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Abstract The ellipsoid shape model plays an important role in physical research on

asteroids. However, its symmetric structure cannot practically simulate real asteroids. This

article applies a general shape model, named the cellinoid, instead of the ellipsoid model to

simulate the asymmetric shape of asteroids. The cellinoid shape model consists of eight

octants of ellipsoids having different semi-axes, with the constraint that adjacent octants

must have two equal semi-axes in common. Totally, the shape of the cellinoid model is

controlled by six parameters, not three as in the case of the shape of the ellipsoid. Using

this shape model, the brightness of asteroids observed from the Earth can be fitted

numerically by the surface triangularization of the cellinoid. The Levenberg–Marquardt

algorithm is also employed here to solve a nonlinear minimization problem. Owing to the

asymmetric shape of the cellinoid, the physical parameters of asteroids, such as the rotation

period and pole orientation, can be fitted more accurately than in the case of the ellipsoid

model. Finally, this is confirmed numerically by applying the shape to both synthetic light

curves and real light curves of asteroids. Additionally, the center of mass and moment of

inertia of the cellinoid are analyzed explicitly.
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1 Introduction

With the development of telescope technology and the increase in the number of ground-

based observatories, more and more asteroids are being observed and their photometric

data, such as light curves, recorded. Most asteroids are simply too small and faint to allow

us to resolve their disks by means of remote observations. A very useful technique to learn

about them is to investigate their variation in observed brightness with respect to the

observation time and position. From the light curves of asteroids, physical parameters, such

as the rotation period, pole orientation and shape, can be estimated.

Russell was the first to research the inversion of the shape of asteroids from light curves

Russell (1906). However, he thought that the light curves when asteroids are in opposition

were insufficient for the reconstruction of the shape models of asteroids. Later, as many

asteroids were observed in a variety of observation geometries, it become evident that the

inverse problem can be solved in many cases. Surdej et al. simulated the rotation of an

asteroid using a three-axis ellipsoid model and presented synthetic light curves based on the

scattering laws of Lambert and Lommel-Seeliger Surdej and Surdej (1978). To simulate the

scattering law of asteroids better, Lumme et al. (1981a, b) took many sophisticated param-

eters, such as the single-scattering albedo, the asymmetric factor, volume density of the

surface material and the roughness of the surface, into account. Furthermore, Hapke con-

sidered the bidirectional reflectance and shadow of the particles of the surface Hapke (1984).

Employing the Lumme–Bowell scattering law, Karttunen (1989) introduced a method of

generating light curves of asteroids under the assumption that asteroids are ellipsoids.

Additionally, he tested the effects of the scattering parameters on light curves and concluded

that the variation in the brightness of light curves depended strongly on body shape, not the

scattering law Karttunen and Bowell (1989). Because ellipsoids have symmetric shape, the

light curves generated by an ellipsoid model are also symmetric. To simulate real asteroids

better, Cellino et al. (1989) introduced a general shape model, which consists of eight octants

of ellipsoids having different semi-axes, with the constraint that adjacent octants must have

two equal semi-axes in common. They described how this asymmetric shape can generate

irregular light curves that are closer to observed ones, but they did not present an inverse

method with which to derive the related parameters of asteroids from observed light curves.

We call this shape a ‘cellinoid’ for the first time in this article and using this shape model,

present an inverse method with which to fit the related physical parameters of one asteroid

from several light curves observed in one apparition.

