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Abstract Virtualization and service-oriented architecture are
important concepts that triggered the rapid evolution of cloud
computing and software-defined technologies. Since wireless
technologies will play an important role in the future of
networking technologies, this article presents Aurora, a
virtualization framework and testbed platform for supporting
multiple types of virtualization techniques and architectures
specifically applied to wireless technologies. Firstly, a brief
background overview of the three main perspectives of wire-
less virtualization based on the type of virtualized resources
and the depth of slicing is provided along with some of the
challenges and requirements for a sustainable and generic
wireless virtualization framework. Secondly, the software ar-
chitecture and the design principles behind Aurora are ex-
plained. Aurora is designed to fulfil multiple roles as a pow-
erful tool to combine multiple wireless virtualization technol-
ogies, a software-defined research platform for developing
new virtualization architectures and a service-oriented wire-
less infrastructure manager. Lastly, an instance of the software
implementation of Aurora is presented in order to demonstrate
the feasibility of deployment of the framework.

Keywords Wireless virtualization . Software-defined
networking . Software-defined radio . Service-oriented
architecture . Future internet . Cloud infrastructure

1 Introduction

Recently, virtualization has gained important momentum in
the fields of computing and networking. Server virtualization
aided by network virtualization has led to a service-oriented
infrastructure harnessing technologies such as software-
defined networking (SDN) e.g., OpenFlow [1] and cloud
management and orchestration system, e.g., OpenStack [2].
These trends lead to the development of a new system archi-
tecture and business model that focuses on offering virtualized
hardware resources as a service. As for wireless virtualization,
the two main driving forces acting behind it are: incessant
emergence of new wireless services and applications, and
research in software-defined technologies and service-
oriented paradigm. For instance, new radio technologies and
wireless transmission techniques, ranging from software-
defined radio (SDR), such as OpenRadio [3], and cognitive
radio to coordinated multi-point (CoMP), are aimed at making
the wireless communication infrastructure more dynamic and
efficient. Advancements in optical fibre technologies make
architectures such as the fibre-connected massively-distribut-
ed antennas (FMDA) system feasible [4]. All these technical
advancements are like pieces of a larger puzzle that have the
potential to generate a “perfect storm” which could result in a
major revolution of the wireless landscape: the transition and
convergence of the wireless infrastructure into a virtualized,
software-defined and service-oriented infrastructure.

Wireless virtualization and software-defined infrastructure
(SDI) have a wide range of potential applications. From a
commercial perspective, virtualization can lower the capital
expenditures for the deployment of new wireless services by
enabling a flexible sharing of the existing infrastructure [5].
Within the scope of a wide-scale deployment, the decoupling
of the infrastructure from its functionalities and consolidation
of the management of these functionalities into the cloud are
ways to allow the wireless infrastructure to be provided as a
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service instead of an asset. As such, wireless virtualization can
benefit the application of service-oriented architecture on the
wireless infrastructure. Virtualization can be used to enable
multiple network operators and service providers to offer
differentiated services over the same infrastructure, as sug-
gested in [6]. Furthermore, virtualization is fundamental to
research themes such as Future Internet [7] and clean-slate
design [8]. Virtualization can shorten the research and devel-
opment life cycle of new wireless technologies by providing a
more open and flexible infrastructure [9].

There are many approaches to wireless virtualization since
different levels of virtualization are required for different
services and applications. They range from the infrastructure
and network-oriented approaches, such as [6] and [10], to the
more hardware-focused approach such as [3]. Our previous
paper [11] contains an extensive survey of recent works in the
field of wireless virtualization and a hypothetical ecosystem
scenario of a future virtualized wireless infrastructure. This
article, however, is focused towards defining a generic and
modular wireless virtualization framework that enables the
coexistence of multiple virtualization perspectives integrated
across different wireless technologies, as well as a platform to
experiment with these technologies However, virtualization
by itself is only considered by this article as one of the
enabling technologies. The application of virtualization be-
comes truly interesting when integrated with other modern
principles. As such, this article expands beyond the scope of
just resource virtualization and focuses on combining three
different but related concepts, all applied within the context of
the wireless infrastructure: virtualization, software-defined
principles and service-oriented architecture.

The rest of the article is organized as follows. Section 2
discusses the concept of wireless virtualization through the
identification of different virtualization perspectives. Section 3
presents challenges and defining requirements of a generic
wireless virtualization framework. It also outlines a wireless
virtualization framework that can satisfy these requirements.
In Section 4, the component architecture of a virtualization
and software-defined infrastructure software platform for
wireless access networks, codenamed Aurora, is presented.
Section 5 discusses an example implementation of Aurora in
the existing OpenStack cloud infrastructure platform and the
Smart Applications on Virtual Infrastructure (SAVI) testbed
[12]. Finally, Section 6 concludes this article, highlights the
potential module extensions to Aurora and outlines the future
research directions.

