations for solid tidal dissi-

pation would be helpful. In this respect we confine ourselves to mention the paper

(Efroimsky and Makarov 2013) in which most popular cases of tidal friction are remarked

(as the constant geometric lag model or the constant time lag model).

This paper presents a mathematical technique that helps with the analytical integration

over time of eccentricity + semi-major axis in a binary system experiencing tidal friction.

We should note that integration of these equations is quite fundamental to many studies

and so even small improvements in the method can be a benefit.

The described formulation incorporates formulae for the tidal friction that is surely not

appropriate for the aforementioned bodies with fluid layers. In this respect we confine

ourselves to mention the paper (Tyler 2014) in which all the difficulties concerning the

most complicated cases of tidal friction for bodies with fluid layers are remarked. A

leading result in the comprehensive study above is that the tidal response expected cannot

simply be inferred from the orbit, or even the expected Q (quality factor). Also, the

differences in the nature of the fluid versus solid tidal dissipation have been pointed out in

the aforementioned article (the dependence on ocean thickness is also at least as important

as Q). Referring to the comprehensive article (Tyler 2014), we should generalize our future
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researches for tidal dissipation effect, where we should consider or describe what systems

their equations apply to and whether they can be extended to the case of bodies with fluids.

6 Conclusion

Our applying to the theory of tidal dissipation concerns the investigating of the system of

ODE-equations that govern the orbital evolution of the satellites; such an extremely non-

linear system of 2 ordinary differential equations describes the mutual internal dynamics

for the eccentricity of the orbit along with involving the semi-major axis of the proper

satellite to such a monstrous equations.

Referring to the comprehensive articles (Efroimsky and Lainey 2007; Efroimsky 2015)

we should generalize our future researches for tidal dissipation effect depending on the

tidal-flexure frequency χ.
Indeed, according to the modern ansatz (Efroimsky and Lainey 2007) the quality factor

Q of the Planet could be assumed depending on the tidal-flexure frequency χ as below:

Q / va; a ¼ 0:16� 0:4

where frequency χ is apparently depending on the mean motion (*): χ = 2 |ωp − n|,
according to results reported in Efroimsky and Lainey (2007) (ωp being planet’s spin rate).

Besides, the ratio (ks2=Q
s) of the satellite could be assumed depending on the tidal-

flexure frequency χ as below (Efroimsky 2015):

ks2
Qs

/ ðg � vÞb; b ¼ �1

where η is the effective viscosity of the satellite; but frequency χ is apparently also

depending on the mean motion (*) as above.

We should recall that initial system of Eq. (A2) was presented for the tides raised in the

1:1 resonance for the spin–orbit of satellite. So, we should up-date it for the case where

frequency χ is supposed to be depending on the mean motion (*): χ = 2 |ωp − n|,
according to the ansatz Efroimsky and Lainey (2007) (ωp being the planet’s spin rate).

It means that we should correct properly the set of coefficients {C, D, E, F} in formulae

(4.1)–(4.2) for such a case; especially, the set {D, F} should be corrected as the coeffi-

cients, which are determining the structure of the solution (4.3)–(4.4) across the ratio (D/
F) or (F/D) as the key dynamical parameter of the system. Meanwhile, such a correction

could be accomplished with the data of astrometric observations: indeed, we could adjust

analytical solutions with respect to the actual data of observations for the orbits of

satellites.

