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Abstract In this paper, an approach for robust matching shadow areas in autonomous

visual navigation and planetary landing is proposed. The approach begins with detecting

shadow areas, which are extracted by Maximally Stable Extremal Regions (MSER). Then,

an affine normalization algorithm is applied to normalize the areas. Thirdly, a descriptor

called Multiple Angles-SIFT (MA-SIFT) that coming from SIFT is proposed, the

descriptor can extract more features of an area. Finally, for eliminating the influence of

outliers, a method of improved RANSAC based on Skinner Operation Condition is pro-

posed to extract inliers. At last, series of experiments are conducted to test the performance

of the approach this paper proposed, the results show that the approach can maintain the

matching accuracy at a high level even the differences among the images are obvious with

no attitude measurements supplied.

Keywords Shadow areas matching � Affine normalization � Visual autonomous

navigation � RANSAC

1 Introduction

Communication delay between lander and earth in planetary exploration has been con-

sidered to be an issue in future’s planetary mission (Yu et al. 2014), the mission should

require autonomous navigation for motion estimation and hazard avoidance to get close to

the landing site of planet (Epp et al. 2007; Johnson et al. 2008). However, current
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traditional EDL (Entry, Descent, and Landing) are far from the capability (Yu et al. 2014;

Pham et al. 2010a, b).

Autonomous optical navigation can provide positions of the lander by matching land-

marks that were obtained from descent images (Yu et al. 2014; Johnson and Montgomery

2008). Position estimation of lander can be divided into two parts (Johnson and Mont-

gomery 2008): Global position estimation and Velocity estimation. Global position esti-

mation matches the landmarks which were obtained in the process of descent with the

database in which the landmarks’ absolute positions are stored. The database was con-

structed during orbital reconnaissance. Landmarks are usually chosen from the terrains that

can be easy detected, and the terrains are widely spread on the surface of planet, such as

craters, whose shape often follows the well-known geometric model of ellipse, and they

can be detected under a wide range of illumination conditions without scene scale and

relative orientation between camera and the surface (Wetzler et al. 2005; Cheng et al.

2003; Cheng and Ansar 2005). However, some craters without regular shape may be hard

to be detected, and the areas that around the landing sites are not sure that there have

enough craters to enable landmarks matching. Different from Global position estimation,

velocity estimation is based on matching landmarks among image sequence, and the

approach can be split into two categories based on the types of required input: Descent

Image Motion Estimation Subsystem (DIMES; Johnson et al. 2007; Trawny et al. 2007)

and Structure from Motion (SFM; Bouguet and Perona 1995; Montgomery et al. 2006;

Ansar and Cheng 2010). DIMES takes the descent images, attitude and altitude estimates

as the input, the output is horizontal velocity, which can be calculated by correlating

images patches from one descent image to the next, during the process, each descent image

is needed to rectified to the local frame according to the change of attitude and altitude, the

approach has been tested successfully in Mars Exploration Rover landings (Johnson et al.

2008). However, the output is just horizontal velocity, angular rate cannot be estimated.

SFM takes the descent images and altitudes estimates as the input, during the phase of

descent, multiple image features are detected and matched from one descent image to the

next one, the output is not just horizontal velocity, angular rate can also been estimated,

and the approach based on SFM has been tested in a helicopter during autonomous landing

(Montgomery et al. 2006). However, this is still a challenge to achieve robust matching

among descent images with large difference of viewpoint under no attitude measurement

supplied at present. Shi-Tomasi-Kanad (Benedetti and Perona 1998; Shi and Tomasi 1994;

Johnson et al. 1999) and Harris and Stephens (1988) are often likely to be adopted as the

corner detection, however, as mentioned in (Montgomery et al. 2006), it is possible to track

their features when the change of attitude is less than 10� in the roll, 20� in pitch, and 20%

in altitude, in addition, the approach is sensitivity to noise. Sift (Lowe 2004) and Surf (Bay

et al. 2008) may have better robust performance, however, it is not good enough when the

difference of viewpoint is larger than 30�.
Shadow areas, which are formed by different kinds of terrain can be easily detected and

are widely distributed on the surface of planets, they are usually used for hazards detection

and avoidance (HDA; Johnson et al. 2008). Unlike Harris and Sift, shadow areas’ shapes

are stable in illumination, and their outlines can be considered as a kind of features to add

more information about the areas. However, few research works published take shadow

areas as the landmarks to track among descent images during lander approaching to the

landsite at current time. Therefore, an approach that is based on robust matching shadow

areas is proposed in this paper, not only can the approach deal with the issue of SFM as

mentioned above, but also can maintain the matching accuracy at a high level even the
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difference of viewpoint is large without the information of attitude’s change that is

obtained by attitude measuring equipment.

For describing the approach, the rest of this paper is organized as follows. Section 2

introduces a method that combine Binary Threshold for Shadow Areas (this paper pro-

posed) with MSER to extract shadow areas that with stable shape. Section 3 is the main

part, we introduce an affine normalization to normalize every shadow area, and then a

proposed descriptor MASIFT is introduced for features extraction. In Sect. 4, SKINNER-

RANSAC is proposed to eliminate mismatched pairs, and then mismatched pairs rectified

by estimation correct homography (Agarwal et al. 2005). Performance of the approach this

paper proposed is discussed by comparing with the existing method in Sect. 5. Finally,

conclusion are given in Sect. 6. The sketch of the approach is shown in Fig. 1.

2 Shadow Areas

As we know, camera, which the lander installed takes photos of planetary surface during

descent, so, the shadow areas extracted should be always be tracked if they are taken as the

landmarks. However, the grey values of shadow areas are very likely varies with illumi-

nation conditions’ change, and the illumination conditions’ change attributes to the change

of lander’s position in the process of landing, furthermore, when the lander is at a long

distance to the surface of planet, shadow areas and dark space will co-exist together in a

image as shown in (a) of Fig. 2, which will be discussed in bellow, the grey value of dark

space is darker than shadow areas, that will make shadow areas extraction much more

difficult in this situation. Therefore, extracting shadow areas with effective method is

crucial in our proposed approach. In this section, we introduce a new method aim at

extracting shadow areas from planetary surface image, the method can be divided into

three parts. Firstly, the notion ‘‘Isolated Intensity’’ will be introduced, and the application

of isolated intensity will improve the accuracy of shadow areas detection. Secondly, Binary

Threshold for Shadow Areas (BTSA) will be introduced to determine the global threshold

of shadow areas. Thirdly, Maximally Stable Extremal Regions (MSER) will be applied to

get the shadow areas with stable shapes.