2 A brief overview of wireless virtualization

Many active research projects on wireless virtualization and
related enabling technologies exist. They can be grouped by
scope (e.g., general architecture vs. specific implementations)

and technologies (e.g., WiFi vs. cellular). Readers are encour-
aged to refer [11] and [13] for a more detailed and exhaustive
survey of wireless virtualization as well as network
virtualization in the context of wireless access nodes. A clas-
sification of wireless virtualization perspectives is vital to the
design of a generic and modular wireless virtualization frame-
work. Based on the characteristics of the resources being
virtualized, the different approaches to wireless virtualization
can be classified into three different perspectives.

(1). Flow-based Wireless Virtualization: In flow-based wire-
less virtualization, the focus is on the customization and
control over the datapath of the wireless infrastructure,
which consist of the isolation, scheduling, management
and service differentiation among traffic flows. Flow-
based virtualization is the most feasible approach to
implement which leads to a more flexible and efficient
traffic and resource management. In addition, it can be
used for the integration of wireless technologies with the
rest of the cloud infrastructure.

(2). Protocol-based Wireless Virtualization: Protocol-based
wireless virtualization focuses on the isolation, custom-
ization and management of multiple wireless protocol
instances on the same radio hardware. As opposed to the
flow-based virtualization where tenants share the same
wireless protocol stack, this perspective allows tenants
to control separate instances of the wireless protocol
stacks on the same radio hardware. As such, the types
of resources being virtualized are mostly MAC and
PHYprocessing resources.

(3). Spectrum and RF Frontend Virtualization: The spec-
trum and RF frontend virtualization, the most granular
perspective of virtualization, focuses on the dynamic
allocation and management of the spectrum and the
radio frontend nodes. This perspective aims at providing
an abstraction layer over the spectrum available at a
given region and a given time in order to support a more
intelligent, flexible and efficient spectrum usage. It pro-
vides a wireless standard-independent abstraction layer.

According to [14], cross-domain integration of control and
customization allows for a more agile infrastructure. This
integration allows the infrastructure to be an active part of
the application or the service, not simply a support. For
instance, wireless virtualization can be integrated with other
domains in order to form a heterogeneous cloud infrastructure
in which a single slice can span across the entire infrastructure,
binding together virtualized computing, networking and wire-
less resources. The different wireless virtualization perspec-
tives are complementary to each other and can play different
roles in a heterogeneous cloud infrastructure. Furthermore, not
all the perspectives can reach their full potential with currently
available technologies and techniques. With the evolution in
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enabling technologies, it becomes possible to graft new
virtualization perspective in the infrastructure which was not
supported before. This is particularly true for protocol-based
virtualization, which requires a mature and sustainable SDR
platform, and spectrum virtualization, which requires new
radio hardware architectures. Thus, the availability of technol-
ogy and the transition from one technology to another enforce
the idea of coexistence among different perspectives.

3 Towards a generic wireless virtualization framework

3.1 Challenges of a generic virtualization framework

A wireless virtualization framework is truly generic if it pro-
vides flexibility in three different aspects: (i) support for differ-
ent virtualization perspectives, (ii) ability to integrate existing
and future enabling technologies for virtualization, and (iii)
capacity to provide diverse virtualized infrastructure. Some of
the challenges of wireless virtualization framework design have
been identified in [11] and summarized as follows.

(1). Flexibility-performance trade-off and scalability: It all
comes down to the question of determining the ‘right
amount’ of wireless virtualization between flexibility/
abstraction and performance. Unfortunately, since dif-
ferent applications and services have different require-
ments, there is no right answer to this question. Thus, a
virtualization framework should delegate as much as
possible the direct management of resources to tenant-
owned controllers/managers, as implied in [9], giving
each tenant the flexibility to build its own virtual infra-
structure while retaining the performance of the technol-
ogies being used.

(2). Complexity of the framework: By design, a virtualization
layer (or hypervisor) performs virtualization-related func-
tionalities such as slice isolation, function translation,
policy reinforcement and multiplexing. A good way to
avoid increasing the overall complexity is to abstract and
modularize these operations into different API layers.
Since tenants have differing needs and understanding of
the underlying technologies, the framework should aim at
being user-friendly without removing access to the com-
plexity actually required by certain tenants.

