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Abstract We present the analysis and computational results for the inclination relative

effect of moonlets of triple asteroidal systems. Perturbations on moonlets due to the

primary’s non-sphericity gravity, the solar gravity, and moonlets’ relative gravity are

discussed. The inclination vector for each moonlet follows a periodic elliptical motion;

the motion period depends on the moonlet’s semi-major axis and the primary’s J2

perturbations. Perturbation on moonlets from the Solar gravity and moonlet’s relative

gravity makes the motion of the x component of the inclination vector of moonlet 1 and

the y component of the inclination vector of moonlet 2 to be periodic. The mean

motion of x component and the y component of the inclination vector of each moonlet

forms an ellipse. However, the instantaneous motion of x component and the y com-

ponent of the inclination vector may be an elliptical disc due to the coupling effect of

perturbation forces. Furthermore, the x component of the inclination vector of moonlet

1 and the y component of the inclination vector of moonlet 2 form a quasi-periodic

motion. Numerical calculation of dynamical configurations of two triple asteroidal

systems (216) Kleopatra and (153591) 2001 SN263 validates the conclusion.
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1 Introduction

To study the dynamical mechanism of triple asteroidal systems can not only help us to

understand the origin of the Solar system and the formation of the asteroidal belt (Araujo

et al. 2012), but also help to design the orbit of spacecraft in the human’s future space

mission to triple asteroidal systems. The first triple asteroid (87) Sylvia was discovered in

2005 (Marchis et al. 2005), after that, there are eight such triple asteroidal systems and one

Kuiper-belt object discovered in the solar system. Table 1 shows the physical and orbital

parameters of these triple asteroidal systems. Two of them are trinary near-Earth-Asteroid

systems (NEAs), i.e. 136617 1994CC (Brozović et al. 2011; Fang et al. 2011) and 153591

2001SN263 (Fang et al. 2011; Araujo et al. 2012). Besides, 47171 1999TC36 (Benecchi

et al. 2010) and 136108 Haumea (Pinilla-Alonso et al. 2009; Lockwood et al. 2014) are

trans-Neptunian objects (TNOs). Others are main-belt triple asteroidal systems.

The calculation of dynamical parameters of triple asteroidal systems is the basis for the

study of dynamical mechanism for these systems. Marchis et al. (2005) presented the two

moonlets of (87) Sylvia orbiting at 710 and 1360 km, and the J2 of the two moonlet are

0.17 and 0.18, respectively. Ragozzine and Brown (2009) studied the orbits and masses of

satellites of 136108 Haumea and indicated that Haumea could have experienced a great

collision billions of years ago. Marchis et al. (2010) found that the inclinations of moonlets

of (45) Eugenia are quite different from other known main-belt triple asteroidal systems,

the inclinations of the two moonlets Petit-Prince and Princesse relative to the primary’s

equator, are 9�and 18�, respectively. Fang et al. (2012) found that the moonlets of (87)

Sylvia orbiting at 807.5 ± 2.5 and 1357 ± 4.0 km, and the inclinations are 7.824�and

8.293�, respectively. Marchis et al. (2013) investigated the triple asteroidal system (93)

Minerva and found that the moonlets of (93) Minerva are 3 and 4 km in diameter,

respectively. Beauvalet and Marchis (2014) analyzed the J2 of two triple asteroidal systems

(45) Eugenia and (87) Sylvia, and derived the internal structure of these two triple systems.

Jiang et al. (2015a) found that the number and position of equilibrium points around the

primary of (216) Kleopatra will vary while the rotational speed of the primary change.

The study of dynamical behaviours of triple asteroidal systems includes orbital ele-

ments, spin–orbit lock, bifurcations, resonance, stable and unstable regions, etc. Winter

et al. (2009) indicated that the longitude of the orbital nodes of the two moonlets of (87)

Sylvia, Romulus and Remus, are locked to each other. Brozović et al. (2011) found that the

inner moonlet of (136617) 1994CC is spin–orbit locked relative to the primary and the

outer moonlet is not spin–orbit locked. Fang et al. (2011) calculated the motion of

moonlets of (153591) 2001SN263 and (136617) 1994CC, examined the mean-motion

resonance, Kozai resonance, and evection resonance for these two triple asteroidal systems,

the results illustrated that the moonlets are not in these three resonance cases. Araujo et al.

(2012) investigated the stable region of the three components of (153591) 2001SN263,

they divided the region around (153591) 2001SN263 into four distinct regions and found

that the stable regions are near Alpha and Beta while resonance motion with Beta and

Gamma are unstable. Fang et al. (2012) deduced that the (87) Sylvia is not in the 8:3 mean-

motion resonance, besides, they calculated the effects of a pass through 3:1 mean-motion

eccentricity-type resonance. Frouard and Compère (2012) studied the instability zones for

moonlets of the triple asteroidal system (87) Sylvia with considering the non-sphericity of

Sylvia, and found that this triple system is in a deeply stable zone. Marchis et al. (2013)

found that the moonlets of Minerva are at 1 and 2% of the Hill radius. Jiang et al. (2015b)

found four kinds of bifurcations of periodic orbit families in the potential of the primary of