As the computer techniques have developed rapidly, it has become feasible to solve the

inverse process, in which the physical parameters of asteroids are obtained from light

curves. Lumme et al. (1990) attempted to find the pole orientation employing a spherical

harmonics method, independent of the shape model and albedo variation. Kaasalainen

presented an efficient method of reconstructing an arbitrary surface of asteroids Kaasa-

lainen and Lamberg (1992, 1992) and a numerical application with a simple scattering law

Kaasalainen and Torppa (2001), Kaasalainen et al. (2001, 2005), which was verified in the

laboratory. According to results obtained with many light curves observed for various

geometries, Kaasalainen’s method is efficient in computing the shape of asteroids and other

related parameters. Furthermore, a method of accelerating the algorithm has been

described Kaasalainen et al. (2012). For most asteroids, however, it is difficult to collect

the full light cuves for required geometries. In particular, many asteroids barely have one

apparition over a period of several decades. Additionally, many space projects, such as

GAIA, only collect sparse photometric data of asteroids. It is not possible to construct a

complicated shape model when there are few complete light curves. Cellino et al. (2009)
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applied sparse photometric data to search for the physical parameters of asteroids based on

an ellipsoid shape. This is an important reason why the ellipsoid model is still applied in

estimating the related parameters of asteroids. Lu et al. (2013) presented a fast method of

using an ellipsoid model for asteroids to efficiently derive the related parameters. Using

this method, we extend the fast ellipsoid model and apply the cellinoid shape model to

estimate the parameters of asteroids from light curves observed in one apparition.

Using a definition similar to that employed in the fast ellipsoid model, we introduce the

cellinoid shape model and numerically apply it to light curves as follows. Section 2

describes the cellinoid shape model and explicitly analyzes its center of mass and moment

of inertia. Additionally, a simple scattering law and the whole inverse problem are pre-

sented. Numerical applications are then presented in Sect. 3. First, the cellinoid model is

applied to synthetic light curves and the process of searching for the best-fit parameters is

introduced step by step. Second, a similar process is applied to real asteroid 3 JUNO and

solutions derived with the ellipsoid model and cellinoid model are compared. Third, the

cellinoid shape model is applied to another real asteroid 21 LUTETIA. Finally, the study is

summarized and future work discussed in Sect. 4.

2 Cellinoid Shape Model

Based on the ellipsoid model, the cellinoid shape model consists of eight octants from eight

different ellipsoids, with the constraint that adjacent octants must have two equal semi-

axes. The upper four octants are listed as follows.

U1 :
x2

a2
1

þ y2

b2
1

þ z2

c2
1

¼ 1; x� 0; y� 0; z� 0 ð1Þ

U2 :
x2

a2
2

þ y2

b2
1

þ z2

c2
1

¼ 1; x� 0; y� 0; z� 0 ð2Þ

U3 :
x2

a2
2

þ y2

b2
2

þ z2

c2
1

¼ 1; x� 0; y� 0; z� 0 ð3Þ

U4 :
x2

a2
1

þ y2

b2
2

þ z2

c2
1

¼ 1; x� 0; y� 0; z� 0 ð4Þ

The lower four octants are listed as follows.

D1 :
x2

a2
1

þ y2

b2
1

þ z2

c2
2

¼ 1; x� 0; y� 0; z� 0 ð5Þ

D2 :
x2

a2
2

þ y2

b2
1

þ z2

c2
2

¼ 1; x� 0; y� 0; z� 0 ð6Þ

D3 :
x2

a2
2

þ y2

b2
2

þ z2

c2
2

¼ 1; x� 0; y� 0; z� 0 ð7Þ

D4 :
x2

a2
1

þ y2

b2
2

þ z2

c2
2

¼ 1; x� 0; y� 0; z� 0 ð8Þ
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The cellinoid shape with six parameters a1; a2; b1; b2; c1; and c2 is shown in Fig. 1. With

three more degrees of freedom than the ellipsoid shape, the cellinoid shape can be

asymmetric, although its surface is not smooth at the boundaries of adjacent octants. It is

apparent that the cellinoid shape reduces to an ellipsoid with three axes when a1 ¼
a2; b1 ¼ b2; and c1 ¼ c2. Because each octant of the cellinoid shape is taken from an

ellipsoid, the related algorithm based on ellipsoids can be easily extended to the cellinoid

shape. In this article, we primarily introduce how to obtain the related physical parameters

of asteroids, such as rotation period, pole orientation and shape, under the assumption of

the cellinoid shape model, instead of the ellipsoid shape model.