2.1 Isolated Intensity

There are two images of 433 Eros, which were taken at different positions as shown in

Fig. 2. The image in (a) is taken at a long distance from the asteroid, carefully observe the

image, It can be seen that nearly 2/5 that of the image is occupied by the dark space that its

Descent
image 1

Descent
image 2

Shadow areas
detection and

extraction

Shadow
areas

Shadow
areas

Affine normalization
and the descriptor

extraction

Matching
pairs

Mismatching
pairs with

rectification

Calculate the
homography

Fig. 1 Sketch of the proposed approach
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intensity lies within the range from 0 to 10, however, the intensity of shadow areas lies

within the range from 0 to 60, therefore, the part of the space may influence the detection

of shadow areas in view of using global threshold. In real application, the part of dark

space in image can be seen as the background and it can be extracted by analyzing the

imager (CCD noise) and background noise, however, some areas with lower intensities

cannot be seen as background as shown in (b) of Fig. 2, observe it carefully, we can found

that there have three huge craters, and the grey of the three huge craters lies within the

range from 0 to 5, however, the intensities of small shadow areas that surrounded the three

huge craters lies within the range from 6 to 36, so, it will be hard to extract shadow areas

by current algorithm of global threshold, such as OSTU (Ohtsu 1979).

Therefore, a type of intensity that with large number of pixels is concentrated here to

deal with the issue above, and we call this type of intensity ‘‘Isolated Intensity’’. In our

work, we use least square method to detect them, now we take images of Fig. 2 as the

examples to explain this method. We found 10-degree equation in one variable can be

applied to fit most of histogram after a large number of experiments. Figure 3 displays the

histograms and their fitting curves by least square, it can be found that both of the his-

togram are fitted well, however, the different between histogram and fitted curve is obvious

when the intensity within the range from 0 to 7 in (a), and the intensity within the range

from 0 to 10 in (b). The distance from histogram to the fitted curve is displayed in Fig. 4, in

which, most parts are concentrated in the areas that surround 0 except the intensity within

the range from 0 to 7 in (a), and the intensity within the range from 0 to 10 in (b). Figure 5

displays the distribution of number of pixels in different distances, the distances approx-

imately obey the normal distribution. So, the isolated intensity can be detected according to

the normal distribution of number of pixels in different distances, a method of isolated

intensity detection is introduced in Lemma 1 as shown in below.

Let S denote a set that contains the number of each intensity’s pixel, sðiÞ 2 Sði ¼
0; 1; . . .; 255Þ; which denotes the number of pixels about intensity i. Suppose ‘ is the fitting

Fig. 2 Two images taken from
433Eros. a Long distance (NASA
PHOTO
near_20000919_large_anim);
b close distance (NASA PHOTO
near_20000511)
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Fig. 3 The histogram and its fitted curve for the images in Fig. 2. a The left one in Fig. 2; b the right one in
Fig. 2
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cure, and ‘ðiÞði ¼ 0; 1; . . .; 255Þ is the value of ‘ that corresponds to

sðiÞði ¼ 0; 1; . . .; 255Þ.

Lemma 1 Let dðiÞ ¼ sðiÞ � ‘ðiÞði ¼ 0; 1; . . .; 255Þ, if j is the isolated intensity, there will

be:

dðjÞ[ 0;
1
ffiffiffiffiffiffi

2p
p

r
e
�ðdðjÞ�lÞ2

2r2 � p ð1Þ

where

l ¼ 1

256

X

255

i¼0

dðiÞ ð2Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

256

X

255

i¼0

ðdðiÞ�lÞ2
v

u

u

t ð3Þ

p ¼ 1

256

X

255

i¼0

1
ffiffiffiffiffiffi

2p
p

r
e
�ðdðiÞ�lÞ2

2r2 ð4Þ

Proof Suppose dðjÞ is the distance from sðjÞ to ‘ðjÞ. If dðjÞ\0, the number of pixels with

intensity j cannot affect the detection of shadow areas, however, if dðjÞ[ 0, j may be the

isolate intensity, the distances dðiÞði ¼ 0; 1 � � � 255Þ approximately obey the normal dis-

tribution Nðl; rÞ, let p denote the average probability of d, if j is the isolated intensity in S,

the probability of dðjÞ must be smaller than p.
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Fig. 4 Distance from histograms to the fitted curve. a The left one in Fig. 3; b the right one in Fig. 3
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Fig. 5 The total number of pixels in different distance. a The left one in Fig. 4; b The right one in Fig. 4
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In this paper, if 1
ffiffiffiffi

2p
p

r
e
�ðdðjÞ�lÞ2

2r2 � p=10 and dðjÞ[ 0, j can be considered as the isolated

intensity.

After the detection of isolated intensities, they are replaced by the average grey of the

image as shown in Fig. 6.

2.2 Threshold

Binary Threshold for Shadow Areas (BTSA) is proposed for the calculation of threshold of

shadow areas here. The method can be organized into 8 steps:

Step 1 Calculate the average intensity.

f ¼ 1

M � N

X

M

x¼1

X

N

y¼1

f ðx; yÞ ð5Þ

where M and N are image’s height and width respectively, f ðx; yÞ is the intensity at ðx; yÞ.
Step 2 Obtain the vector b in descent, the vector contains the pixels that with their

intensities are less than f .

b : bðiÞ� f and bðiþ 1Þ� bðiÞ ð6Þ

where i ¼ 1; 2; . . .; n1, n1 is the number of pixels, and intensities of the pixels are less than

f .

Step 3 Let b subtract f and get a new vector b0.

b0ðiÞ ¼ bðiÞ � f ð7Þ

Step 4 Calculate the change rate, and its average value v1 and v2.

v : vðiÞ ¼ b0ððiþ 1Þ � TÞ � b0ði� TÞ; T ¼ M � N=Imgintensity ð8Þ

v ¼ 1

n1 � 1

X

n1�1

i¼1

vðiÞ ð9Þ

where i ¼ 1; 2 � � � ; n1=T , T is the step length, Imgintensity ¼ 256.

Step 5 Obtain the maximum position L.

L ¼ maxðijvðiÞ[ vÞ ð10Þ

where i ¼ 1; 2; . . .; n1=T .

(a)         (b)

Fig. 6 Isolated intensities
replaced by the average grey of
respective image

100 W. Ruoyan et al.

123



Step 6 Calculate the length scale p.

p ¼ L=ðn1 � 1Þ ð11Þ

Step 7 Calculate the standard deviation f :

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n1�p

i¼1

bðiÞ2=ðn1 � pÞ

v

u

u

t ð12Þ

Step 8 Obtain the threshold a of global shadow areas:

a ¼ f � f ð13Þ

The comparison of shadow areas detected between the method this section proposed and

OSTU is shown in Fig. 7. Observe (a), we find that most shadow areas can be extracted

after the isolated intensities detected, while, few shadow areas can be detected by OSTU

only. Observe (b), although the different between the two methods is not obviously, it is

still can be found that shadow areas with smaller size can be detected after isolated

intensities detected. As we know that no matter what size it is, any shadow area can be

considered as a hazard or landmark (Yu et al. 2014), so, the detection of isolated intensity

is significance for detection shadow areas on the planetary surface.