All in all, the physically reasonable hypothesis should be assumed as below (we assume
the mixed scenario): the tidal dissipation of the satellite is assumed to be equal to the

constant value, but the tidal dissipation of the Planet could be assumed depending on the

tidal-flexure frequency χ as suggested above:

Q / va; ða ¼ 0:2� 0:4Þ n2 ¼ GðM þ mÞ
a3

;

) v ¼ 2 xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞ

a3

r�����
�����

ð6:1Þ
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In such a case, we could obtain from the Eqs. (4.1), (6.1) (see the proper derivation

(6.2)–(6.9) in “Appendix”), with only the resulting formulae left in the main text below:

Z xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðMþmÞ

ðað0ÞÞ3� e
eð0Þ

� 	3
H

vuut
0
BB@

1
CCA

a

� e
eð0Þ
� 	 13

2H
�1ð Þ

19k2mR5

4M�2a � 7ks
2
M� Rsð Þ5
Qsm

� xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðMþmÞ

ðað0ÞÞ3� e
eð0Þ

� 	3
H

vuut
0
BB@

1
CCA

a0
BB@

1
CCA

d
e

eð0Þ
� �

¼ C

2ðað0ÞÞ132

 !
�
Z

dt

ð6:6Þ
which could be simplified by Tailor series (as first approximation) in regard to the term

below

xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðM þ mÞ
ðað0ÞÞ3 � e

eð0Þ
� 	 3

H

vuuut
0
BB@

1
CCA

a

ffi xp

� �a� 1� a
xp

� �
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðM þ mÞ
ðað0ÞÞ3 � e

eð0Þ
� 	3

H

vuuut
0
BB@

1
CCA:

So, we obtain ({a(0), e(0)} = const):

a ffi að0Þ � u�2
3; e ¼ eð0Þ � u�2H

3 ;

H ¼ 19

8
� 7ks2M

2 � Rsð Þ5
2k2 � Qsm2R5

� 2xp

� �a !
;

Z
u �16

3ð Þ

K � 1� aC

3xp�ðað0ÞÞ
3
2

� �
� u

� �
� N

� � du ¼ � 3C

2H � ðað0ÞÞ132

 !
�
Z

dt;

K ¼ 19k2mR
5

8 2xp

� �a�M ; C ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞ

p
; N ¼ 7ks2M � Rsð Þ5

2Qsm

ð6:9Þ

Solution (6.9) could obviously be reduced to the solution (4.4) if we choose α = 0; in

this case we should note that

2xp

� �a! Q ¼ const:

Let us note that the left part of Eq. (6.6) is the proper ultra-elliptical integral of

fractional order in regard to the function u (see Lawden 1989), which depends on the

eccentricity e in formulae (6.9). But the elliptical integral is known to be a generalization

of a class of inverse periodic functions. Thus, by the obtaining of re-inverse dependence for

the expression (6.6), we could present the solution as a set of quasi-periodic cycles: it
means a quasi-periodic character of the evolution of the eccentricity, of the semi-major

axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation

in the Planet.

By the way, if we take into consideration the dependence of the ratio (ks2=Q
s k2ˢ/Qˢ) for

the satellite on the tidal-flexure frequency χ as below (Efroimsky 2015):
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ks2
Qs

/ ðg � vÞb; b ¼ �1

recall that χ = |n| for the case of satellite (Lainey et al. 2012, 2015), we should also obtain

the ultra-elliptical integral in regard to the function a as the analogue of Eq. (6.2) for such a
case. Nevertheless, we restrict ourselves to the chosen case of constant tidal dissipation

inside the satellite for the current research (the satellite is assumed synchronised).

Finally, we should especially note that the mean motion (*) is evaluated here according

to the Kepler’s law of orbital motion. But in the case of restricted 3-bodies problem

(RTBP) Ershkov (2015, 2017) it should differ from the case of classical solution of two-

bodies problem.
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Appendix (Calculations in 2–6 Sections)

Reduction of the System of Equations (A2)

We could present system of equations (A2) as below

da

dt
¼ �

21ks2M �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

Qsm

1

a

� �4

�e2;

de

dt
¼ �

21ks2M �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

2Qsm

1

a

� �5

� e

ð2:1Þ

Let us denote just for simplicity

B ¼ 21ks2M � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞp� � � Rsð Þ5
Qsm