66 Y. Jiang et al.

123



T
a
b
le

1
P

h
y
si

ca
l

an
d

o
rb

it
al

p
ar

am
et

er
s

o
f

tr
ip

le
as

te
ro

id
al

sy
st

em
s

N
am

e
o

f
tr

ip
le

as
te

ro
id

sy
st

em
P

ri
m

ar
y

D
ia

m
et

er
s

o
f

p
ri

m
ar

y
,

se
co

n
d

co
m

p
o

n
en

t,
an

d
th

ir
d

co
m

p
o

n
en

t
(k

m
)

M
as

s
(k

g
)

B
u
lk

d
en

si
ty

(g
cm

-
3
)

R
o
ta

ti
o

n
p

er
io

d
(h

)

(4
5

)
E

u
g

en
ia

a
1
–
a
3

5
.6

2
8

8
7
9

1
0

1
8

1
.1

5
.6

9
9

3
0

4
9

2
2

0
9

1
4

6
,

5
,

7

(8
7

)
S

y
lv

ia
b
1
–
b
5

1
.4

7
8
9

1
0

1
9

1
.2

9
5

.1
8

3
6

4
3

8
5
9

2
6

2
9

2
3

2
,

1
0

.8
,

1
0

.6

(9
3

)
M

in
er

v
ac

1
–
c
3

3
.3

5
9

1
0

1
8

1
.7

5
5

.9
8

1
7

6
7

1
4

1
.6

,
3

.6
,

3
.2

(2
1

6
)

K
le

o
p

at
ra

d
1
–
d
8

4
.6

4
9

1
0

1
8

3
.6

5
.3

8
5

2
1

7
9

9
4
9

8
1

,
8

.9
,

6
.9

3
7

4
9

B
al

am
e

5
.1

9
1

0
1
4

2
.6

2
.8

0
4

8
3

3
.9

5
,

1
.8

4
,

1
.6

6

4
7

1
7
1

1
9

9
9

T
C

3
6

f1
,f

2
1

.2
8
9

1
0

1
9

0
.6

4
4

5
.7

6
3

2
7

2
,

1
3

2
,

2
5

1

1
3

6
1
0

8
H

au
m

ea
g
1
–
g
3

4
.0

3
9

1
0

2
1

2
.9

7
3

.9
1

5
4

1
3

7
9
,

3
2

0
,

1
6

0

(1
3

6
6
1

7
)

1
9

9
4
C

C
h
1
,h

2
2

.6
6
9

1
0

1
1

2
.1

2
.3

8
8

6
0

.6
9
9

0
.6

7
9

0
.6

4
,

0
.1

1
3

,
0

.0
8

1
5

3
5
9

1
2

0
0

1
S

N
2
6

3
i1

–
i3

9
.5

1
9

1
0

1
2

1
.1

±
0

.2
3

.4
2

5
6
±

0
.0

0
0

2
2

.5
±

0
.3

,
0

.7
7
±

0
.1

2
,

0
.4

3
±

0
.1

4

a
1

B
ea

u
v

al
et

et
al

.
(2

0
1

2
).

a
2

B
ea

u
v
al

et
an

d
M

ar
ch

is
(2

0
1

4
).

a
3

M
ar

ch
is

et
al

.
(2

0
1

0
).

b
1

B
er

th
ie

r
et

al
.
(2

0
1

4
).

b
2

F
an

g
et

al
.
(2

0
1

2
).

b
3

F
ro

u
ar

d
an

d
C

o
m

p
èr
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(216) Kleopatra. Araujo et al. (2015) considered a massless particle in the vicinity of

(153591) 2001SN263 and found that the stable regions of the particle’s retrograde orbits

are much bigger that the prograde orbits.

Using the perturbation method, the motion of the moonlets relative to the primary of the

large size ratio triple asteroid system can be analyzed. Kozai (1959) derived the pertur-

bations of orbital elements of a satellite in the gravitational potential of the Earth. Cook

(1962) presented the perturbations from the Sun and Moon to the orbital elements of a

satellite in the gravitational potential of the Earth. Allan (1970) discussed the critical

inclination with the J2 and J4 term. For the orbits with small inclinations, the orbital

element can be indicated with the inclination vectors (Hintz 2008). The perturbation

method can be applied to analyze the motion of moonlets relative to the primary in the

binary and triple asteroid systems. Araujo et al. (2015) found that the J2 term of the primary

has a significant effect to the stable retrograde orbits in the triple asteroid 2001 SN263.

In this work we focus on the moonlets’ relative effect in the triple asteroidal systems. In

Sect. 2, the perturbation on the two moonlets due to the Solar’s gravity and the primary’s

non-sphericity gravity are derived, and then the relative perturbation effects between these

two moonlets have been investigated. In Sect. 3, the primary’s J2, Solar gravity, and the

two moonlets’ relative effect are all considered to analyze the dynamical system of the

inclination vectors of the two moonlets. We find that for each moonlet, the inclination

vector forms a periodic elliptical motion.

2 Perturbation on Moonlets Due to the Solar Gravity and the Primary’s
Non-sphericity Gravity

In this section, we derive the formulas of perturbation on moonlets due to the solar gravity

and the primary’s non-sphericity gravity. Denote J2 as the value of the primary’s J2

perturbation, G as the Newtonian gravitational constant, mmajor as the mass of the primary,

l ¼ Gmmajor, r as the primary’s mean radius. Let a be the semi-major axis, n ¼
ffiffiffiffil
a3

p

as the

mean orbit angular speed, e be the eccentricity, i be the inclination, X be the longitude of

the ascending node, x be the argument of periapsis, M be the mean anomaly, m be the

mass. Denote the inclination vector
ix ¼ i sinX

iy ¼ i cosX

(

. The subscripts M1, M2, and s represent

orbital parameters of Moonlet 1, Moonlet 2 and Sun, respectively. Denote rM1 ¼ mM1

mM1þmmajor

and rM2 ¼ mM2

mM2þmmajor
.