2.3 Maximally Stable Extremal Regions

As we have mentioned above, extracting shadow areas with effective method is crucial in

our proposed approach. Thanks to Maximally Stable Extremal Regions (MSER; Matas

et al. 2004), which has been considered as the best area extraction method at present. This

method of extracting a comprehensive number of corresponding image elements con-

tributes to the wide-baseline matching, and it has led to better stereo matching and object

recognition algorithms. So, we use MSER as the tools to detect the stable regions in

shadow areas. We chose several images with different types of terrain to as the targets to

investigate MSER’s performance as shown in Fig. 8a–e are taken from 433 Eros at dif-

ferent heights, and (f) is taken from Moon at the location: 8�5708.8800S, 15�27019.2600E. The
threshold of shadow areas are obtained by the method that explained in Sects. 2.1, 2.2.

Shadow areas with stable shapes extracted as shown in Fig. 9, the results reveals that most

shadow areas on the planetary surface can be detected by the method combine isolated

intensities detection with MSER.

Proposed OSTU Proposed OSTU

(a) (b)

Fig. 7 Comparison between proposed method and OSTU in Fig. 2
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3 Robust Matching

Consider the attitude of spacecraft is constantly changing in the process of landing, the

images must be varies with the change of viewpoint, rotation and scale. How to guarantee

the performance of robust matching shadow areas among descent images that their dif-

ferences of viewpoint are large is the key point in the approach this paper proposed.

Therefore we introduce a method to tackle this issue as mentioned above, the method can

be divided into 3 steps as shown in bellow, and the details of these steps will be explained

in this section.

Step 1 Extract each shadow area detected from image into small pieces of cube.

(a) (b) (c) (d)

(e) (f)

Fig. 8 Several images taken from 433 Eros and Moon. a–e Images that are taken from 433 Eros (NASA
PHOTO: near_flyover_anim_large, near_20000919_large_anim, The final approach, near_des-
cent_157416548, near_descent_157415118); f an image that are taken from Moon at the location:
8�5708.8800S, 15�27019.2600E

(a) (b) (c) (d)

(e) (f)                  (g) (h)

Fig. 9 Stable shadow areas marked with ellipses. a–b Fig. 2; c–h Fig. 8
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Step 2 Normalize the shadow areas extracted into the same size, direction and shape

according to their geometric characteristics.

Step 3 A new descriptor called ‘‘Multiple Angles SIFT’’ is proposed for catching more

features of shadow area.

3.1 Shadow Areas Segmentation

We hope all the shadow areas detected should be cut out, however, account for the

extracting the features of shadow areas, which will be discussed in the next section, the one

located at the edge of image cannot be cut out due to that they cannot be extract features

completely, that will influence the matching performance. Therefore, the produce of

shadow areas segmentation should be specified. Let Sadow denote a shadow area as shown

in Fig. 10, Hmin and Hmax are the minimum and maximum values on the horizontal ordinate

of the image, respectively, at the same time, Vmin and Vmax are the minimum and maximum

value on the vertical ordinate of the image respectively, and the size of image is M � N,

the shadow areas cut out should be satisfied with the conditional formula as shown in

Eq. (14).

Hmax þ Hmid �M

Hmin � Hmid � 0

Vmax þ Vmid �N

Vmin � Vmid � 0

8

>

>

<

>

>

:

ð14Þ

3.2 Normalization

In this section, three parts are introduced: shape normalization, size normalization and

rotation normalization.

3.2.1 Shape Normalization

Shape normalization is introduced in (Lu et al. 2010; Pei and Lin 1995), and the main steps

can be depicted as follows:

Step 1 Compute the covariance matrix M of the given shadow area which locates in the

shadow sub graph.

maxHminH

minV

maxV

midHmidH

midV

midV

Center

Shadow subgraph

adowS

Minimum
bounding 
rectangle

Fig. 10 Example of shadow
area extraction
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Step 2 Construct a rotational matrix E with the eigenvectors of M to align the

coordinates.

Step 3 Construct a scaling matrix W to rescale the coordinates by the eigenvalues of M.

Step 4 Suppose ½x; y� is a location of a point in the original image, ½x; y� is the correspond
location in the transformed image, ½Cx;Cy� is the center of the minimum bounding rect-

angle as shown in Fig. 10. The normalized shadow subgraph can be obtained by:

x

y

� �

¼ W � E � x� Cx

y� Cy

� �

ð15Þ

After shape normalization, a square area that called ‘square normalized shadow area’

contains the shadow area should be extracted with the size of the area larger than the

shadow area’s minimum bounding rectangle. Let Snadow denote the normalized shadow area

in the normalized shadow sub graph, Hn
min denote the minimum value on the horizontal

ordinate, Hn
max denote the maximum value on the horizontal ordinate, Vn

min denote the

minimum value on the vertical coordinate, and Vn
max denote the maximum value on the

vertical coordinate, the side length in minimum bounding rectangle can be obtained as

shown in Fig. 11, in which, Hn
length ¼ Hn

max � Hn
min, Vn

length ¼ Vn
max � Vn

min. In fact,

Hn
length 	 Vn

length. Let Dia
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðHn
lengthÞ

2 þ ðVn
lengthÞ

22

q

, which is side length of the square

normalized shadow area, and the center of the minimum bounding rectangle of the shadow

area is determined to be the center of the square normalized shadow area.

3.2.2 Size Normalization

The side length in different square normalized shadow areas should be made to be the

same, which can be depicted as a term of an equation:

L ¼ L1 þ L2

2
ð16Þ

where L is the unified side length, L1 ¼ 1
n1

Pn1
i¼1 l

1
i and L2 ¼ 1

n2

Pn2
j¼1 l

2
j , n1 is the number of

the normalized shadow areas in the first image, and n2 is the number of the normalized

shadow areas in the second image.

nDia

nHmin
nH max

nVmin

nVmax

n
lengthH

n
lengthV

2/nDia

n
adowS Square normalized 

shadow area

Normalized shadow 
subgraph

Fig. 11 The square area that contained the shadow area
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3.2.3 The Rotation Normalization

Principal orientation that introduced in (Schmid and Mohr 1997) should be conformed for

each normalized shadow areas, and rotate the areas to the principal orientation. In this

section, we make use of orientation histogram to determine the principal orientation,

firstly, for each normalized shadow area, get the orientation histogram with 36 bins which

covers 360 degrees, secondly, find the highest peak of the histogram, any other local peaks

that larger than 80% of the highest peaks can also be assigned to the principal orientation.