;

if we divide each part of 1st equation on the proper part of the 2nd equation of (2.1), it

should yield ({a0, e0} = {a(0), e(0)} = const):

da

de
¼ 2

e

ð1=aÞ ;)
da

a
¼ dðe2Þ;) ln a ¼ e2 þ const;) a ¼ a0 � exp ðe2 � e20Þ; ð2:2Þ

so, using (2.2), we could obtain from the 2nd of Eqs. (2.1)
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de

dt
¼ � B

2

� �
� e � a�13

2 ) de

dt
¼ � B

2

� �
� e � ða0 � expðe2 � e20ÞÞ�

13
2

)
Z

exp 13
2
e2

� �
e

� �
de ¼ � B

2

� �
� exp

13
2
e20

� �
ða0Þ

13
2

�
Z

dt

ð2:3Þ

The left side of expression (2.3) could be transformed by the appropriate change of

variables as below

e ¼ ffiffiffi
u

p
;)

Z
exp 13

2
u

� �
2

ffiffiffi
u

pð Þ2
 !

du ¼ � B

2

� �
� exp

13
2
e20

� �
ða0Þ

13
2

�
Z

dt

)
Z

exp 13
2
u

� �
u

� �
du ¼ �B � exp

13
2
e20

� �
ða0Þ

13
2

Z
dt

ð2:4Þ

where (Kamke 1971)

Z
exp 13

2
u

� �
u

� �
du ¼ ln uj j þ

13
2

� � � u
1 � 1! þ

13
2

� �2�u2
2 � 2! þ

13
2

� �3�u3
3 � 3! þ � � � þ

13
2

� �n�un
n � n! þ . . .;

u ¼ e2
ð2:5Þ

Thus, if we consider the case of eccentricity e → 0, we could obtain from Eqs. (2.4)–

(2.5):

2 ln
e

e0

� �
ffi �B � exp

13
2
e20

� �
ða0Þ

13
2

� Dt ) e ffi e0 � exp �B

2
� exp

13
2
e20

� �
ða0Þ

13
2

� Dt
 !

; ð2:6Þ

just compare it with the appropriate plot at Fig. 3 in Lainey et al. (2012); as well as we

could obtain from Eqs. (2.4)–(2.5) the appropriate expression for the semi-major axis from

(2.2) (here below Δt should be considered as long time-period scale):

a ¼ a0 � exp e0 � exp �B

2
� exp

13
2
e20

� �
ða0Þ

13
2

� Dt
 ! !

ð2:7Þ

where the scale-factor a0 should be given by the initial conditions.

Reduction of the System of Equations (A1)

Let us consider the more complicated case of system of equations (A1) as below

da

dt
¼

3k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

QM a4
1þ 51

4
e2

� �
;

de

dt
¼

57k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

8QM

1

a

� �5

�e;

ð3:1Þ

Let us also denote just for simplicity
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A ¼ k2 m � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ðM þ mÞp� � � R5

Q M
;

then, if we divide each part of 1st equation on the proper part of 2nd equation of (3.1), it

should yield ({a1, e1} = {a(0), e(0)} = const):

da

de
¼ 8

19

1þ 51
4
e2

� �
ð1=aÞ � e ;) da

a
¼ 8

19

1þ 51
4
e2

� �
e

de;

ln a ¼ 8

19
ln eþ 51

19
e2 þ const;) a ¼ a1 � e

e1

� � 8
19

� exp 51

19
ðe2 � e21Þ

� �
;

ð3:2Þ

where the term: exp ((51/19)·(e2 − e1
2)) ≅ 1. So, using (3.2), we could obtain from the 2nd

of Eqs. (3.1) (here below Δt should be considered as long time-period scale):

d e
e1

� 	
dt

¼ 57

8
A a1 � e

e1

� � 8
19

 ! !�13
2

� e

e1

� �
;)

Z
e

e1

� �33
19

d
e

e1

� �
¼ 57

8
A � a1ð Þ�13

2 �
Z

dt;)

1
33
19
þ 1

� � e

e1

� �52
19

¼ 57

8
� A � a1ð Þ�13

2 �
Z

dt ) e ¼ e1 � 39

2
� A � a1ð Þ�13

2 �Dt
� �19

52

ð3:3Þ
where the scale-factor a1 should be given by the initial conditions according to the

assumption e → 0.