2.1 Perturbation on Moonlets Due to the Primary’s Non-sphericity Gravity

Consider the primary’s J2 perturbation acting on the two moonlets, the rates of average

change (Kozai 1959) of inclination and right ascension of the ascending node are

di

dt
¼ 0

dX
dt

¼ 3nJ2lr2

2a2 1 � e2ð Þ2
cos i

8

>

>

<

>

>

:

: ð1Þ

For the orbits with small inclination, use the Lagrange’s planetary equations (Cook 1962),

we have
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dix

dt
¼ sinX

di

dt
þ i cosX

dX
dt

diy

dt
¼ cosX

di

dt
� i sinX

dX
dt

8

>

<

>

:

ð2Þ

Substituting Eq. (1) into Eq. (2) and using small angle approximations, then the inclination

vector’s secular variation for moonlet 1 can be expressed as

dix�M1

dt
¼ � 3J2lr2

2nM1a
5
M1

iy�M1

diy�M1

dt
¼ 3J2lr2

2nM1a
5
M1

ix�M1

8

>

>

>

<

>

>

>

:

; ð3Þ

and the inclination vector’s secular variation for moonlet 2 can be expressed as

dix�M2

dt
¼ � 3J2lr2

2nM2a
5
M2

iy�M2

diy�M2

dt
¼ 3J2lr2

2nM2a
5
M2

ix�M2

8

>

>

>

<

>

>

>

:

: ð4Þ

where nM1 and nM2 are mean orbit angular speed for moonlet 1 and moonlet 2, respec-

tively. ix�M1 and iy�M1 are components of inclination vector of moonlet 1, while ix�M2 and

iy�M2 are components of inclination vector of moonlet 2. aM1 and aM2 are semi-major axes

for moonlets 1 and 2, respectively.

These two equations can be rewritten by

d

dt

ix�M1

iy�M1

" #

¼ K1

ix�M1

iy�M1

" #

; ð5Þ

and

d

dt

ix�M2

iy�M2

" #

¼ K2

ix�M2

iy�M2

" #

; ð6Þ

where

K1 ¼
0 � 3J2lr2

2nM1a
5
M1

3J2lr2

2nM1a
5
M1

0

0

B

B

@

1

C

C

A

and K2 ¼
0 � 3J2lr2

2nM2a
5
M2

3J2lr2

2nM2a
5
M2

0

0

B

B

@

1

C

C

A

ð7Þ

Eigenvalues of K1 are � 3J2lr2

2nM1a
5
M1

j while eigenvalues of K2 are � 3J2lr2

2nM2a
5
M2

j, where j ¼
ffiffiffiffiffiffiffi

�1
p

.

Thus we can conclude that the primary’s J2 perturbation make each moonlet’s inclination

vector to be periodic motion. The motion trajectory of the extremal point of the inclination

vector is an ellipse. The motion periods are
4pnM1a

5
M1

3J2lr2 and
4pnM2a

5
M2

3J2lr2 , respectively.
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2.2 Perturbation on Moonlets Due to the Solar Gravity and Moonlet’s
Relative Gravity

Here we only consider the solar gravity and moonlet’s relative gravity. The rates of

average change of inclination and right ascension of the ascending node due to the third

body’s gravity (Cook 1962) are

di

dt
¼ 3

2

g
n
ac

dX
dt

¼ 3

2

g
n sin i

bc

8

>

<

>

:

; ð8Þ

where

g ¼ GMd

r3
d

ð9Þ

and

a ¼ cos X� Xdð Þ cos ud þ cos id sin ud sin X� Xdð Þ
b ¼ � sin X� Xdð Þ cos ud þ cos id sin ud cos X� Xdð Þ½ � cos iþ sin i sin id sin ud

c ¼ sin X� Xdð Þ cos ud � cos id sin ud cos X� Xdð Þ½ � sin iþ cos i sin id sin ud

8

>

<

>

:

: ð10Þ

Here the subscript d represents orbital parameters of the third body. u ¼ xþ f , f is the true

anomaly.

The solar gravity and moonlet’s relative gravity acting on the inclination vector of

moonlet 1 is (the derivation is presented in appendix A)

dix�M1

dt
¼ 3

4
nM1

ns

nM1

� �2

sin2 bs sin 2is þ
3

8
rM2nM1

nM2

nM1

� �2

sin 2iM2 cosXM2

diy�M1

dt
¼ 3

4
nM1

ns

nM1

� �2

sin 2bs sin is �
3

8
rM2nM1

nM2

nM1

� �2

sin 2iM2 sinXM2

8

>

>

>

<

>

>

>

:

; ð11Þ

where ns represents the mean orbit angular speed for the Sun in the primary’s centroid

inertial coordinate system, which equals to the triple asteroidal system’s mean orbit

angular speed relative to the Sun; bs and is represent the true anomaly and the inclination of

the Sun in the primary’s centroid inertial coordinate system, respectively. iM2 and XM2

represent the inclination and the longitude of the ascending node of moonlet 2 in the

primary’s centroid inertial coordinate system, respectively. Consider the secular item, one

can easily obtain

dix�M1

dt
¼ 3

8
nM1

ns

nM1

� �2

sin 2is þ
3

8
rM2nM1

nM2

nM1

� �2

sin 2iM2 cosXM2

diy�M1

dt
¼ � 3

8
rM2nM1

nM2

nM1

� �2

sin 2iM2 sinXM2

8

>

>

>

<

>

>

>

:

; ð12Þ

where sin2 bs ¼ 1
2

and sin 2bs ¼ 0 is applied to the above equation.