Let SL denote the normalized shadow area that have the unified size.SL must be

smoothed by Gaussian function Gðx; y; dÞ before the formation of orientation histogram,d
is a scaling function, and a formula is designed for d:

d ¼ minðblog2ðLpre=Lþ1Þ; bÞ ð17Þ

where b is the maximum value of d, Lpre is the side length of the shape normalized shadow

area before size normalized, and L is the side length of normalized shadow area after size

normalized. Suppose b ¼ 4, the value of Lpre=L is between 0.01 and 10, if the step length is

0.01, d varies with the change of Lpre=L, which is illustrated in Fig. 8, we can found that d
is between 1 and 4, d can be maintained at the maximum value when Lpre=L is larger than

1. The relation is shown in Fig. 12.

3.3 MA-SIFT (Multiple Angles Sift)

Many descriptors have been proposed for describing key points or areas, such as SIFT,

SURF, PCA-SIFT (Ke and Sukthankar 2004) and GLOH (Moreno et al. 2009), etc.

However, usually the sub regions of the existing descriptors are fixed with no any changed

at all in the process of features extraction, which may cause the features extraction

imperfectly. In the next part, we will prove the judgment by theoretical derivation and

group of experiment.

Lemma 2 The influence of the regions with obvious difference can be reduced by the

rotation of coordinate system in anticlockwise with the angle smaller than p=4.

Proof Suppose there is a descriptor, which is made up of four sub regions, they are A, B,

C and D, as shown in (a) of Fig. 13. Now, assume the descriptor locate at the same area of

a couple of matched images, and the sub regions are similar expect the sub region C, so,

the features extracted by the descriptor can be expressed in Eqs. (18, 19):

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

Lpre/L

δ

Fig. 12 The relation between d and Lpre=L
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Al : a1; a2; . . .; am; Bl : b1; b2; . . .; bm; Cl : c1; c2; . . .; cm; Dl : d1; d2; . . .; dm ð18Þ

Ar : a1 þ fnða1Þ=t; a2 þ fnða2Þ=t; � � � ; am þ fnðamÞ=t
Br : b1 þ fnðb1Þ=t; b2 þ fnðb2Þ=t; � � � ; bm þ fnðbmÞ=t
Cr : c1 þ fnðc1Þ=k; c2 þ fnðc2Þ=k; � � � ; cm þ fnðcmÞ=k
Dr : d1 þ fnðd1Þ=t; d2 þ fnðd2Þ=t; � � � ; dm þ fnðdmÞ=t

8

>

>

<

>

>

:

ð19Þ

where Al, Bl, Cl and Dl are the sub regions of descriptor in the first image, at the same time,

Ar, Br , Cr and Dr are the sub regions of descriptor in the corresponded image. Suppose

each sub region can extracted m features, then, aiði ¼ 1; 2; . . .; mÞ are the features in sub

region Al, biði ¼ 1; 2; . . .; mÞ are the features in sub region Bl, ciði ¼ 1; 2; . . .; mÞ are the

features in sub region Cl, and diði ¼ 1; 2; . . .; mÞ are the features in sub region Dl. For

simulating the difference of the same features between the matched sub regions, we design

a float function for each feature in the sub regions of the matched images. For example, as

shown in Eq. (19), f � nða1Þ=t is the float function of a1,f is a constant, which can be the

average of features in the 4 sub regions, and nða1Þ is a Gaussian distribution with 0 as the

mean, and 0.5 as its standard deviation, and t means the factor of reduced in scale, this

factor often larger than 10, which ensure the similar of the same sub region in matched

images. However, the factor k should be smaller than t, and it should be satisfied the

inequality: 10� k� t, which ensure the features of the sub region are more different

compare with other three parts. Based on the assumption as mentioned above, distance of

descriptor with the coordinate system have no rotation in the two matched images is shown

in Eq. (20):

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

ðai � ai þ fnðaiÞ=tÞ2 þ
X

m

i¼1

n2ðdiÞ
X

m

i¼1

ðbi � bi þ fnðbiÞ=tÞ2

þ
X

m

i¼1

ðci � ci þ fnðciÞ=kÞ2 þ
X

m

i¼1

ðdi � di þ fnðdiÞ=tÞ2

v

u

u

u

u

u

u

u

t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2=t2ð
X

m

i¼1

n2ðaiÞ þ þ
X

m

i¼1

n2ðbiÞ þ
X

m

i¼1

n2ðdiÞÞ þ f 2=k2
X

m

i¼1

n2ðciÞ
s

ð20Þ

Now, suppose the coordinate system rotates in clockwise with an angle of a, as shown in
(b) of Fig. 13, then, we can get a group of new parts: A0, B0, C0, D0. So, the features of the
sub regions can be expressed as shown in Eqs. (21, 22):

(a) (b)

'A

'B

'C

'D

α

A B

CD

Fig. 13 Descriptor and its form
of coordinate system rotation. a
The sub regions with the
coordinate system have no
rotation; b the sub regions after
coordinate system rotate in
anticlockwise with an angle of a

106 W. Ruoyan et al.

123



A0
l :

p� 4a
p

� �

a1 þ
4a
p
b1;

p� 4a
p

� �

a2 þ
4a
p
b2; � � �

p� 4a
p

� �

am þ 4a
p
bm

B0
l :

p� 4a
p

� �

b1 þ
4a
p
c1;

p� 4a
p

� �

b2 þ
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p
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p� 4a
p

� �

bm þ 4a
p
cm
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p
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D0
l :

p� 4a
p
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d1 þ
4a
p
a1;
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p
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d2 þ
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p
a2; � � �
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p

� �

dm
4a
p
am
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ð21Þ

A0
r :

p� 4a
p

ða1 þ fnða1Þ=tÞ þ
4a
p
ðb1 þ fnðb1Þ=tÞ;

p� 4a
p

ða2 þ fnða2Þ=tÞ

þ 4a
p
ðb2 þ fnðb2Þ=tÞ; � � �

p� 4a
p

ðam þ fnðamÞ=tÞ þ
4a
p
ðbm þ fnðbmÞ=tÞ

B0
r :

p� 4a
p

ðb1 þ fnðb1Þ=tÞ þ
4a
p
ðc1 þ fnðc1Þ=kÞ;

p� 4a
p

ðb2 þ fnðb2Þ=tÞ

þ 4a
p
ðc2 þ fnðc2Þ=kÞ; � � �

p� 4a
p

ðbm þ fnðbmÞ=tÞ þ
4a
p
ðcm þ fnðcmÞ=kÞ

C0
r :

p� 4a
p

ðc1 þ fnðc1Þ=kÞ þ
4a
p
ðd1 þ fnðd1Þ=tÞ;

p� 4a
p

ðc2 þ fnðc2Þ=kÞ

þ 4a
p
ðd2 þ fnðd2Þ=tÞ; � � �

p� 4a
p

ðcm þ fnðcmÞ=kÞ þ
4a
p
ðdm þ fnðdmÞ=tÞ

D0
r :

p� 4a
p

ðd1 þ fnðd1Þ=tÞ þ
4a
p
ða1 þ fnða1Þ=tÞ;

p� 4a
p

ðd2 þ fnðd2Þ=tÞ

þ 4a
p
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p� 4a
p

ðdm þ fnðdmÞ=tÞ þ
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p
ðam þ fnðamÞ=tÞ
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ð22Þ