(3). Feasibility of deployment: The implementation of any
framework requires technology-specific integration. How-
ever, unlike server virtualization which is mainly dominat-
ed by a single technology (×86 architecture), wireless
technologies are diverse. Therefore, a multi-perspective
framework approach should be aimed by designing a
modular platform on which different virtualization tech-
nologies can be gradually integrated. Moreover, the frame-
work has to be backward compatible and retrofitting.

3.2 Defining requirements for a generic virtualization
framework

The different approaches to handle the challenges can be
formalized as requirements and features of a generic multi-
perspective virtualization framework. Aurora is designed
based on the following requirements:

(1). Generic, modular and open framework: In order to
support a heterogeneous infrastructure with different
perspectives, there are many characteristics that need
to be considered. Firstly, the core framework should be
technology-independent and act as an engine to orches-
trate and broker wireless resources from an abstracted
point of view. This allows the framework to be easily
reconfigurable and extensible. Secondly, modularity is
an important characteristic that should be applied to
both internal (between modules) and external (exposed
to tenants) interfaces and functions. Technology-
specific functions should be self-contained in a replace-
able software module. Lastly, the framework itself
should be openly accessible by the tenants such that it
allows them to setup and configure their own data and
control path and implement their own virtualization and
software-defined architecture inside the framework.

(2). Evolvability and extensibility of the framework: Since it
is not required to have all three wireless virtualization
perspectives integrated at the same time, a progressive
approach adjusted to different applications is suggested.
As the depth of virtualization evolves, new extension
modules and plug-ins can be added to the framework.
The potential integration and federation of both existing
and emerging virtualization architectures should be con-
sidered inside the framework so as to avoid reinventing
the wheel or becoming obsolete.

(3). Resource and function abstraction: In line with the
modularity requirement, different levels of abstraction
should be applied to the resources and functions of a
virtualized infrastructure. The resources should be ab-
stracted as building blocks, giving a sandbox-like view
of the infrastructure. A tenant of the infrastructure can
then provide custom virtualization services to other
tenants, forming an interesting ecosystem of service
exchange among tenants on the same infrastructure [11].

3.3 Outline of a generic virtualization framework

Based on these challenges and requirements, a basic outline of
a generic wireless virtualization framework has been put
forward as shown in Fig. 1. The framework has two main
layers: the control and management layer (CML) and the
virtualization layer (VL). This architecture largely extends
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the Virtual Radio architecture in [9], which described resource
management and brokerage through a virtualization manager
interface (VMI). The modularity of the interfaces is inspired
by the MAC abstraction layer for mesh networks in [15].
Compared to other frameworks, the proposed framework
considers the gradual integration of other wireless
virtualization technologies into itself and the evolution and
emergence of new virtualization technologies. Comparison
between the proposed framework and the existing works will
be discussed in Section 4.3.

The CML contains a series of components that process
wireless infrastructure-wide management functions. It encom-
passes both the infrastructure manager and the tenant-owned
managers/controllers. The tenants can deploy their own custom
management functionalities using the tenant-owned controllers,
while leaving the job of isolation and conflict resolution among
tenants to the infrastructure manager. The VL includes a set of
virtualization agents that can be configured by the tenants
through the CML. These agents in virtualization layer have
two planes: technology-independent orchestration or agent
plane and technology-dependent virtualization plane. The or-
chestration plane contains abstracted modules corresponding to
core engines for slice creation, deletion and modification for
different virtualization perspectives and orchestrates technolo-
gies in the virtualization plane.

The basic operation of the framework is also highlighted in
Fig. 1. First, the tenant sends a configuration blueprint to the
infrastructure manager to request a specific virtual wireless
resource. Alternatively, the tenant can always deploy its own
tenant-owned controller. The infrastructure manager validates
the request and sends a slice creation command to the agent
located on the physical resource node. The virtualization
agent prepares a virtual slice and sets it up to be connected
to the tenant virtual network (s). A direct control and data path
between the slice and the tenant is therefore established. By

allowing a tenant to directly interact with the virtualization
plane once the setup is complete, the actual performance of the
(virtualization) technologies being used in the virtualization
plane remains unaffected. The framework is not designed to
make existing technologies more efficient, but to provide a
more flexible and evolutionary paradigm.

3.4 Multi-perspective virtualization using the framework

Different perspectives of virtualization can be realized to
obtain heterogeneous virtualized infrastructure using this
framework. The integration of different perspectives within
the infrastructure is illustrated in Fig. 2 with a few example
cases of resources with varying degrees of virtualization.