2.1 Characteristics of the Cellinoid Shape

The basic physical characteristics of the cellinoid shape will be analyzed under the

assumption that the volume density ðqÞ is uniform. The related physical formulas for the

mass and center of mass will be shown explicitly followed by the formulas for the inertia

tensor and the stable free rotational axis. These formulas will be exploited in the next

section to simulate the brightness of asteroids.

2.1.1 Mass of the Cellinoid Shape

As the cellinoid shape consists of eight octants taken from ellipsoids, all its physical

properties can be transformed into properties for the eight octants. For simplicity, only the

calculation for octant U1 will be presented in detail.

By employing the generalized transformation from Cartesian coordinates to spherical

coordinates,

a1

b1

c1

b2
a2

c2

a1+a2=2a

c1
+

c2
=

2c

b1+b2=2b

Fig. 1 Cellinoid shape model
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x ¼ a r sin h cos /

y ¼ b r sin h sin /

z ¼ c r cos h

ðh 2 ½0; p�; / 2 ½0; 2p�; r 2 ½0; 1�Þ;

8
><

>:
ð9Þ

the mass of octant U1 can be calculated as

Mass of U1 : MU1 ¼
Z Z Z

U1

q dx dy dz

¼ q
Z Z Z

U1

a1b1c1r2 sin h dh d/ dr

¼ qa1b1c1

Z1

0

r2 dr

Z
p
2

0

sin h dh
Z

p
2

0

d/

¼ qpa1b1c1

6
:

ð10Þ

In a similar calculation, the total mass M of the cellinoid shape is

M ¼
X4

i¼1

MUi þ
X4

i¼1

MDi

¼ qp
6
ða1 þ a2Þðb1 þ b2Þðc1 þ c2Þ:

ð11Þ

As is well known, the volume of an ellipsoid with three semi-axes ða; b; cÞ is 4pabc
3

. This is

consistent with the result in (11) when simply letting a1 ¼ a2 ¼ a; b1 ¼ b2 ¼ b, and

c1 ¼ c2 ¼ c.

2.1.2 Center of Mass of the Cellinoid Shape

The detailed process of determining the center of mass GU1ð�x; �y; �zÞ for octant U1 is

�x ¼ 1

MU1

Z Z Z

U1

qx dx dy dz

¼ 6

pa1b1c1

Zc1

0

dz

Z
a1

ffiffiffiffiffiffiffi
1�z2

c2
1

q

0

xb1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

a2
1

� z2

c2
1

s

dx

¼ 3

8
a1;

�y ¼ 3

8
b1; �z ¼ 3

8
c1:

ð12Þ

Finally, with the derived centers of mass and masses of the eight octants, the center of mass

Gð�x; �y; �zÞ of the cellinoid can be calculated for the particle system in the form,
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�x ¼
P

Mi�xi
P

Mi

¼ 3

8
ða1 � a2Þ;

�y ¼ 3

8
ðb1 � b2Þ; �z ¼ 3

8
ðc1 � c2Þ:

ð13Þ

2.1.3 Inertia Tensor and Rotational Axis of the Cellinoid Shape

Generally, a rigid body will rotate stably about the axis of maximum moment of inertia.

Supposing g ¼ ðgx; gy; gzÞT be a unit direction vector, the moment of inertia ðIOÞ rotating

about the line with direction g and passing through the origin O can be calculated in the form

IO ¼ IG þM�r2; ð14Þ

where IG is the moment of inertia rotating about the line with the direction g and passing

through the center of mass G of the cellinoid. Equation (14) is the parallel-axis theorem for

a mass ðMÞ and perpendicular distance ð�rÞ between two straight lines with the same

direction g passing through O and G.