So, the distance of sub regions can be expressed as shown in Eq. (23):

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 þ R2 þ R3 þ R4

p
ð23Þ

where,

R1 ¼
p� 4a
tp

� �2
X

m

i¼1

f 2n2ðaiÞ þ
4a
tp

� �2
X

m

i¼1

f 2n2ðbiÞ þ
8aðp� 4aÞ

t2p2
X

m

i¼1

f 2nðaiÞnðbiÞ

R2 ¼
p� 4a
tp

� �2
X

m

i¼1

f 2n2ðbiÞ þ
4a
kp

� �2
X

m

i¼1

f 2n2ðciÞ þ
8aðp� 4aÞ

tkp2
X

m

i¼1

f 2nðbiÞnðciÞ

R3 ¼
p� 4a
kp

� �2
X

m

i¼1

f 2n2ðciÞ þ
4a
tp

� �2
X

m

i¼1

f 2n2ðdiÞ þ
8aðp� 4aÞ

tkp2
X

m

i¼1

f 2nðciÞnðdiÞ

R4 ¼
p� 4a
tp

� �2
X

m

i¼1

f 2n2ðdiÞ þ
4a
tp

� �2
X

m

i¼1

f 2n2ðaiÞ þ
8aðp� 4aÞ

t2p2
X

m

i¼1

f 2nðdiÞnðaiÞ

In general, we can consider that: nðaiÞ 	 nðbiÞ 	 nðciÞ 	 nðdiÞ, so,
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d0 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2=t2ð
X

m

i¼1

n2ðaiÞ þ
X

m

i¼1

n2ðdiÞÞ þ R2 þ R3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2=t2ð
X

m

i¼1

n2ðaiÞ þ
X

m

i¼1

n2ðbiÞþ
X

m

i¼1

n2ðdiÞÞ þ f 2=k2
X

m

i¼1

n2ðciÞ þ R0
1 þ R0

2

s

ð24Þ

where

R0
1 ¼

16aðp� 4aÞ
tkp2

X

m

i¼1

f 2n2ðciÞ

R0
2 ¼ �8aðp� 4aÞ 1

t2p2
þ 1

k2p2

� �

X

m

i¼1

f 2n2ðciÞ

If a� p=4, then

R0
1 þ R0

2 ¼ �8aðp� 4aÞ 2tk

t2k2p2
þ k2

t2k2p2
þ t2

t2k2p2

� �

X

m

i¼1

f 2n2ðciÞ

¼ �8aðp� 4aÞ ðtþkÞ2

t2k2p2
X

m

i¼1

f 2n2ðciÞ� 0

So, we can get that d0 � d under the condition a�p=4.
After the theoretical derivation, we will give an example to improve the lemma. The

same shadow area that framed with white rectangles in consecutive images is illustrated in

Figs. 14, and 15 illustrates their normalized types by the method that described in

Sect. 3.2. From Fig. 15, the shadow areas extracted are nearly the same, however, observe

carefully the bottom right of the normalized shadow areas, as the black lines connected,

this part is not similar due to the illumination’s change among images, if SIFT is taken as

the descriptor, this part may influence the accuracy of description.

So, we assume the sub regions of descriptor can be designed as (a) of Fig. 13 and a

vector with 8 as its length is extracted in each region by the orientation histogram, so, there

will be a vector with 32 as its length to describe the whole shadow area. Features extracted

from the two normalized shadow areas with the coordinate system in different rotation are

shown in Fig. 16. Figure 17 illustrates the distance with the coordinates in different

rotation, from which, we can find that the distance with the coordinates have no rotation is

the largest, however, the distance become smaller with the coordinate system rotation, that

supported the conclusion of theoretical derivation as described above in this section.

Fig. 14 The same shadow area extracted in consecutive images
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To better describe features of the areas, based on lemma2 as mentioned above, a new

descriptor named MA-SIFT (Multiple Angles Sift) is introduced in this section, similar

with SIFT and GLOH, information of orientations histogram is applied. However, the sub

regions are changed with rotation of the coordinates as shown in Fig. 18. Feature

extraction can be described as follows: Firstly, the square characteristic area is divided into

2� 2 ¼ 4 sub regions. Information of eight orientations is accumulated in each sub region,

and a vector with length of 4� 8 ¼ 32 is to describe the square area. Secondly, take the

center of window as the center of rotation, and rotate the coordinate system of descriptor in

anticlockwise 15�, 30�, 45�, 60�, and 75� respectively. A vector with a length of 32 will be

formed after each rotation, and there will be six different vectors describe the same square

Fig. 15 Normalized shadow
areas that extracted in Fig. 14
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Fig. 16 Features extracted with the coordinate system in different rotation. a No rotation, b anticlockwise:
15�; c anticlockwise: 30�; d anticlockwise: 45�
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Fig. 17 Distance with different
rotation
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characteristic area. Finally, combine the five vectors to form a new vector with the length

of 192, the new vector is the final descriptor.

Next, we concentrate on the performance of MA-SIFT by comparing among different

descriptors. An image sequence is taken to carry out the test, the image sequence (NASA

PHOTO near_20000919_large_anim) was taken from 433 Eros in a far distance as shown

in Fig. 19, size of the images is 482 9 381, and the taken interval was about 128 s, the

angle of view varied with time went on. Now, experiment is designed as followed: First,

we choose SIFT, GLOH and MA-SIFT as the three descriptors to test their performance.

Second, the three descriptors are applied in different pairs of consecutive images as shown

in Fig. 20, in which 1m2 means matching shadow areas between the first image and the

second image.

Comparison of the different descriptors are shown in Fig. 20. (a) illustrates the number

of shadow areas detected in different pair of consecutive images. (b) illustrates the com-

parison of matching rate among different descriptors. From which, SIFT performed better

than GLOH, however MA-SIFT has the highest matching rate among the 3 descriptors. So,

MA-SIFT has the advantage on matching rate.

4 SKINNER-RANSAC

Homography matrix, which can describe the relation between points in matched images

(Agarwal et al. 2005). If the points spread on a plane, their images captured by two

perspective cameras are related by a 3 9 3 projective homography matrix H, it can be

expressed as shown in Eq. (26):

0 15 30 45 60 75

Fig. 18 MA-SIFT schematic

(a) (b) (c) (d) (e)

(f) (g)

Fig. 19 An image sequence taken from 433 Eros. a 1; b 2; c 3; d 4; e 5; f 6; g 7
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x0 ¼ Hx ð25Þ

where x0 and x is a pair of corresponding points in the matched images.