In like manner, the Solar gravity and moonlet’s relative gravity acting on the inclination

vector of moonlet 2 is
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dix�M2

dt
¼ 3

8
nM2

ns

nM2

� �2

sin 2is þ
3

8
rM1nM2

nM1

nM2

� �2

sin 2iM1 cosXM1

diy�M2

dt
¼ � 3

8
rM1nM2

nM1

nM2

� �2

sin 2iM1 sinXM1

8

>

>

>

<

>

>

>

:

; ð13Þ

where iM1 and XM1 represent the inclination and the longitude of the ascending node of

moonlet 1 in the primary’s centroid inertial coordinate system, respectively.

Consider the moonlets are in the orbit which is near the equator of the primary. This

assumption is satisfied for most of the triple asteroidal systems (Beauvalet and Marchis

2014; Fang et al. 2012; Descamps et al. 2011; Vokrouhlický 2009). With this assumption,

in Eq. (12), one have

sin 2iM2 cosXM2 ¼ 2 sin iM2 cos iM2 cosXM2 ¼ 2iy�M2 cos iM2 ¼ 2iy�M2 1 þ O i2M2

� �� �

’ 2iy�M2

sin 2iM2 sinXM2 ¼ 2 sin iM2 cos iM2 sinXM2 ¼ 2ix�M2 cos iM2 ¼ 2ix�M2 1 þ O i2M2

� �� �

’ 2ix�M2

(

ð14Þ

Substituting Eq. (14) into Eq. (12) yields the following equation

dix�M1

dt
¼ 3

8
nM1

ns

nM1

� �2

sin 2is þ
3

4
rM2nM1

nM2

nM1

� �2

iy�M2

diy�M1

dt
¼ � 3

4
rM2nM1

nM2

nM1

� �2

ix�M2

8

>

>

>

<

>

>

>

:

: ð15Þ

In the same way, we have

dix�M2

dt
¼ 3

8
nM2

ns

nM2

� �2

sin 2is þ
3

4
rM1nM2

nM1

nM2

� �2

iy�M1

diy�M2

dt
¼ � 3

4
rM1nM2

nM1

nM2

� �2

ix�M1

8

>

>

>

<

>

>

>

:

: ð16Þ

From Eq. (15) and Eq. (16), we obtain two planar dynamical systems

dix�M1

dt
¼ 3

8
nM1

ns

nM1

� �2

sin 2is þ
3

4
rM2nM1

nM2

nM1

� �2

iy�M2

diy�M2

dt
¼ � 3

4
rM1nM2

nM1

nM2

� �2

ix�M1

8

>

>

>

<

>

>

>

:

; ð17Þ

and

dix�M2

dt
¼ 3

8
nM2

ns

nM2

� �2

sin 2is þ
3

4
rM1nM2

nM1

nM2

� �2

iy�M1

diy�M1

dt
¼ � 3

4
rM2nM1

nM2

nM1

� �2

ix�M2

8

>

>

>

<

>

>

>

:

: ð18Þ

Equation (17) indicates that the x component of the inclination vector of moonlet 1 and the

y component of the inclination vector of moonlet 2 form a planar dynamical system, while

Eq. (18) indicates that the x component of the inclination vector of moonlet 2 and the y

component of the inclination vector of moonlet 1 form a planar dynamical system. These

two planar dynamical systems can be expressed as Eq. (19) and Eq. (21)
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d

dt

ix�M1

iy�M2

" #

¼ A
ix�M1

iy�M2

" #

þ B; ð19Þ

where

A ¼
0

3

4
rM2nM1

nM2

nM1

� �2

� 3

4
rM1nM2

nM1

nM2

� �2

0

0

B

B

B

@

1

C

C

C

A

and B ¼
3

8
nM1

ns

nM1

� �2

sin 2is

0

2

4

3

5

ð20Þ

d

dt

ix�M2

iy�M1

" #

¼ C
ix�M2

iy�M1

" #

þ D; ð21Þ

where

C ¼
0

3

4
rM1nM2

nM1

nM2

� �2

� 3

4
rM2nM1

nM2

nM1

� �2

0

0

B

B

B

@

1

C

C

C

A

and D ¼
3

8
nM2

ns

nM2

� �2

sin 2is

0

2

4

3

5

ð22Þ

Using the theory from Strogatz (994, see page 150–151), for a two-dimensional nonlinear

system, the linear stability of the system can be determined by the linearized system. The

linearized system of Eq. (19) is d
dt

ix�M1

iy�M2

" #

¼ A
ix�M1

iy�M2

" #

, The Jacobian matrix is A, which

is a constant matrix. Eigenvalues of A are � 3
4
rM1rM2nM1nM2ð Þ

1
2j, which means that the

planar dynamical system Eq. (19) is linearly stable. Eigenvalues of C are also

� 3
4
rM1rM2nM1nM2ð Þ

1
2j, which means that the planar dynamical system Eq. (21) is also

linearly stable.