It is easy to compute the distance �r by taking the cross product of vector OG
�!

and unit

vector g:

�r2 ¼ jOG
�!� gj2 ¼ gT B g: ð15Þ

Following the definition of B,

B ¼
�y2 þ �z2 �xy �xz

�xy �x2 þ �z2 �yz

��x�z �yz �x2 þ �y2

0

B
@

1

C
A: ð16Þ

Furthermore, the moment of inertia IO can be calculated as

IO ¼
Z Z Z

r2 dm ¼
Z Z Z

jOM
��!� gjq dV; ð17Þ

where r is the distance between the origin and an arbitrary point in the cellinoid; i.e.,

OM
��! ¼ ðx; y; zÞ. As the uniform volume density q does not affect the center of mass, we set

it as 1 for simplicity. The moment of inertia IO then has the form

IO ¼ g2
x

Z Z Z

ðy2 þ z2Þ dV þ g2
y

Z Z Z

ðx2 þ z2Þ dV þ g2
z

Z Z Z

ðx2 þ y2Þ dV

� 2gxgy

Z Z Z

ðxyÞ dV � 2gxgz

Z Z Z

ðxzÞ dV � 2gygz

Z Z Z

ðyzÞ dV

¼ gT Ag:

ð18Þ

Here A denotes the matrix

A ¼
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

0

B
@

1

C
A: ð19Þ
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where

Ixx ¼
Z Z Z

ðy2 þ z2Þ dV; Iyy ¼
Z Z Z

ðx2 þ z2Þ dV ; Izz ¼
Z Z Z

ðx2 þ y2Þ dV ;

Ixy ¼ �
Z Z Z

ðxyÞ dV ; Ixz ¼ �
Z Z Z

ðxzÞ dV; Iyz ¼ �
Z Z Z

ðyzÞ dV :

Combining Eqs. (14, 15, 18), the moment of inertia ðIGÞ passing the center of mass is

derived as

IG ¼ gTðA�MBÞg: ð20Þ

The matrix ðA�MBÞ is the inertia tensor of the cellinoid passing the center of mass, and is

called the tensor matrix.

The moment of inertia ðIGÞ is a quadratic form that defines the surface of an ellipsoid,

called the inertia ellipsoid. Finding the stable rotational axis of the cellinoid is equivalent

to determining the principal axes of the inertia ellipsoid; i.e., the diagonalization of tensor

matrix ðA�MBÞ. As a real symmetric matrix, the tensor matrix has an eigen decompo-

sition of an orthogonal matrix Q and a diagonal matrix R given by

A�MB ¼ QRQT ; R ¼
I1 0 0

0 I2 0

0 0 I3

0

B
@

1

C
A; ð21Þ

where I1� I2� I3 are the eigenvalues. The columns of matrix Q defines the directions of

the principal axes. The cellinoid will stably rotates about the direction with the maximum

eigenvalue.

2.2 Process of Searching for Physical Parameters

To simulate the observed brightness of asteroids, a rational scattering law has to be

established. As mentioned previously, many sophisticated scattering laws have been

designed, such as those models presented by Lumme-Bowell and Hapke. Nevertheless, the

scattering law is not the main factor affecting the variation in brightness as asteroids spin,

but the shape is. Combining the scattering laws of Lommel-Seeliger and Lambert with a

weight factor c for the latter, Kaasalainen introduced a simple function (22) to represent the

scattering law and confirmed its validity in the laboratory Kaasalainen et al. (2001, 2005) :

Sðl; l0; aÞ ¼ f ðaÞ
�
SLSðl; l0Þ þ c SLðl; l0Þ

�

¼ f ðaÞ
� ll0

lþ l0

þ c ll0

�
:

ð22Þ

Here l; l0 are defined under the definition of gð#; uÞ, the outward unit normal vector of

the surface, and x;x0, the directions to the Earth and the Sun as observed from the asteroid

respectively:

l ¼ x � g; l0 ¼ x0 � g: ð23Þ

The phase function f ðaÞ in (22) is an empirical modeling function presented by Muinonen

et al. (2002, 2009), which was interpreted empirically by Kaasalainen et al. (2003). The

function has the four-parameter form
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f ðaÞ ¼ a exp � a
d

� 	
þ kaþ b; ð24Þ

where a is the phase angle, a; b and k are the three linear parameters, and d is a single

nonlinear parameter.