At present, numerical methods of estimating homography matrix from matched images

is introduced, the most general method is that estimating the 3 9 3 homography matrix by

Levenberg–Marquardt (Moré 1978) from corresponded points. However, corresponded

points include outliers that may influence the accuracy of estimation. RANSAC (Random

Sample Consensus) is a general approach that was proposed by Fischler and Bolles (1981),

the method can deal with the data that with a large proportion of outliers, and it have been

adopted widely in computer vision. RANSAC is a resampling technology that generates

candidate model by using the minimum number of data points required to estimate the

parameters of model. However, the disadvantage of this method is that the number of

iterations has to be predetermined before processing, and the terminate condition is just

according to the status as shown in below:

1. Suppose K denote the current number of iterations, N denote the predetermined

maximum iterations, if they satisfy Eq. (27) as shown in bellow, the program should

be terminated.

K �N ð26Þ

2. Suppose v denote the current probability of outlier estimated, m is the minimum

number of random sample, and p is the confidence probability that ensure at least one

of the sets of random samples does not include an outlier, the number of iterations N 0

can be calculated in Eq. (27) as shown in bellow, and If K�N 0, the program

terminated.

N 0 ¼ log 1� pð Þ= log 1� 1� vð Þmð Þ ð27Þ

From above, large number of iterations may not be satisfied with the requirement of real

time. So, a method of modified RANSAC based on Skinner Operation Condition (SOC;

Skinner 1938) is proposed in this section, we called SKINER-RANSAC in this paper.

Conception of OC (Operation Condition) was proposed by Skinner in 1938, and followed

by its theory base on the pigeon experiment (Gaudiano and Chang 1997), it has been

applied in many fields of technology. However, the application of sample consensus has

not been mentioned before. We modify RANSAC based on the theory according to the

imagination: If each pair of corresponding points is considered as a sample, they are
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Fig. 20 Comparison of different descriptors in different pairs of consecutive images a number of shadow
areas detected; b comparison of matching rate in different pairs of consecutive images
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chosen based on their probability. An orientation function is set for each sample, this

function can judge the satisfaction from the current reply, at the same time, a mechanism of

reward and punishment is established for reward and publish every sample according to the

satisfaction, this process can renew their sample probability by the situation of reward and

punishment. If the satisfaction of a sample is good enough, it will be given a reward,

otherwise, it will be published. After times chosen, the probability of inliers will be

increased.

Now we concentrates on the detail of SKINNER-RANSAC, and then, followed by a

method of mismatching pair’s rectification.

4.1 Structure

The structure of SKINNER-RANSAC can be considered as a set, which includes 9

elements:

Skinner � Ransac : fM;W;P; T ;O; Inlier;Mo;N; Stcg

where each element is explained in bellow:

M: all the pairs of corresponded points in matched images, M ¼ fmiji ¼ 1; 2 � � � ; ng,
where mi ¼ fðxi; yiÞ; ðx0i; y0iÞg, is the ith pair,n is the number of pairs, ðxi; yiÞ is the ith point

in the first image, and ðx0i; y0iÞ is corresponded point in the second image.

W: all the pairs’ weight,W ¼ fwiji ¼ 1; 2 � � � ; ng, the initial value of each pair:

wi ¼ 1; i ¼ 1; 2 � � � ; n.
P: sample probability of all the pairs, P ¼ fpij1 ¼ 1; 2. . .; ng, in which:

pi ¼ wi=
X

n

j¼1

wj ð28Þ

The initial sample probability of each pair: pi ¼ 1=n.
T: the orientation function, which can judge the satisfaction from the current model‘s

reply.

T : di ¼
c di � c

di di\c

�

; i ¼ 1; 2; . . .; n ð29Þ

where di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxti � x0iÞ
2 þ ðyti � y0iÞ

2
q

, and ðxti; yti; 1Þ ¼ sH � ðxi; yi; 1ÞT , ðxt; ytÞ is the

transformed point in the second image from ðx; yÞ, H is a 3 9 3 homography matrix, which

is estimated from the current samples, s is a zoom factor, in general, s ¼ 1=Hð3; 3Þ, c is a
distance threshold that predefined in practical.

O: a weight adjustment function, the adjustment can be expressed in the followed:

O : wi ¼
wi þminðroundðd=diÞ;RÞ d=di [ 1

maxðwi � Q; 1Þ d=di\1

(

ð30Þ

where d ¼
P

n

i¼1

di=n, R is the maximum reward, Q, a constant, is a value of punishment, R

and Q are predetermined in practical.

Inlier: the maximum number of inliers at present, the initial value is 0.

Mo: the best homography matrix that with the maximum number of inliers at present.

The initial is a 3 9 3 zero matrix.
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N: the maximum number of iteration predetermined.

Stc: three terminated conditions. The first two terminated conditions are the same with

RANSAC, as shown in Eqs. (26, 27). The third is designed by analyzing the change rate of

each pair’s sample probability, the sample probability of all the pairs will vary with the

number of iteration increased, once the chosen pairs are inliers, the probability of inliers

will be increased sharply in the followed iterations, and finally, the sample probability of

all the pairs will be convergence, and have no obviously changed. So, the third terminated

condition can be expressed in Eq. (31):

�p ¼
PK

j¼K�Lþ1

Pn
i¼1 p

j
i � p

j�1
i

�

�

�

�

�

�

L
� k ð31Þ

where L is the step length, K is the current number of iterations,k is a threshold with a

small positive value, which tended to 0, p
j
i is the ith pair’ sample probability in the jth

iteration.

Now, we describe the steps of SKINNER-RANSAC as shown in bellow.

Input: all the pairs of corresponded points in matched images; the initial weight of all

the pairs; the initial sample probability of each pair; the distance threshold c; the maximum

value of reward R; the punishment value Q; the initial Inlier, the initial homography Mo;

the minimum number of pair required to determine the model m; the step length L that

required in Eq. (31); the threshold k.
Output: the homography matrix with the most inliers.

The process can be summarized as follows:

Step 1 Select the minimum pairs of corresponded points to determine the model.

Step 2 Solve the parameters of model.

Step 3 Take the model back to each pair and get di according to the orientation function

T as shown in Eq. (29).

Step 4 Renew weight of each pair according to the adjustment function O as shown in

Eq. (30).

Step 5 If the current number of inliers exceed Inliers, then replace Inliers with the

current number of inliers, and replace Mo with the current homography matrix.

Step 6 If current iteration satisfy one of the three terminated conditions as mentioned in

Eqs. (27, 29, 31), the program will stop, otherwise, back to Step 1.

4.2 Compare with RANSAC

In this section, we illustrate a comparison with RANSAC to investigate the performance of

SKINEER-RANSAC. The comparison can be designed into two groups as follows:

The first: For investigate the number of iterations in different pairs of images, each pair

of consecutive images in Fig. 19 are taken to extract inliers by RANSAC and SKINNER-

RANSAC, respectively, such as 1m2, which means the first image and the second image

make a pair. In the process of experiment, if more than 95% that of inliers are extracted,

the program in each pair of images will be terminated.

The second: For investigate the number of inners extracted in the condition of limited

iteration, the range of literation is from 20 to 300, and take 20 as the step length. We take

first two consecutive images of Fig. 19 to test RANSAC and SKINNER-RANSAC respect.