Let K ¼ 3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rM1rM2nM1nM2
p

, then Eqs. (19) and (21) can also be expressed as

d2ix�M1

dt2
¼ �K2ix�M1

d2iy�M2

dt2
¼ � 9

32
rM1nM2nM1

ns

nM2

� �2

sin 2is � K2iy�M2

8

>

>

>

<

>

>

>

:

; ð23Þ

and

d2ix�M2

dt2
¼ �K2ix�M2

d2iy�M1

dt2
¼ � 9

32
rM2nM1nM2

ns

nM1

� �2

sin 2is � K2iy�M1

8

>

>

>

<

>

>

>

:

: ð24Þ

The form of Eqs. (23) and (24) looks like the equation of harmonic oscillator which has no

frictional damping. For instance, �K2iy�M2 is like the linear restoring force in the har-

monic oscillator. The frequency is K ¼ 3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rM1rM2nM1nM2
p

, and the period is T ¼ 2p
K

. The
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motion of the x component of the inclination vector of moonlet 1 and the y component of

the inclination vector of moonlet 2 is periodic. The motion x component of the inclination

vector of moonlet 2 and the y component of the inclination vector of moonlet 1 is periodic.

3 Relative Effect on Inclination Vectors Between the Two Moonlets

In this section, the primary’s J2, Solar gravity, and the two moonlets’ relative effect are all

calculated. Consider the primary’s J2, Solar gravity, and moonlet 2 gravity acting on the

inclination vector of moonlet 1 as well as moonlet 1 gravity acting on the inclination vector

of moonlet 2, then combine Eqs. (3), (4), (17), and (18), one can obtain the following

equation

dix�M1

dt
¼ � 3J2lr2

2nM1a
5
M1

iy�M1 þ
3

8
nM1

ns

nM1

� �2

sin 2is þ
3

4
rM2nM1

nM2

nM1

� �2

iy�M2

diy�M1

dt
¼ 3J2lr2

2nM1a
5
M1

ix�M1 �
3

4
rM2nM1

nM2

nM1

� �2

ix�M2

dix�M2

dt
¼ � 3J2lr2

2nM2a
5
M2

iy�M2 þ
3

8
nM2

ns

nM2

� �2

sin 2is þ
3

4
rM1nM2

nM1

nM2

� �2

iy�M1

diy�M2

dt
¼ 3J2lr2

2nM2a
5
M2

ix�M2 �
3

4
rM1nM2

nM1

nM2

� �2

ix�M1

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

: ð25Þ

This equation can be simplified into

d

dt

ix�M1

iy�M1

ix�M2

iy�M2

2

6

6

6

4

3

7

7

7

5

¼ E

ix�M1

iy�M1

ix�M2

iy�M2

2

6

6

6

4

3

7

7

7

5

þ F; ð26Þ

where

E ¼

0 � 3J2lr2

2nM1a
5
M1

0
3

4
rM2nM1

nM2

nM1

� �2

3J2lr2

2nM1a
5
M1

0 � 3

4
rM2nM1

nM2

nM1

� �2

0

0
3

4
rM1nM2

nM1

nM2

� �2

0 � 3J2lr2

2nM2a
5
M2

� 3

4
rM1nM2

nM1

nM2

� �2

0
3J2lr2

2nM2a
5
M2

0

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð27Þ
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F ¼

3

8
nM1

ns

nM1

� �2

sin 2is

0

3

8
nM2

ns

nM2

� �2

sin 2is

0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

: ð28Þ

For the triple asteroidal systems, the influence on the inclination vector from the pri-

mary’s J2 perturbation is bigger than from the Solar gravity and the two moonlets’ relative

effect. The Solar gravity and the two moonlets’ relative effect make the x component of the

inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2

form a planar dynamical system, meanwhile, they make the x component of the inclination

vector of moonlet 2 and the y component of the inclination vector of moonlet 1 form a

planar dynamical system. However, the primary’s J2 perturbation make the x component

and the y component of the inclination vector of moonlet 1 form a planar dynamical

system, meanwhile, it makes the x component and the y component of the inclination

vector of moonlet 2 form a planar dynamical system.

Generally speaking, for the inclination vector, the influence from the J2 perturbation of

the primary is much bigger than from the Solar gravity and the two moonlets’ relative

effect. This implies that the mean motion of x component and the y component of the

inclination vector of each moonlet forms an ellipse; however, the instantaneous motion of

x component and the y component of the inclination vector of each moonlet may form an

elliptical disc. In addition, the x component of the inclination vector of moonlet 1 and the y

component of the inclination vector of moonlet 2 form a quasi-periodic motion, and the x

component of the inclination vector of moonlet 2 and the y component of the inclination

vector of moonlet 1 form a quasi-periodic motion.