With the definition of the scattering law in (22), the whole inverse problem based on an

ellipsoid shape model to derive the physical parameters of asteroids was described in detail

in Lu et al. (2013). For the cellinoid shape the photometric brightness of asteroids can be

calculated as a similar surface integral in the form

Lðx0;xÞ ¼
Z Z

Cþ

Sðl; l0; aÞdr; ð25Þ

where Cþ is the part of the surface of the cellinoid shape model that is both illuminated by

the Sun and visible from the Earth; i.e., l; l0 [ 0. Then by applying triangularization to

each octant of the cellinoid, the brightness integral (25) can be discretized as

Lðx0;xÞ �
X8

i¼1

XN

j¼1

Sðl; l0; aÞDSi;j

� �
 !

; ð26Þ

where i is the index of octants, j is the index of triangular facets of each octant and DSi;j

represents the area of the j-th facet on the i-th octant, whose contribution to the total

brightness is larger than zero. The triangularization of each octant is shown in Fig. 2.

Additionally, the fast method including Lebedev quadrature and derivative formulas,

presented in Lu et al. (2013), can be employed to rapidly compute the brightness integral

by splitting it into eight simple integrals on the ellipsoidal surface.

Supposing that Li denotes the i-th observed light curves, while ~Li denotes the calculated

brightness corresponding to the specified observing geometry, the physical parameters of

asteroids can be derived by minimizing

v2 ¼
X

i

Li � ~Li









2
: ð27Þ

If the observed light curve Li is not calibrated (i.e., the brightness is relative), a v2 form can

be employed instead of (27):

Fig. 2 Triangularization of
octant
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v2 ¼
X

i

Li

\Li [
�

~Li

\~Li [



















2

; ð28Þ

where \L [ denotes the mean brightness of one light curve. Generally speaking, the solar

phase angle a of most asteroids, especially for Main Belt Asteroids (MBAs), changes little

during one observation lasting a few hours. Therefore, it is reasonable to ignore f ðaÞ in the

scattering law (22) in this case. However, for the sparse data, the phase function f ðaÞ must

be considered.

The Levenberg–Marquardt algorithm is an efficient method of solving the nonlinear

optimization problem, but it generally obtains a locally optimal solution, and not the global

one. We attempt to introduce a scheme to find the globally optimal solution of the problem

(27 or 28). First, fixing the shape and pole, the rotation period ðPÞ and initial phase angle

ðU0Þ are searched for. An approximate P and U0 with the smallest v2 are taken as the

initial-guess values. Second, with the initial-guess values of P and U0 and various initial

pole orientation ðk; bÞ, the Levenberg–Marquardt algorithm is employed to search for the

best-fit solution with the globally smallest v2. The detailed process will be shown in the

following section by applying the cellinoid shape model to the synthetic light curves and

the light curves of real asteroids.

3 Numerical Application

Following the theoretical introduction of the cellinoid shape model, a numerical applica-

tion will be presented with a detailed process in this section. First, an ideal cellinoid shape

with specified physical parameters is employed to generate three synthetic light curves

under the scattering law (22). The unit direction of the Earth and Sun are specified as three

different unit vectors for the three synthetic light curves. Additionally, because there are

not enough light curves, the f ðaÞ part in the scattering law (22) is ignored to simplify the

inverse problem. Moreover, to simulate the observed error generated commonly by signal

transmittance, atmosphere and measurement accuracy, 1 % random error is added to the

brightness in the three synthetic light curves. The cellinoid shape model is applied to the

three synthetic light curves to examine whether the model can be used to search for best-fit

parameters that are consistent with known parameters within an acceptable error.