(a). First, a non-virtualizable wireless resource can be inte-
grated within the infrastructure by the addition of an
interface agent. The agent can establish the connectivity
between the resource and the tenant network. Legacy
resources can then be directly allocated without any
sharing.

(b). With a resource node that only supports the flow-based
virtualization, the capabilities that can be offered to
tenants include datapath isolation and customization.
The agent on such resources must setup virtual inter-
faces, virtual bridges, tunnelling endpoints, traffic shap-
ing mechanisms and SDN-enabled technologies. How-
ever, tenants must share the same wireless protocol and
the same radio parameters.

(c). If protocol-based virtualization is supported, the re-
source node still retains the flow-based capabilities but
acquire additional features such as the ability to allocate
unique radio configuration profiles for each tenant.
Since a resource node with more capabilities can offer
virtual resources with lower capabilities, default radio
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configuration packages can be provided to tenants who
only need flow-based virtual resources. This addresses
some of the backward compatibility and retrofitting
issue, as discussed in Section 3.1.

(d). In the advanced case where spectrum and RF frontend
virtualization is supported, a network of radio nodes can
be managed by a single agent, which can offer multiple
types of virtual resources to different tenants. These
resources can range from portions of a spectrum to a
virtual radio node running a specific protocol.

4 Aurora virtualization platform architecture

As mentioned in Section 3.3, the general framework is greatly
influenced by the architectures presented in [9] and [15]. This
section presents more detailed implementation architecture in
the form of Aurora. Aurora is designed to be closely related to
the cloud infrastructure platform OpenStack [2] and the SAVI
testbed [12]. OpenStack was chosen as a base framework due
to its open-source nature and tight integration within the SAVI
testbed. Aurora is a new service component that attempts to
extend the OpenStack family of services by providing orches-
tration and virtualization tools for wireless resources with
different wireless virtualization perspectives as identified in

the Section 2. Aurora, by providing “OpenStack-like” control
and management client console commands and representa-
tional state transfer (REST) APIs, makes wireless
virtualization concepts easier to grasp for users who are fa-
miliar with OpenStack.

4.1 Resource abstraction model

Resource abstraction has been identified as one of the main
requirements for a generic wireless virtualization framework
in Section 3.2. In Aurora, there are three classes of resources
abstracted in software: virtual wireless networks, virtual re-
source slices and physical resource nodes. The logical rela-
tionship between the different classes of resources is shown in
Fig. 3. These abstracted resources are the building blocks of a
virtual infrastructure in Aurora.

(1). Physical resource node (wnode): Different types of radio
nodes are represented as different flavors of wnode,
which include 802.11 access points (ap), software-
defined radios (sdr), cellular base-stations (base) and
other wireless technologies. Even within a type of re-
source node, the capabilities will differ depending on the
implementation. In other words, two ap nodes do not
necessarily offer the same level of services.

Agent

Tenants

Virtualized Network
Infrastructure
(SDN + network

virtualization)

Infrastructure
Manager

Non-
virtualizable

Node

Abstracted
Resource

Infrastructure
Setup

Infrastructure
Setup

Direct
Management

A

Radio Node

B

Virtual
Resource

Agent F

C D

Virtual
Resource

Non-Virtualizable Flow-based
Virtualization

Virtual
Resource

Agent F

SDR Node

FPGA
/DSP

A/D

D/A

Virtual Resource

Flow + Protocol
Virtualization (SDR)

Centralized
Processing

Distributed Antenna
System

Agent F S

P

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Spectrum + RF
Frontend Virtualization

P

F

P

S

Legend
Flow-based capabilities for VR
Protocol capabilities for VR
Spectrum capabilities for VR

Flow-based capabilities for agent

Protocol capabilities for agent

Spectrum capabilities for agent

Fig. 2 Framework with Multi-
Perspective Wireless
Virtualization

Mobile Netw Appl (2015) 20:19–31 23



(a). 802.11 wireless access point (ap): This flavor of
wnode only supports flow-based virtualization with
possible partial protocol virtualization. At the time
of writing of this article, it only offers one type of
virtual resource slice: ap-slice.

(b). Software-defined radio (sdr): The software-defined
radio resource node can potentially support all three
virtualization perspectives. It can offer more than
one types of virtual resource slices. For instance, it
can offer an instance of the SDR platform itself (sdr-
slice) or an instance of a particular protocol stan-
dard, such as 802.11 (ap-slice). An example of SDR
resources that can be integrated within Aurora is a
radio node created using OpenRadio [3].