Two triple asteroidal systems, (216) Kleopatra and (153591) 2001 SN263 are taken as

examples to verify the above theory. The gravitational field and irregular shape of the

primary is computed with shape model data using the polyhedral model (Neese 2004). The

primary’s gravitational potential (Werner 1994; Werner and Scheeres 1997) can be com-

puted by

U ¼ 1

2
Gr

X

e2edges
re � Ee � re � Le �

1

2
Gr

X

f2faces
rf � Ff � rf � xf ; ð29Þ

the primary’s gravitational force is calculated by

rU ¼ �Gr
X

e2edges
Ee � re � Le þ Gr

X

f2faces
Ff � rf � xf ; ð30Þ

while the Hessian matrix of the primary’s gravitational potential can be calculated by

rðrUÞ ¼ Gr
X

e2edges
Ee � Le � Gr

X

f2faces
Ff � xf ; ð31Þ

where G = 6.67 9 10-11 m3 kg-1 s-2 represents the Newtonian gravitational constant, r
represents the primary’s bulk density; re and rf are body-fixed vectors, re is from the field

point to the point on the edge e while rf is from the field point to the point on the face f; Ee

and Ff are geometric parameters, Ee is related to edges while Ff is related to faces; Le is the

integration factor while xf is the solid angle.
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We apply the above results to two triple asteroidal system (216) Kleopatra and (153591)

2001 SN263. Moonlets of (216) Kleopatra are Alexhelios and Cleoselene, while moonlets

of (153591) 2001 SN263 are Beta and Gamma. Table 2 shows the initial orbital parameters

for the moonlets of two triple asteroidal systems used in the calculation. To compare with

the theoretical results of the previous contents, we use the gravitational model and integrate

the dynamical equation to calculate the inclination vectors. The dynamical equations are

_pk ¼ fk

_rk ¼
pk
mk

_Kk ¼ nk

_Ak ¼ w
_

kAk

8

>

>

>

>

>

<

>

>

>

>

>

:

; k ¼ 1; 2; 3; ð32Þ

where wk ¼ AkI
�1
k AT

k Kk � rk � pkð Þ, rk represents the position vector of the k-th body,

pk ¼ mk _rk represents the linear momentum vector, fk represents the gravitational force

acting on the k-th body, Kk represents the angular momentum vector, Ak is the attitude

matrix. nk is the resultant gravitational torque acting on the k-th body. All the vectors are

expressed in the inertial space. w
_

k is calculated with the following method. For a vector

v ¼ vx; vy; vz
� �T

, define the matrix

v
_ ¼

0 �vz vy
vz 0 �vx
�vy vx 0

0

@

1

A: ð33Þ

Descamps et al. (2011) presented the orbit parameters of two moonlets of (216) Kleopatra

Table 2 Initial orbital parame-
ters for the moonlets of two triple
asteroidal systems

Orbital parameters Alexhelios Cleoselene

(216) Kleopatra Descamps et al. (2011)

Semi-major axis: a (km) 678.0 454.0

Eccentricity: e 0 0

Inclination: i (�) 51.0 49.0

Long. of ascend. node: X (�) 166.0 160.0

Arg. periapsis: x (�) 0 0

Mean anomaly: M (�) 0 0

Mass: (kg) 4.63 9 1018 4.67 9 1018

Orbital parameters Beta Gamma

(153591) 2001 SN263 Fang et al. (2011)

Semi-major axis: a (km) 16.633 3.804

Eccentricity: e 0.015 0.016

Inclination: i (�) 157.486 165.045

Long. of ascend. node: X (�) 161.144 198.689

Arg. periapsis: x (�) 131.249 292.435

Mean anomaly: M (�) 248.816 212.658

Density (g cm-3) 1.0 2.3
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in mean J2000 equator, see Table 2. The frame used here is defined as follows, the origin is

the mass center of the primary, the xy plane is the equator of the primary, and z axis is the

spin axis of the primary. In our frame, the inclinations of Alexhelios and Cleoselene are

2.6� and 3.18�, respectively. So the inclinations of these two moonlets are small and the

results here can be used to analyze the orbits of these two moonlets. Figure 1 shows the

dynamical configuration of the two moonlets relative to the primary for the triple asteroidal

system (216) Kleopatra while Fig. 2 presents the components of inclination vectors of two

moonlets. From Fig. 2, one can conclude that the mean motion of ix and iy of each moonlet

forms an ellipse, and the amplitude of the instantaneous motion of the elliptical trajectory

for Cleoselene is bigger than for Alexhelios. Besides, Alexhelios’ ix and Cleoselene’s iy
form a quasi-periodic motion, and Alexhelios’ iy and Cleoselene’s ix form a quasi-periodic

motion.

For the motion near the surface of asteroids like Kleopatra, the perturbation method

with low Legendre coefficients can’t model the orbital motion accurately. The reason is

that the higher order terms of the Legendre coefficients need many iterations to converge

(Elipe and Riaguas 2003). Besides, there exists some orbits where the minimal distance

between the mass center of Kleopatra and the orbit is smaller than Kleopatra’s mean radius

(Jiang et al. 2015c). This means that the perturbation method with low Legendre coeffi-

cients can’t be used to model the motion near the surface of Kleopatra. However, if the

orbit is far from the surface of Kleopatra, the perturbation method with low Legendre

coefficients can also be used. The ratio of the semi-major axis of the moonlets and the

mean radius of Kleopatra are 6.7 and 10 (Descamps et al. 2011). The numerical method

uses the polyhedral model to model the gravity of Kleopatra. The numerical results fit the

theoretical results well because the orbits are far from Kleopatra, and the mass ratio of the

moonlets and Kleopatra are only 2.87 9 10-4 and 1.32 9 10-4.