The initial parameters of SKINNER-RANSAC. c:20, R:20, Q:1, L:10, k:0.01, m:4, Inlier:0,
Mo:a 3 9 3 zeroes matrix.
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Figure 21 illustrates the comparison between RANSAC and SKINNER-RANSAC,

(a) is the comparison of iterations in different pair of consecutive images when more than

90% that of inliers were extracted, we can found that, SKINNER-RANSAC needs fewer

iterations compare with RANSAC in the same condition. (b) is the comparison of number

of inliers extracted from 1m2 with different iterations, although SKINNER-RANSAC has

no advantage over RANSAC when iteration lie in the range from 10 to 100, however, more

inliers can be extracted if iteration increased. Figure 22 displays the inliers extracted of

each pair of matched images in Fig. 19.

The figure of three parameters varied with the iteration increased is illustrated in

Fig. 23. (a) is the variation of sample probability of corresponded points, observe it

carefully, we find that the sample probability changed dramatically when iteration is less

than 20, however, the probability tends to be stable when iteration is more than 20, and the

sample gap between inliers and outlier is obviously. (b) is the change of entropy of

corresponding points. As we have known that entropy means the mean of information

contained in sample, and samples are drawn from a distribution or data stream, thus,

entropy can be seen as a character of uncertainty about data. Entropy‘s formula is shown in

Eq. (32):

E ¼ �
X

n

i¼1

pi log pi ð32Þ

where E is the entropy, and pi is the sample probability of ith pair of corresponding points.

The variation of entropy is unstable when iteration is less than 20, which corresponds to the

adjustment of sample probability in the same time as shown in (a). However, the sample

probability and entropy become stable when the iteration is more than 10. (c) displays the

variation of p, the conception of p is shown in Eq. (31), it is also be taken as the third

terminated condition when p is smaller than k, k is a threshold that predefined in manual, in

this paper, we set k ¼ 0:01. Observe (c), because L = 10, the beginning of p is 11, we can

find that the value of p decreased with iteration increased, if p� k, the program must be

stopped.

4.3 Rectification of mismatched pairs

During planetary landing, situation of the landing area is crucial for hazard avoidance, and

the shadow areas could reflect the characters of terrain to a certain degree. Therefore, all

the shadow area detected should be tracked. However, current approach proposed may
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Fig. 21 Comparison between RANSAC and SKINNER-RANSAC a number of iterations in different pair
of images; b number of inliers extracted in 1m2 with different iterations
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have mismatched points as mentioned above, therefore, how to change the mismatched

points into the correct is crucial at present. In this section, we will introduce a method to

deal with the problem as descripted in below.

First, let p denote the point that locate in the first image, and p0, which denotes the point

corresponds to p, and the point locates in the matched image. The transformed point p00 can
be calculated from p by the transformed model, and then calculate the distance from p0 to
p00. If the distance is larger than the threshold that is predefined,p0 is replaced by p00, in this

paper, the maximum distance is defined to be 10 pixels. Now, examples of matching results

that with no mismatch pairs are presented in Fig. 24, from which, all the shadow areas that

detected matched well, and have no mismatched pairs.

5 Experiment

A serious experiments will be conducted in this section, and the section can be organized

as follows. Section 5.1 illustrates some comparisons with SIFT that have been used in

matching images to investigate the performance of the proposed method. We will compare

the two approaches from two aspects: distribution of characteristic areas/points, and

matching rate in different viewpoints among image sequence. Images that were taken from

the camera with wide field of view will be test in Sect. 5.2. At last, the time performance of

the approach will be discussed in Sect. 5.3.

(a)   (b)         (c)

(d)  (e)     (f)

Fig. 22 Inliers extracted by SKINNER-RANSAC in different pairs a 1m2; b 2m3; c 3m4; d 4m5; e 5m6;
f 6m7
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Fig. 23 Variation of three parameters with iteration increased a sample probability of all the pairs of
corresponded points; b entropy; c p
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5.1 Comparison with SIFT

Two types of terrain are shown in Fig. 25, and the comparison between the proposed

method and SIFT are displayed in Figs. 26 and 27, although the number of feature points is

larger than the number of shadow areas detected by the proposed method, the feature

points spread on the image with no terrain characteristic reflected, however, shadow areas

often concentrate on the places where many stones and craters may reflect the terrain

characteristic.

Now, we investigate matching rate of the two approach among real image sequence.

Three image sequences that represent different terrain are chosen. The first sequence is

shown in Fig. 19. The second sequence were taken at the place that were far from 433 Eros

as shown in Fig. 28, the interval between the adjacent images was about 144 s, and the size

of each image is 498 9 393, in this sequence, many irregular craters spread on the surface

of asteroid, and the illumination change is obvious. The third sequence has 7 images, as

shown in Fig. 29, the size of each image is 496 9 389, and the interval between adjacent

images was about 75 s. Compare with the first two sequences, they third sequence were

taken at a lower height, and the terrain is simple with flat land. For investigate the

(a)   (b) (c)

(d) (e) (f)

Fig. 24 Matched pairs with mismatched points rectified. a 1m2; b 2m3; c 3m4; d 4m5; e 5m6; f 6m7

Fig. 25 Two images of asteroid
433 Eros (NASA PHOTO
near_descent_157415118, NASA
PHOTO
near_20000919_large_anim )

(a) (b)

Fig. 26 Comparison between
shadow areas detected by the
proposed method and feature
points detected by SIFT in (a) of
Fig. 23. a Feature points detected
by SIFT; b shadow areas detected
by the proposed method
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performance under the situation of large viewpoint changed, the first image is taken to

match with the other 6 images respectively in the first two image sequence. For investigate

the performance under the situation of obvious span between two images, each image is

taken to match with the image that their interval is 1 in the third sequence, for example,

1m3 means the first image matched with the third, and their interval is 1.

In general, more feature points can be detected compare with characteristic areas in the

same image as described above, so, observe Fig. 30, which illustrates the comparisons of

(a) (b)

Fig. 27 Comparison between
the shadows areas detected by the
proposed method and feature
points detected by SIFT in (b) of
Fig. 23. a Feature points detected
by SIFT; b Shadow areas
detected by the proposed method

(a) (b) (c) (d) (e) 

(f) (g)

Fig. 28 The second image sequence [NASA PHOTO near_descent_157416548 ). a 1; b 2; c 3; d 4; e 5; f 6;
g 7

(a) (b) (c) (d) (e)

(f) (g) 

Fig. 29 The third image sequence (NASA PHOTO near_flyover_anim_large). a 1; b 2; c 3; d 4; e 5; f 6;
g 7
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correct matched pairs between SIFT and the approach this paper proposed, therefore, the

performance of SIFT is better than the proposed method. However, the gap between SIFT

and proposed method became smaller and smaller with the angle of view increased.