(2) Virtual resource slice (wslice): The wslice is a virtual
instance of the wireless resource node allocated to a
tenant. It can be either a single virtual resource or a
package and container of different virtual resources
(bandwidth, VAP, etc.) which can be configured and
controlled by the tenant. The wslice is defined by a setup
blueprint specified by the tenants and validated by the
Aurora infrastructure manager. Each wslice is owned by
a single tenant and can join a wnet. Different flavors of
wnode can support different varieties of wslice, such as
ap-slice for 802.11 or sdr-slice for SDR.

(3). Virtual wireless network (wnet): Awnet is a group of one
or more wslice. It is a subnet-like abstraction of wslices
with associated wireless network management function-
alities. A wnet is connected to a wireless network man-
ager, a software controller that manages the policies
pertaining to virtual resources within that wnet. This
manager can be a tenant-owned custom controller or a
default controller provided by the Aurora framework.

4.2 Software components of aurora

The high-level Aurora architecture, as shown in Fig. 4, is
divided into four main components. Aurora-Client, Aurora-

Manager and Aurora-Agent are the core components of the
framework whereas Aurora-Tenant is a set of additional tools
for tenants that complement the framework.

(1) Aurora-Client: The Aurora-Client is the interface that
provides the console commands for users to setup and
manage their resources. It is designed to be similar to the
OpenStack client. The Aurora-Client performs basic
command validation and sends the commands as service
requests to the Aurora-Manager.

(2). Aurora-Tenant: The Aurora-Tenant is a framework-
provided “package” or VM image that allows tenants
to deploy their own wireless network controller inside
the virtual infrastructure. Even though it is not a man-
datory component of Aurora, it aims at providing the
facility to the tenants to deploy their own custom tools,
which improve the accessibility of Aurora, similar to
platform-as-a-service (PaaS) in cloud computing. These
tools can range from SDN-based controllers to wireless
network management software.

(3) Aurora-Manager: The Aurora-Manager is the infrastruc-
ture manager that performs three main roles: to provide
access to infrastructure information, to redirect the setup
and configuration of virtual wireless resources from the
clients to the virtualization agents and to host wireless
infrastructure resource allocation and management ser-
vices. For the first two roles, a REST/HTTP API server
handles both API requests from Aurora-Client instances
from different tenants and API requests from Aurora-
Tenants. Two persistent management databases are used
to keep record of the status, attributes, capabilities and
configuration of both physical and virtual resources. The
resource database is a structured query language (SQL)-
based database which contains only simple resource
attributes (name, ID, tenant, status, etc.) and rela-
tionships between resources. Each class of re-
sources has its own SQL table. The configuration
database stores full wslice configuration blueprints
for each tenant.
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For setup and configuration such as slice creation, the
Aurora-Manager loads different configuration modules
each in charge of specific software components of a
wslice, such as virtual interfaces. The Aurora-Manager
uses these modules to parse and validate the blueprint file
obtained from the client. During this step, configuration
conflicts such as invalid or duplicate names and unsup-
ported capabilities are resolved. If the validation is suc-
cessful, blueprint files are re-generated for each wslice
and dispatched to the Aurora-Agent through dispatch
modules. The final role of the Aurora-Manager is to host
management modules that perform various wireless net-
work management functionalities based on metrics ob-
tained through event modules. These functionalities can
include, but are not limited to, resource monitoring,
metering services, mobility management services, dy-
namic provisioning of radio nodes, dynamic reconfigu-
ration of the virtualized infrastructure [16], migration of
virtual radios, outage handling and dynamic spectrum
reuse. The various management heuristics that can be
achieved through software is outside the scope of this
paper. However, since the configurability of the Aurora
nodes is flexible (supports multiple level of depth and
layering) and modular (components can be configured
independent from each other), various experimental al-
gorithms, like the ones for network re-embedding

described in [16], can be deployed to solve problems in
virtual network management. The simplified architecture
of the Aurora-Manager is shown in Fig. 5.