Fang et al. (2011) presented the orbit parameters of two moonlets of (153591) 2001

SN263 in mean J2000 equator, see Table 2. In our frame, the inclinations of Beta and

Fig. 1 The dynamical configuration of the two moonlets relative to the primary for the triple asteroidal
system (216) Kleopatra, the simulation duration is 28d
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Gamma are 0.33� and 13.35�, respectively. The inclinations of these two moonlets are also

small and the results here can be used to analyze the orbits of these two moonlets. Figure 3

shows the dynamical configuration of the two moonlets relative to the primary for the triple

asteroidal system (153591) 2001 SN263 while Fig. 4 presents the components of incli-

nation vectors of two moonlets. Figure 4 implies that the mean motion of ix and iy of each

moonlet forms an ellipse, and the amplitude of the instantaneous motion of the elliptical

trajectory for Gamma is much bigger than for Beta. The instantaneous motion of the

elliptical trajectory for Beta forms an ellipse while the instantaneous motion of the

elliptical trajectory for Gamma forms an elliptical disc. Additionally, Beta’s ix and

Gamma’s iy form a quasi-periodic motion, and Beta’s iy as well as Gamma’s ix form a

quasi-periodic motion. The numerical calculation validates the above theoretical

derivation.

The theoretical results say that the mean motion of x component and the y component of

the inclination vector of each moonlet forms an ellipse. From Figs. 2a, b, and 4a,b, one can

see that the inclination vector of each moonlet forms an ellipse. The relative amplitude of

the trajectory in Fig. 4b is smaller than that in Fig. 4a, because the inclinations of Beta and

Fig. 2 The numerical calculation of the components of inclination vectors of two moonlets of the triple
asteroidal system (216) Kleopatra, a the trajectory of two components of the inclination vector of moonlet 1,
b the trajectory of two components of the inclination vector of moonlet 2, c the trajectory of the x
component of the inclination vector of moonlet 1 and y component of the inclination vector of moonlet 2,
d the trajectory of the x component of the inclination vector of moonlet 2 and y component of the inclination
vector of moonlet 1
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Gamma are 0.33� and 13.35� in the equator of the primary, respectively. Figure 4a shows

the inclination vector of Beta while Fig. 4b shows the inclination vector of Gamma. In

addition, the theoretical results say that the x component of the inclination vector of

moonlet 1 and the y component of the inclination vector of moonlet 2 form a quasi-

periodic motion, and the x component of the inclination vector of moonlet 2 and the y

component of the inclination vector of moonlet 1 form a quasi-periodic motion. From

Figs. 2c, d, and 4c, d, one can see that the component of the inclination vector between

different moonlets are coupled and form a quasi-periodic motion.

The results shown above agree with previous work based on observational data that

concluded periodical variety of the orbital parameters of different triple asteroidal systems.

Marchis et al. (2010) calculated orbital parameters of the triple asteroidal system (45)

Eugenia, and found that the inclinations of these two moonlets of (45) Eugenia are about 9�
and 18� relative to the equator of the primary, and have a periodical variety. Fang et al.

(2011) calculated the change rate of the argument of pericenter and the longitude of the

ascending node for the two moonlets of (153591) 2001 SN263. Our results also indicate

that the longitude of the ascending node have a variety. Fang et al. (2012) also investigated

the semi-major axis and eccentricity of Remus and Romulus relative to Sylvia of the triple

asteroidal system (87) Syivia, and found both of them have a periodical variety, and the

variety period are different. The previous studies only consider the inclinations of the

moonlets in the triple asteroidal system. However, the moonlets of (216) Kleopatra and

(153591) 2001 SN263 are in the orbit which is near the equator of the primary, the

inclination vector is much better to analyze the motion of these moonlets than inclination

of these moonlets (Hintz 2008). Figures 2 and 4 present the coupling motion of the

inclination vector of two moonlets in the triple asteroidal systems.

Fig. 3 The dynamical configuration of the two moonlets relative to the primary for the triple asteroidal
system (153591) 2001 SN263, the simulation duration is 600d

78 Y. Jiang et al.

123



4 Conclusions

The nonlinear dynamical behaviours in the triple asteroidal systems are complicated. The

primary has irregular shapes and the moonlets have relative effect. The primary’s non-

sphericity gravity, the solar gravity, and moonlets’ relative gravity are all considered in this

paper. It is found that the inclination vector for each moonlet forms a periodic elliptical

motion. The Solar gravity and moonlets’ relative gravity lead to the periodic motion for ix
of moonlet 1 and iy of moonlet 2, and the periodic motion for iy of moonlet 1 and ix of

moonlet 2. The mean motion of ix and iy of the inclination vector of each moonlet forms an

ellipse. The instantaneous motion of ix and iy may be elliptical due to the coupling effect of

these forces. The coupling effect of these forces also makes ix of moonlet 1 and iy of

moonlet 2 form a quasi-periodic motion, and ix of moonlet 2 and iy of moonlet 1 form a

quasi-periodic motion.