After dealing with the synthetic light curves, we attempt to apply the cellinoid shape to

the real asteroid 3 JUNO, because the shape of 3 JUNO is regular owing to its large mass.

The fitted light curves of both the cellinoid shape and ellipsoid shape are presented for

comparison and the result confirms that the cellinoid shape can simulates the real asteroid

better. Finally, we apply the cellinoid shape to another asteroid 21 LUTETIA with an

irregular shape and find that the shape model again performs well.

3.1 Application to the Ideal Cellinoid Shape

A specified cellinoid shape model with axes a1 ¼ 6; a2 ¼ 4; b1 ¼ 5; b2 ¼ 3; c1 ¼ 3, and

c2 ¼ 3 is applied to simulate the asteroid, and three synthetic light curves are generated for

the physical parameters k ¼ 54	; b ¼ �17	; P ¼ 7h, and U0 ¼ 45	. The shape model and

synthetic light curves are presented in Fig. 3. Unlike the case for real asteroids, the

parameters of the shape model are known. Therefore, we present the process of how to

search for the parameters step by step taking this model as an example. First, if there is no
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prior information about the object, a rough search for the rotation period ðPÞ and initial

phase angle ðU0Þ is needed to provide approximate guesses of ðP;U0Þ. The purpose of this

step is only to obtain appropriate initial values for P and U0 to be used in the Leverberg–

Marquardt algorithm. Other parameters such as the axes of the shape model can be set to be

equal; i.e., a sphere is applied to substitute the unknown cellinoid in the first step. Addi-

tionally, as the brightness in the three synthetic light curves can be treated as absolute

brightness in this application, the simple v2 in (27) should be employed for simplicity.

Second, with the approximate period and initial phase angle, the Levenberg–Marquardt

algorithm is employed to search for the best solution with various initial pole orientations

ðk; bÞ. If there is no prior information about the pole, a multi-grid search is required, such

as a search that discretizes k from 0	 to 360	 with increments of 10	 and b from �90	 to

90	 with increments of 10	. Here it should be noted that b in astronomy is (�90	 to 90	),
but it should be changed to the polar angle 90	 � b 2 ð0	 to 180	Þ in computation. The

solution with the smallest v2 is a good guess of the parameters of the pole orientation.

Finally, using the appropriate guesses of period, initial phase angle and pole orientation,

the six parameters of the cellinoid shape are searched for using the Levenberg–Marquardt

algorithm again with various guess values.

With the three steps to model the synthetic light curves with random noise, the fitted

shape parameters are a1 ¼ 6:0616; a2 ¼ 4:0377; b1 ¼ 5:0388; b2 ¼ 3:0088; c1 ¼ 2:9734,

and c2 ¼ 2:9767. The pole orientation is ð54:0367	; �17:0233	Þ and the rotation period is

6:9974 h with the initial phase angle U0 ¼ 45:0960	. The fitted parameters are close to the

initial values (within 1 % error) and the fitted light curves are shown as lines in Fig. 4,

while ‘*’ symbols denote the synthetic light curves corrupted by Gaussian noise. Addi-

tionally, the searching process for the good guess of the rotation period ðPÞ is shown in

Fig. 4. It is apparent that the guess value is close to the specific value of P. This shows that

the rotation period can be fitted accurately even though the light curves are corrupted by

noise.

With the previous described process to search the related physical parameters of an

ideal asteroid, the cellinoid shape model can perform well to derive the correct parameters.
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Fig. 3 Cellinoid Shape with axes a1 ¼ 6; a2 ¼ 4; b1 ¼ 5; b2 ¼ 3; c1 ¼ 3; c2 ¼ 3 and its three synthetic light
curves
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That could make the cellinoid shape model extended to the application of real asteroids

confidently.