(4). Aurora-Agent: The Aurora-Agent is the local
virtualization agent residing on the physical resource
node and a key component in Aurora. It is to be noted
that a specific implementation of an Aurora-Agent needs
to be customized to work with a particular wireless
technology, such as 802.11, SDRs and potentially cellu-
lar base-stations. The generic nature of the framework,
however, comes from the design of the agent that in-
volves a technology-independent agent plane and a
technology-specific virtualization plane. The implemen-
tation covered in this article is Aurora-AP, a local
virtualization agent for 802.11 access points. Aurora-
AP’s agent plane orchestrates the setup and configuration
of other technologies, called resource components in the
virtualization plane, through plug-ins grouped as ab-
straction modules in order to build the wireless slice
(ap-slice). The actual slice isolation is implicitly achieved
through resource components (virtualization plane) and
not directly by the agent. As such, the operational per-
formance of the virtualization is determined by the per-
formance of the individual technologies and the com-
plexity of the setup, not by the Aurora-Agent itself. The
architecture of the Aurora-AP is shown in Fig. 6.
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In Aurora-Agent, abstraction modules are abstrac-
tion layers to specific technologies or resource com-
ponents, interfaced through plug-ins. The architecture
in Fig. 6 only has abstraction modules for basic flow-
based virtualization. Aurora-Agent has a local
database to store configuration information of wire-
less slices currently active on the resource node. The
core modules contain the core logic of the agent and
include the agent initialization module and the ap-
slice core module. These modules execute various
“routines” to perform various tasks requested by the
Aurora-Manager or to handle special situations. These
routines can be different for different virtualization
perspectives. For example, the agent initialization
module is called when the Aurora-Agent starts for
the first time or when a node recovers from a failure.
During this initialization, the local database synchro-
nizes with the configuration database on the Aurora-
Manager. The slices are then built/rebuilt on the
physical node. The AP-slice core module handles all
commands related to ap-slice instances. The basic
routines implemented for this core module are: ap-
slice creation, deletion, modification and restart.

The key point of Aurora-Agent is that all these modules,
despite being responsible for defining the resources in Aurora,
are not directly tied to the core engine of Aurora and can be
exchanged with other technologies. After all, Aurora is a
meta-framework that provides high level of customization
flexibility and modularity to both the tenant users and the
developers of the framework.

4.3 Aurora and related works

Wireless virtualization is still at its early stage of research and
development. Instead of proposing a new virtualization tech-
nique or arguing for the adoption of one particular perspective,
Aurora embraces the idea of coexistence between different
virtualization perspectives targeted for different needs. This
framework differentiates itself from other existing frameworks
as it is both a flexible testbed platform and a powerful suite of
tools similar to a wireless infrastructure “operating system”
that enable full reconfigurability of the wireless infrastructure.
More specifically, Aurora addresses the different challenges
and requirements presented in Sections 3.1 and 3.2 by the
following design considerations:
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(1). Flexibility-performance trade-off and scalability: One
major selling point of this framework is that it adds no
overhead to the performance of the virtualization tech-
nologies it integrates as it is not interfering with the direct
data path of its component technologies. Aurora, as a
framework, does not directly perform resource slicing
and virtualization as it delegates the virtualization to other
existing virtualization technologies. As such, it is
as efficient (or inefficient) as the technology plug-
ins that it uses for a given slice of the infrastruc-
ture. Most of the processing time of Aurora is
spent during the setup and initialization of the
infrastructure slice. Compared to the individual
technologies, Aurora has the clear advantage that
it can support different virtualization technologies
and fulfill different needs with different solutions.

(2). Complexity of the framework: The additional layering
provided by the Aurora plug-ins and abstraction mod-
ules are there to regulate and isolate the complexity of
different technologies. Then, by borrowing the concept
of “flavors” from cloud computing platforms, it can
offer different levels of complexity to different tenants
based on their needs.

(3). Feasibility of deployment: Aurora addresses this issue
by borrowing elements from the existing SAVI infra-
structure and the OpenStack platform in order to be
deployed on a real infrastructure. Also, leveraging from
its modular architecture, the deployment can also be
more sustainable.

(4). Generic, modular and open framework: Aurora defines
standard interfaces on how the resources are integrated
within the framework using a modular orchestration
architecture. For instance, different virtual interface
implementations can be integrated within the same ab-
straction module, providing a library-like approach to
the framework. In addition, Aurora can operate using
purely open-source implementations and its architecture
is transparent for further extensions. Tenants have the
option of directly orchestrating their slices of resources
or using existing functionalities of Aurora.

(5). Evolvability and extensibility of the framework: The
way plug-ins are separated from the core modules of
the framework through the abstraction layer allows any-
one to develop their own plug-ins integrating
virtualization technologies not yet available in Aurora
without modifying the core components, facilitating the
evolution of the framework.

(6). Resource and function abstraction: Aurora is highly
based on resource and function abstraction at all layers
of its architecture. As such, different resources with
different capabilities can be managed through a generic
core engine. For instance, Fig. 3 from Section 4.1 illus-
trates the relationship of the different resources that it
manages.