Comparisons of performance on the matching rate is shown in Fig. 31. In the first and

second sequence, the matching rate of both method decreased with the interval between

matched images increased, although the different between the two methods in the first

sequence is not obvious, however, the matching rate of the proposed method can be

maintain at a higher level compare with SIFT. The matching rate can maintain the level

above 0.2 in the third sequence. So, in the condition of change among image sequence

increased, the proposed approach have better robustness compare with SIFT. Figures 32,

33 and 34 illustrate the result with mismatched pairs eliminated by SKINNER-RANSAC.

Rectification of mismatching pairs is carried out here, it is illustrated in Fig. 35, 36 and

37, from which, all the image pairs have no mismatching pairs. The mismatching pairs are

rectified by the method that is proposed in 4.3.
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Fig. 30 Comparison on the number of correct matched pairs a The first sequence. b The second sequence.
c The third sequence

1m2 1m3 1m4 1m4 1m5 1m6
0

0.1

0.2

0.3

0.4

Image pair

M
at

ch
in

g 
ra

te

SIFT
Proposed

1m2 1m3 1m4 1m4 1m5 1m6
0

0.2

0.4

0.6

0.8

Image pair

M
at

ch
in

g 
ra

te

SIFT
Proposed

1m3 2m4 3m5 4m6 5m7
0

0.1

0.2

0.3

0.4

0.5

Image pair

M
at

ch
in

g 
ra

te

SIFT
Proposed

(a) (b) (c)

Fig. 31 Comparison on the matching rate a The first sequence. b The second sequence. c The third
sequence

(a) (b) (c) 

(d) (e) (f) 

Fig. 32 The matching results with correct matched pairs in the first image sequence. a 1m2; b 1m3; c 1m4;
d 1m5; e 1m6; f 1m7
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5.2 Experiment on Images with Wide FOV

Most images that are tested above are taken from 433 Eros, and the camera instructed on

the detectors had a narrow FOV (Field of View), the focal length is about 167.35 mm, and

the FOV is about 2.93� 9 2.25�. So, the changes between the consecutive images were not

apparent. In this section, images that taken by cameras with wide FOV will be conducted.

We have two pairs of images that were taken from Moon to test.

(a) (b) (c) 

(d) (e) (f) 

Fig. 33 The matching results in the second image sequence. a 1m3; b 2m4; c 1m4; d 3m5; e 4m6; f 5m7

(a) (b) (c) 

(d) (e)

Fig. 34 The matching results in the third image sequence. a 1m2; b 1m3; c 1m4; d 1m5; e 1m6; f 1m7

(a) (b) (c) 

(d) (e) (f) 

Fig. 35 The results with mismatched pairs rectified in the first image sequence. a 1m2; b 1m3; c 1m4;
d 1m5; e 1m6; f 1m7
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The first pair is a couple of images that were taken in the mission of Apollo 15, as

shown in Fig. 38, the images’ height is about 4.500, the width is about 45.2400, and the focal

length is about 609.6 mm, so the FOV is about 10.5� 9 85.6�. Observe the images care-

fully, we can find that the change of illumination is significant obvious. Figure 39 illus-

trates the matching result with the approach this paper proposed, the number of correct

matched pairs is 160, and the number of the total matched pairs is 732.

(a) (b) (c) 

(d) (e) (f) 

Fig. 36 The results with mismatched pairs rectified in the second image sequence. a 1m3; b 2m4; c 1m4;
d 3m5; e 4m6; f 5m7

(a) (b) (c) 

(d) (e)

Fig. 37 The results with mismatched pairs rectified in the third image sequence

(a)

(b)

Fig. 38 The first pair: a couple of images taken from Moon in the mission of Apollo 15 (NASA PHOTO
AS15-P-9621, NASA PHOTO AS15-P-9626)

120 W. Ruoyan et al.

123



The second pair were taken during Apollo 17. As shown in Fig. 40, the image’s height

is about 23 mm, the width is about 35 mm, and the focal length is about 55 mm, so the

FOV was about 23.6� 9 35.3�. Observe the images, we find that, no matter the illumi-

nation or the angle of view between them, the difference was obvious. Figure 41 illustrates

the matching result with the method this paper proposed, the number of correct matched

pairs is 68, and the total number of matched pairs is 357.

5.3 Consuming time

Processing time of proposed approach will be discussed in this section, the environment of

experiment is under MATLAB 2013a, and the operating system is Windows 7. In the

(a)

(b)

Fig. 39 Matching result in the first pair. a Correct matched pairs extracted; b mismatched pairs rectified

(a) (b)

Fig. 40 The second pair: a
couple of images taken from
Moon in the mission of Apollo 17
[NASA PHOTO AS17-159-
23923, NASA PHOTO AS17-
159-23924)

(a) (b)

Fig. 41 The second pair. a Correct matched pairs extracted; b mismatched pairs rectified
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Sect. 5.1. As we know that real-time requirement is actually a curtail factor that may

decide whether the mission can be achieved successfully in the program of navigation,

especially in the autonomous navigation. However, at present, the proposed method suffers

the problem of real-time requirement. The average consuming time by the proposed

method is about 28–40 s, but the average consuming time by SIFT is about 10–21 s.

Therefore, how to reduce the consuming time efficiently can be seen as a mission in the

future’s work. We found the step of calculation distance between different shadow areas in

the process of processed approach occupied nearly 60% of consuming time, which can be

reduced by using K-d tree (Bentley 1975), or making movement estimation in the process

of planetary landing, then for each shadow area, just calculate the distance with the areas

that may around it.

6 Conclusion

An approach for shadow areas robust matching was proposed for visual automation nav-

igation in planetary landing. Firstly, shadow areas extraction with stable shape based on

MSER is introduced in the second section. Secondly, the normalization of shadow areas

was introduced in the third section. For better describing the features of normalized shadow

areas, a new descriptor named ‘‘MA-SIFT’’ was proposed in this paper, and then compare

the descriptor with SIFT and GLOH, we found that the performance of MA-SIFT was

better. Thirdly, SKINNER-RANSAC, which is proposed from RANSAC to eliminate the

mismatched pairs, and followed by a method of mismatched pairs ‘rectification. Fourthly,

several experiments were conducted to compare with SIFT, number of the shadow areas

detected is less than the number of feature points detected by SIFT, however, proposed

approach has better performance on correct matching rate. At last, images that were taken

by cameras with wide FOV were conducted here, the result showed that the proposed

method not only can be applied in the images with narrow FOV, but also can be used in the

images with wide FOV. However, future work are still needed to be done, they can be

concluded as follows:

1. The number of the shadow areas detected is less than the number of feature points

detected by SIFT, if the terrain is simple, with no craters, rocks and mountainous, that

will not suitable to apply the proposed approach.

2. Time consuming of the approach doesn’t meet with the requirement of real-time.

3. Shadow areas extraction by MSER causes the overlapping among some areas, which

may bring the redundant data that cause the waste of time consuming.
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