The numerical computation of orbital motion of two triple asteroidal systems (216)

Kleopatra and (153591) 2001 SN263 further illustrates the results. The numerical results

are compared with the research in existing literature. The moonlets of (216) Kleopatra and

(153591) 2001 SN263 motion near the equator of the primary, then the inclinations of these

Fig. 4 The numerical calculation of the components of inclination vectors of two moonlets of the triple
asteroidal system (153591) 2001 SN263, a the trajectory of two components of the inclination vector of
moonlet 1, b the trajectory of two components of the inclination vector of moonlet 2, c the trajectory of the x
component of the inclination vector of moonlet 1 and y component of the inclination vector of moonlet 2,
d the trajectory of the x component of the inclination vector of moonlet 2 and y component of the inclination
vector of moonlet 1
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moonlets are small. To analyze the motion of these moonlet, using the inclination vector is

better than the inclination. We also compare the numerical results with the theoretical

results. It is found that the amplitude of the instantaneous motion of the elliptical trajectory

for the moonlet Cleoselene is bigger than for the moonlet Alexhelios in the triple asteroidal

systems (216) Kleopatra. The instantaneous motion of the elliptical trajectory for Gamma

looks like an elliptical disc in the triple asteroidal systems (153591) 2001 SN263.
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Appendix A

In this section, we present the derivation of Eq. (11).

For the first moonlet in the nearly circular orbit near the equatorial plane of the primary,

the perturbation force on moonlets due to the Solar gravity and the second moonlet’s

relative gravity (Tremaine et al. 2008) is

F ¼ rn2
c 3 cos n � r0

r0

� �

� r

r

	 


; ð34Þ

where all the vectors are expressed in the equatorial inertial frame of the first moonlet,r
represents the first moonlet’s position vector, r is the norm of r, r0 represents the Sun’s

position vector or the second moonlet’s position vector, r0 is the norm of r0, n represents the

angle between r and r0. For the Solar gravity, nc ¼ ns; for the second moonlet’s gravity,

n2
c ¼ rM2n

2
M2.

The component of F in the normal direction of the first moonlet’s orbital plane is

Fn ¼ F � n0 ¼ 3rn2
c cos n

r0

r0
� n0

� �

; ð35Þ

where

n0 ¼
sin i sinX

� sin i cosX

cos i

2

6

4

3

7

5

;
r

r
¼

cos uM1 cosXM1 � sin uM1 sinXM1 cos iM1

cos uM1 sinXM1 þ sin uM1 cosXM1 cos iM1

sin uM1 sin iM1

2

6

4

3

7

5

; ð36Þ

for the Solar gravity,

r0

r0
¼

cosbs
sin bs cos is

sin bs sin is

2

6

4

3

7

5

; ð37Þ

while for the second moonlet’s gravity,

r0

r0
¼

cosbM2 cosXM2 � sinbM2 sinXM2 cos iM2

cosbM2 sinXM2 þ sinbM2 cosXM2 cos iM2

sin bM2 sin iM2

2

6

4

3

7

5

: ð38Þ

Thus the perturbation of the inclination vector due to the Solar gravity is
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dix�M1

dt
¼ Fn sin Xþ xþMð Þ

rnM1

¼ 3

2
nM1

ns

nM1

� �2

sin bs cos is cosbs sin i sinX� sin bs cos is sin i cosXþ sinbs sin isð Þ

diy�M1

dt
¼ Fn cos Xþ xþMð Þ

rnM1

¼ 3

2
nM1

ns

nM1

� �2

cosbs cosbs sin i sinX� sin bs cos is sin i cosXþ sinbs sin isð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

:

ð39Þ

Considering that sin i � 1, thus

dix�M1

dt
¼ 3

4
nM1

ns

nM1

� �2

sin2 bs sin 2is

diy�M1

dt
¼ 3

4
nM1

ns

nM1

� �2

sin 2bs sin is

8

>

>

>

<

>

>

>

:

: ð40Þ

The perturbation of the inclination vector due to the second moonlet’s gravity is

dix�M1

dt
¼ Fn sin Xþ xþMð Þ

rnM1

¼ 3

2
nM1

ns

nM1

� �2

cos bM2 sinXM2 þ cos iM2 sinbM2 cosXM2ð Þ

sin i sinX cosbM2 cosXM2 � cos iM2 sinbM2 sinXM2ð Þ½
� sin i cosX cosbM2 sinXM2 þ cos iM2 sin bM2 cosXM2ð Þ þ sin bM2 sin iM2�
diy�M1

dt
¼ Fn cos Xþ xþMð Þ

rnM1

¼ 3

2
nM1

ns

nM1

� �2

cos bM2 cosXM2 � cos iM2 sin bM2 sinXM2ð Þ

sin i sinX cosbM2 cosXM2 � cos iM2 sinbM2 sinXM2ð Þ½
� sin i cosX cosbM2 sinXM2 þ cos iM2 sin bM2 cosXM2ð Þ þ sin bM2 sin iM2�

8

>
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>
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<
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>

>

>

>

>

>

:

:

ð41Þ

Considering that sin i � 1, we have

dix�M1

dt
¼ 3

2
nM1

ns

nM1

� �2

cosbM2 sinXM2 þ cos iM2 sinbM2 cosXM2ð Þ sin bM2 sin iM2

diy�M1

dt
¼ 3

2
nM1

ns

nM1

� �2

cosbM2 cosXM2 � cos iM2 sinbM2 sinXM2ð Þ sin bM2 sin iM2

8

>

>

>

<

>

>

>

:

:

ð42Þ

Neglecting the short-term of bM2, we have
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dix�M1

dt
¼ 3

8
rM2nM1

nM2

nM1

� �2

sin 2iM2 cosXM2

diy�M1

dt
¼ � 3

8
rM2nM1

nM2

nM1

� �2

sin 2iM2 sinXM2

8

>

>

>

<

>
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>
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