Compared to existing works such as Virtual Radio [9] and
CARMEN [15], the proposed Aurora framework borrows
common concepts but also heavily expands on the scope of
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the framework. For instance, Virtual Radio [9] provides the
concept of a virtual radio node and an intermediate broker,
which are incorporated into Aurora in the form of the Aurora-
Agent and the wireless resource node (wnode). However,
Virtual Radio by itself does not consider different
virtualization perspectives and is much more limited in scope.
It also lacks the perspective of integration with a cloud-based
and service-oriented infrastructure like Aurora provides. As
for CARMEN [15], the idea of technology-independent and
dependent abstraction layers are translated into the abstraction
modules and plug-ins in Aurora. However, Aurora considers
the coexistence of multiple virtualization perspectives, not just
types of wireless technologies in a heterogeneous network like
CARMEN. The biggest advantage of Aurora over the existing
framework is its tenant-configurable virtualization layer and
strong integration with other virtualization domains, notably
computer, network and infrastructure virtualization. Aurora
provides a concrete example of how wireless virtualization
can be related to existing cloud computing platforms like
OpenStack and how it can be deployed in existing infrastruc-
ture like SAVI. Although similar to the NOS (network oper-
ating system) mentioned in [6], this paper emphasizes on the
components that can be used as building blocks for such a
system. For example, an analogy with operating system ter-
minology would be that the NOS in [6] (and to some extent
[10]) is similar to a program running inside the virtualization
operating system Aurora, which is similar to a set of kernel
modules.

5 Application and implementation of aurora

In fact, it would be difficult to analyze the performance of
Aurora in its current incarnation because it is an orchestration
framework that mainly attributes processing time during slice
creation. The operational performance of a wireless infrastruc-
ture deploying Aurora will entirely depend on the setup blue-
print and the component technologies used in the setup. In this
section, some implementation examples and practical appli-
cation scenarios are presented. Aurora represents a basic
“virtualization operating system” implemented as a service
platform that attempts to offer flexibility while providing
useful tools for the development and implementation of wire-
less virtualization. Aurora is mainly implemented in Python
[17]. This facilitates the integration of Aurora with OpenStack
and SAVI testbed platform since Python is also the language
of implementation for OpenStack and most of the SAVI
testbed services. The relationships among the different re-
sources are stored using a SQL database, more specifically
MySQL [18]. The configuration blueprints are implemented
as JavaScript Object Notation (JSON) files. Aurora-AP is
implemented on PC Engines alix3d2 APs [19] with two
802.11ab/g mini-PCI radio interface cards. The wireless

firmware used for this particular instance of Aurora-AP is a
customized OpenWrt [20] based on Linux kernel 3.2.

5.1 Aurora-AP: datapath and flow-based virtualization
in aurora

One of the original challenges of a generic framework for
wireless virtualization is to support a large variety of
virtualization techniques and perspectives on the same infra-
structure to satisfy different tenants. The solution provided by
Aurora is that the tenant is given freedom to use the various
resource components abstracted by Aurora-AP to build and
customize their own ap-slice, which is very different from
other frameworks.

In a typical enterprise-grade 802.11 AP, the concept of
multiple virtual access points (VAPs) [21] assigns one basic
service set (BSS) per virtual network. The general observation
is that the data traffic must ultimately go through both the
radio interface and the backbone network interface. Aurora-
AP enhances the VAP by providing additional components to
build and customize these traffic paths, in line with the con-
cept of flow-based virtualization. Ultimately, the isolation of
the traffic between the different ap-slice instances depends on
each datapath component and the interaction between them. A
“toolbox” approach is applied, in which the implementation of
a particular function is selected from different flavors grouped
inside an Aurora module. A specific flavor of a module is
implemented as a plug-in. Three modules are used by Aurora-
AP: virtual interfaces, virtual bridges and virtual WiFi radio.
These resources are orchestrated to construct instances of ap-
slice, as shown in Fig. 7. Each of these components is ab-
stracted as a building block that can be declared in the blue-
print configuration file.

(1). Virtual (network) interfaces: In Aurora-AP, different
flavors of virtual network interfaces are provided to
tenants, each fulfilling different roles. The Capsulator
tunneling interface [22] is a custom over-IP tunneling
program that provides basic flow isolation between
tenants and is used in many research projects involving
OpenFlow such as [23] and [24]. On the other hand, the
Virtual Ethernet interface (veth) is a basic virtual inter-
face that has its own MAC address and duplicates the
traffic to and from another interface to which it is
attached. In Aurora, these interfaces are attached to the
virtual wireless interfaces to mask them as virtual net-
work interfaces. They are also used to duplicate physical
interfaces. Other types of interfaces such as virtual local
area network (VLAN) can be developed separately as
extension plug-ins to this module.