3.2 Application to 3 Juno

From the previous application to an ideal cellinoid, important results guide us in the

inversion for real asteroids. We employ the cellinoid shape model to derive the related

parameters of 3 Juno from its three light curves in one apparition. Furthermore, we

compare the fitted results with results derived using the fast method based on an ellipsoid

model, presented by Lu et al. (2013). Three selected light curves were observed continually

from the 18th to the 20th of April 1985 Birch and Taylor (1989). Generally, the variation in

the position of both the Earth and Sun in one observed light curve is very small for 3 Juno,

resulting in a small variation in the solar phase angle a. Consequently, the solar phase

function f ðaÞ in the scattering function (22) can be neglected to make the computation

easier. Considering the measurement error, the brightness in observed light curves is

relative. Therefore, the relative form of v2 in (28) is applied for the real asteroids.

In a similar process, the rotation period ðPÞ with a value of 7:1996
 0:0011 and the

shape with axes a1 ¼ 6:2520; a2 ¼ 6:3484; b1 ¼ 4:0398; b2 ¼ 5:5581; c1 ¼ 6:0533, and

c2 ¼ 3:3598 are derived, following the pole orientation of ð223:42	; 7:1996	Þ. Meanwhile,

the related parameters are derived employing the fast method as a period

P ¼ 7:1983
 0:0055, three semi-axes of the ellipsoid model a ¼ 1:2800; b ¼ 1:0214, and

c ¼ 0:9771 and pole orientation ð275:37	; 78:45	Þ. Additionally, Cellino et al. (2009)

obtained the related parameters of 3 JUNO employing a genetic inversion method from

sparse photometric data. The physical parameters of 3 JUNO derived using the three

different methods are listed in Table 1. Although it makes no sense, we still present the

axis ratio ða=c; b=cÞ of the cellinoid shape model in Table 1 by simply setting a; b; c as

the mean of two different semi-axes. Additionally, Ďurech published their fitted solution of

3 Juno obtained employing Kaasalainen’s method with the pole orientation ð103	; 27	Þ
and rotation period P ¼ 7:2095Durech et al. (2010). As mentioned previously, Kaasalai-

nen’s method employs a convex shape model to simulate the surface of asteroids, relying

on many light curves observed in various geometries.

As seen in Table 1, all four methods derive almost the same fitted rotation period, which

confirms that the rotation period of asteroids can be found even with a simple-shape model,

as described by Kaasalainen and Durech (2007), Cellino et al. (2009). Nevertheless, the
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fitted pole orientation of the cellinoid method deviates from the fitted values of Cellino and

Ďurech. A main reason is that the light curves exploited in the cellinoid method are for\2

days. Correction of the fitted parameters of the pole orientation requires more light curves

to be observed in various geometries. Fortunately, the rotation period can be well searched

for using only several continuously observed light curves employing this method. By

applying the cellinoid shape model, we can quickly search for the periods of a tremendous

number of found asteroids in a low-cost computation using a small number of observed

light curves. Besides, with only one observing circumstance of an asteroid, the cellinoid

shape model could find a similar pole orientation, which is important to learn the physical

features of an asteroid when it was observed for the first time.

In Fig. 5, two fitted light curves (drawn as lines) compare the results obtained with the

cellinoid shape and ellipsoid shape with observed light curves indicated by ‘*’ symbols.

The asymmetric shape of the cellinoid better simulate the light curves with different

extrema than the symmetric shape of the ellipsoid. With only three more parameters, the

cellinoid shape model can be used to simulate asteroids with asymmetric shape by easily

extending the algorithm based on the ellipsoid shape model. As seen in Fig. 5, the cellinoid

shape fits the three observed light curves well, especially at the different extrema, while the

ellipsoid shape model generates the same extrema for one light curve.