Reduction of the Combined System of Equations (A1) + (A2)

Let us consider the case of the combined system of equations (A1) + (A2) in the sense of

combined contributions to the tidal dissipation (of Saturn + satellite) as below

da

dt
¼

3k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

QMa4
1þ 51

4
e2

� �
�
21ks2M �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

Qs m

1

a

� �4

� e2;

de

dt
¼

57k2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
R5

8QM

1

a

� �5

�e�
21ks2M �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

p
a
3
2

� �
� Rsð Þ5

2Qsm

1

a

� �5

� e:

The last system could be transformed to the form below

da

dt
¼ C

a
11
2

� �
� Dþ E � e2� �

;

de

dt
¼ C

2a
13
2

� �
� F � e;

ð4:1Þ

where we have denoted (just for simplicity) the appropiate constants:
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C ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞ

p
; D ¼ k2m � R5

QM
; E ¼ k2m � R5

QM
� 51
4
� 7ks2M � Rsð Þ5

Qsm

 !
;

F ¼ 19k2mR
5

4QM
� 7ks2M � Rsð Þ5

Qsm

 !
:

ð4:2Þ

Then, if we divide each part of 1st equation on the proper part of 2nd equation of (4.1),

it should yield ({a2, e2} = {a(0), e(0)} = const):

da

de
¼ 2

Dþ E � e2ð Þ
ð1=aÞ � F � e ;)

da

a
¼ 2

D

F

� �
� 1
e
þ 2

E

F

� �
� e

� �
de;

ln a ¼ 2
D

F

� �
ln eþ E

F

� �
� e2 þ const;) a ¼ a2 � e

e2

� �2 D
Fð Þ
� exp E

F

� �
� ðe2 � e22Þ

� �
;

ð4:3Þ
where the term: exp ((E/F)·(e2 − e2

2)) ≅ 1. So, using (4.3), we could obtain from the 2nd of

Eqs. (4.1) (here below Δt should be considered as long time-period scale):

d e
e2

� 	
dt

¼ C

2 a2 � e
e 2

� 	2 D
Fð Þ� �13

2

� F � e

e2

� �
;)

Z
e

e2

� � 13 D
Fð Þ�1ð Þ !

d
e

e2

� �

¼ C

2
� F � a2ð Þ�13

2 �
Z

dt;)

1

13 D
F

� � � e

e2

� �13 D
Fð Þ
¼ C

2
� F � a2ð Þ� 13

2 �
Z

dt;) e ¼ e2 � 13C � D
2

� a2ð Þ�13
2 �Dt

� � F
13D

ð4:4Þ

where the scale-factor a2 should be given by the initial conditions according to the

assumption e → 0.

Conclusion

We could obtain from the 1st of formulae (4.3) in “Appendix” above (as a first approxi-

mation), using the assumption e → 0 and then using the formulae (6.1):

da

de
¼ 2

Dþ E � e2ð Þ
ð1=aÞ � F � e ;)

da

a
ffi 2

D

F

� �
de

e
;

)
Z

FðaÞ
a � DðaÞ
� �

da ffi ln
e2

e2ð0Þ
� �

;) exp

Z
FðaÞ

a � DðaÞ
� �

da

� �
ffi e

eð0Þ
� �2

;