Table 1 Comparison of physical parameters of 3 JUNO derived employing different methods

Axes ða; b; cÞ Ratio ða=c; b=cÞ Pole ðk; bÞ Period ðPÞ

Cellinoid a1 ¼ 6:2520; a2 ¼ 6:3484

b1 ¼ 4:0398; b2 ¼ 5:5581 a=c ¼ 1:3386 ð223:42	; 7:1996	Þ 7.1996

c1 ¼ 6:0533; c2 ¼ 3:3598 b=c ¼ 1:0196

Ellipsoid a ¼ 1:2800; b ¼ 1:0214 a=c ¼ 1:2528; ð275:37	; 78:45	Þ 7.1983

c ¼ 0:9771 b=c ¼ 1:0456

Cellino et al. a ¼ 1; b ¼ 0:76 a=c ¼ 1:3698; ð282	; �21	Þ 7.2055

c ¼ 0:73 b=c ¼ 1:0411

Ďurech et al. Convex shape Convex Shape ð103	; 27	Þ 7.2095
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3.3 Application to 21 Lutetia

The cellinoid shape model is employed to simulate the real asteroid 21 Lutetia. The applied

three light curves were observed on the 15th and the 16th of March 2010 Carry et al. (2010).

The rotation period is found to be P ¼ 8:1620
 0:0012 with U0 ¼ 281:0541	, and the

shape parameters are a1 ¼ 2:7009; a2 ¼ 2:5472; b1 ¼ 4:4315; b2 ¼ 4:4115; c1 ¼ 2:7663,

and c2 ¼ 2:4757 with pole orientation ð67:1245	; �10:8486	Þ. The fitted light curves are

shown in Fig. 6. The cellinoid shape well fits the observed light curves and well simulate the

different extrema. The best-fit period is also consistent with the period P ¼ 8:1682 pub-

lished by Ďurech et al. (2010), although the pole orientation differs from their pole orien-

tation ð54	; �7	Þ.
Figures 5 and 6 show that the cellinoid shape model performs well in simulating real

asteroids and the rotation period can be fitted accurately with the light curves of one

apparition using the cellinoid shape. Unfortunately it is difficult to correctly fit the pole

orientation of asteroids using light curves of one apparition. Instead, the cellinoid shape

model can be employed to obtain an accurate rotation period and a rough estimation of the

pole orientation from light curves of one observing circumstance. As observed light curves

are collected more and more, Kaasalainen’s method can be invoked to refine the pole

orientation and generate a convex shape model with an arbitrary surface.

4 Conclusions and Discussions

A general shape model obtained by combining eight octants from eight different ellipsoids,

named the cellinoid, is employed in this article. By employing this shape model in the

inverse problem of searching for the physical parameters of asteroids, an efficient method

is presented with the simple extension of the fast method based on the ellipsoid shape

model. Numerical application confirms that the cellinoid shape model efficiently derives

the related parameters, not only for synthetic light curves but also for the observed light

curves of real asteroids. In particular, the cellinoid shape model can be used to find the

rotation period with high accuracy from several light curves observed in one apparition of

the asteroid.

In this article we primarily illustrated how to obtain the parameters from several light

curves observed in one apparition by employing the cellinoid shape model. Recently, the
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Minor Planet Center (MPC) has built a database to collect the calibrated magnitudes of

asteroids Warner et al. (2009). In future work we want to test the performance of the

cellinoid shape model in exploiting the data from the MPC. Compared with the uncali-

brated data we used, the data of the MPC might be more reliable and the parameters might

be fitted more accurately. Additionally, the full light curves in a long epoch cannot be

collected at will; even the latest space missions, such as GAIA, collect only sparse pho-

tometric data. We also plan to test the cellinoid shape model for sparse data in the future.

Furthermore, we want to apply different scattering laws, not only the formula in (22), to

compare their performance in simulating the reflection of light. Although the variation in

brightness is mainly determined by the shape, a proper scattering law is still important to

the inverse problem. In particular, a good-fit scattering law is important for the modeling of

sparse data and calibrated data.
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