ð6:2Þ

where

FðaÞ ¼ 19k2 mR
5

4 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
� xp

����
����

� �a

�M
� 7ks2M � Rsð Þ5

Qsm
; DðaÞ ¼ k2m � R5

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
� xp

����
����

� �a

�M
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for the definiteness, we will consider the case ωp [ n in the expressions above, so we

should assume |ωp − n| = ωp − n. The left part of the Eq. (6.2) could be transformed as

below ({a(0), e(0)} = const:

exp

Z
19

4a
� 7k s2M

2 � Rsð Þ5
k2 � Qsm2R5

2 xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q� �� �a

a

0
BB@

1
CCAda ffi e

eð0Þ
� �2

;)

a

að0Þ
� �19

4

� exp � 7ks2M
2 � Rsð Þ5

k2 � Qsm2R5

2 xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q� �� �a

a

0
BB@

1
CCAda

0
BB@

1
CCA ffi e

eð0Þ
� �2

;)

a

að0Þ
� �19

4

� exp � 7ks2M
2 � Rsð Þ5

k2 � Qsm2R5

Z 2xp

� �a� 1� a

ffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

p
xp

þ a�ða�1Þ
2

ffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

p
xp

� �2

�ð. . .Þ
 !

a

0
BBBB@

1
CCCCAda

0
BBBB@

1
CCCCA ffi e

eð0Þ
� �2

;

ð6:3Þ
where we should restrict our approximation of the expression above for the range of the

chosen parameter α = 0.16 0.4 (in case of Saturn) by a proper way:

1� a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
xp

þ a � ða� 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
xp

0
@

1
A

2

�ð. . .Þ

0
B@

1
CA

ffi 1� a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
xp

þ a � ða� 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
xp

0
@

1
A

2

� a � ða� 1Þ � ða� 2Þ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
xp

0
@

1
A

3

:

ð6:4Þ

Indeed, an inequality below is valid for all the satellites in case of Saturn:ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

a3

q
xp

0
@

1
A� 	 2

3
;

so, we obtain for the 4-th term of the Taylor series (in the left part of (6.4)) that even at
optimal conditions it should be less than

þ a � ða� 1Þ � ða� 2Þ � ða� 3Þ
24

2

3

� �4

ffi þ 0:4 � ð�0:6Þ � ð�1:6Þ � ð�2:6Þ
24

2

3

� �4

ffi �0:008

Using the Taylor decomposition of the expression (6.4) insofar, we obtain from (6.3) the

appropriate invariant as below
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a

að0Þ
� �19

4

� exp
�

� 7 k s
2 M

2 � Rs

� � 5
k2 � Qs m2R 5

�
Z 2xp

� �a� 1� a

ffiffiffiffiffiffiffiffiffiffi
G ðMþmÞ

a 3

p
x p

þ a�ða�1Þ
2

ffiffiffiffiffiffiffiffiffiffi
G ðMþmÞ

a 3

p
x p

� �2

� a�ða�1Þ�ða�2Þ
6

ffiffiffiffiffiffiffiffiffiffi
G ðMþmÞ

a 3

p
x p

� �3
 !

a

0
BBBB@

1
CCCCA

da ffi e

e ð0Þ
� �2

;) a

að0Þ
� �19

4

� exp
�

� 7 k s
2 M

2 � Rs

� � 5
k2 � Qs m2R 5

� 2x p

� � a

� ln aþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ðM þ mÞp

xp

2

3

1

a
3
2

� a � ða� 1Þ
2

G ðM þ mÞ
ðxpÞ2

1

3

1

a3
þ a � ða� 1Þ � ða� 2Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ðM þ mÞp

xp

 !3
2

9

1

a
9
2

þ const

0
@

1
A

ffi e

e ð0Þ
� �2

;

where it is more than obvious that the terms below also should be neglected at the

sufficiently large meaning of semi-major axis a (for the first approximation):

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞp

xp

2

3

1

a
3
2

� a � ða� 1Þ
2

GðM þ mÞ
ðxpÞ2

1

3

1

a3

þ a � ða� 1Þ � ða� 2Þ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞp

xp

 !3
2

9

1

a
9
2

) 0:4
2

3

� �
2

3

� �
� 0:4 � ð0:4� 1Þ

2

2

3

� �2
1

3
þ 0:4 � ð0:4� 1Þ � ð0:4� 2Þ

6

2

3

� �3
2

9

ffi 0:18þ 0:018þ 0:004\\ ln a

so, finally we obtain the proper invariant for the mutual dependence of the eccentricity e
and the semi-major axis a as below (as the first approximation)

e

eð0Þ
� �

ffi a

að0Þ
� �H

;) a ffi að0Þ � e

eð0Þ
� �1

H

;H ¼ 19

8
� 7ks2M

2 � Rsð Þ5
2k2 � Qsm2R5

� 2xp

� �a !
ð6:5Þ

Using (6.5), we could obtain from the 2nd of Eqs. (4.1) and expressions (4.2), (6.2):

de

dt
¼ C

2ðað0ÞÞ132 � e
eð0Þ
� 	 13

2H

� F � e;
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C ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þ mÞ

p
;F ¼ 19k2mR

5

4 2 xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðMþmÞ

ðað0ÞÞ3� e
eð0Þ

� 	3
H

vuut
0
BB@

1
CCA

0
BB@

1
CCA

a

�M

� 7ks2M � Rsð Þ5
Qs m

;)

Z xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðMþmÞ

ðað0ÞÞ3� e
eð0Þ

� 	3
H

vuut
0
BB@

1
CCA

a

� e
eð0Þ
� 	 13

2H
�1ð Þ

19k2mR5

4M�2a � 7ks
2
M� Rsð Þ5
Qsm

� xp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðMþmÞ

ðað0ÞÞ3� e
eð0Þ

� 	3
H

vuut
0
BB@

1
CCA

a0
BB@

1
CCA

d
e

eð0Þ
� �

¼ C

2ðað0ÞÞ132

 !
�
Z

dt

ð6:6Þ
where (6.6) yields (as the first approximation by Tailor series):

Z e
eð0Þ
� 	 13

2H�1ð Þ

19k2mR5

8 2xpð Þa�M � 1þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

ðað0ÞÞ3�ðxpÞ2
q

� e
eð0Þ
� 	� 3

2H

� �
� 7ks

2
M� Rsð Þ5
2Qsm

� � d
e

eð0Þ
� �

ffi C

ðað0ÞÞ132

 !
�
Z

dt ð6:7Þ

The left part of Eq. (6.7) could be simplified by a proper change of variables:

u ¼ e

eð0Þ
� �� 3

2H

) e

eð0Þ
� �

¼ u�
2H
3 ) d

e

eð0Þ
� �

¼ � 2H

3

� �
� u �2H

3
�1ð Þdu )

Z
u

2H
3

1�13
2Hð Þ

19k2mR5

8 2xpð Þa�M � 1þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

ðað0ÞÞ3�ðxpÞ2
q

� u
� 	

� 7ks
2
M� Rsð Þ5
2Qsm

� �
0
BB@

1
CCA � u �2H

3
�1ð Þ

du ¼ � 3

2H

� �
� C

ðað0ÞÞ132

 !
�
Z

dt;

Z
u � 16

3ð Þ
19k2mR5

8 2xpð Þa�M � 1þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMþmÞ

ðað0ÞÞ3�ðxpÞ2
q

� u
� 	

� 7ks
2
M� Rsð Þ5
2Qsm

� �
0
BB@

1
CCAdu ¼ � 3

2H

� �
� C

ðað0ÞÞ132

 !
�
Z

dt;

ð6:8Þ
where the left part of the last of Eqs. (6.8) could be presented as below
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Z
u �16

3ð Þ

K � 1� aC

3xp�ðað0ÞÞ
3
2

� �
� u

� �
� N

� �du ¼ � 3

2H � ðað0ÞÞ132

 !
�
Z

dt;

K ¼ 19k2mR
5

8 2xp

� �a�M ; N ¼ 7ks2M � Rsð Þ5
2Qsm

ð6:9Þ
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