(2). Virtual bridges: In Aurora, the virtual bridges modules
provide internal layer 2 connection between virtual in-
terfaces. Virtual bridges bind two or more physical or
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virtual interfaces. Aurora-AP includes plug-ins for dif-
ferent programs that behave like bridges inside the
Linux operating system such as Open vSwitch [25]
and the basic Linux bridge. The Open vSwitch (OVS)
software allows tenants to create a virtual switch with
multiple virtual interfaces attached as ports. The OVS
also supports the OpenFlow protocol, enabling tenants
to control the traffic flows of their slices using an
OpenFlow controller. The OVS plug-in is a key tech-
nology in Aurora-AP that enables wireless flow and
network virtualization.

(3). Virtual WiFi radio interfaces: In alix3d2 APs, up to two
radio cards are supported and allocated as separate re-
sources running separate hostapd instances. Aurora-AP
deploys an 802.11-specific module that allows tenants to
configure the wireless radio parameters of the radio
interfaces. It can also create virtual radio interfaces with
which the virtual interfaces and virtual bridges can in-
teract with. The main flavor in Aurora-AP is OpenWrt,
which is an open-source Linux-based firmware for wire-
less access points and wireless routers [20]. The concept
of base BSS and guest BSS is applied over OpenWrt by
Aurora-AP. A single base BSS is instantiated per radio
card and physical radio profile. Additional allocations
are guest BSSes that must share the same radio profile as
the base BSS. This limitation only applies to radio nodes
without protocol-based virtualization.

The detailed parsing, validation and generation of slice
configuration blueprints are delegated to individual modules
and plug-ins. As such, modules and plug-ins can be added or
removed without affecting the rest of the Aurora framework.

This alsomeans that the Aurora software can easily operate on
different types of resource nodes by using different plug-ins to
match with the specific technologies available on the node. In
this way, Aurora satisfies the requirement as a common plat-
form for different virtualization perspectives and technologies.

5.2 Deployment of aurora in OpenStack and SAVI

The Aurora service components are relatively independent
from SAVI and other OpenStack services. Of course, there
are different points of integration between the Aurora service
components and SAVI/OpenStack in order to provide a uni-
fied infrastructure-wide end user experience. A basic over-
view of the deployment of Aurora inside SAVI [12] and
OpenStack [2] is shown in Fig. 8, assuming readers are
familiar with [2] and [12].

(1). Tenant and user authentication: All commands issued
by users through the Aurora-Client must be validated
using a token-based authentication system managed by
the OpenStack Keystone service [26]. The authentica-
tion component is used to identify the user and verify
what capabilities that user has with the Aurora service
components within a tenant project. The validation to-
ken is then passed to Aurora-Manager, which is co-
located with all other service managers (Nova, Swift,
etc.) on the SAVI edge controller.

(2). Resource database: The information about the state of
wireless resources and their relationship is stored in the
MySQL database on the edge controller, along with
other OpenStack and SAVI services. In such a way, the
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Aurora resource database can allow other services to
access information about wireless resources.

(3). Network connectivity: The most important aspect of the
integration between Aurora and SAVI is the network
connectivity between the wireless resource nodes and
the rest of the testbed infrastructure. The physical APs
are connected to the SAVI edge node switch through
Ethernet. Aurora relies on OpenStack Neutron to con-
nect the wireless slices on physical nodes to virtual
networks owned by their corresponding tenant.

5.3 How to extend the aurora framework

The creation of new plug-ins and modules inside Aurora is
relatively simple due to the way Aurora is modularized and
does not significantly increase development overhead com-
pared to writing a customized automation script. The basic
steps are outlined as follows:

(1). Implementation of component technologies (or resource
components in Aurora terminology): First, the imple-
mentation of specific components needed for
virtualization is required. This step is the same whether
or not the Aurora framework is present and can be
developed independently from Aurora. Even though
there is no enforcement by Aurora, it is still suggested
to modularize these implementations to match with the
modularity of the Aurora framework in order to maxi-
mize the future reuse of the components by other
tenants.

(2). Creating plug-ins for Aurora: This is a new step intro-
duced if these components are to be integrated into
Aurora. The developer tenant must write wrappers to
interface the Aurora-Agent and Aurora-Manager with
their new components. The equivalent steps taken when

Aurora is not used would be the creation of automation
scripts to deploy their architecture. The development of
wrappers, which include full component APIs, is gener-
ally a more modularized and organized method com-
pared to the composition of scripts.

(3). Testing plug-ins for Aurora: In order to validate the
implementations as well as the new plug-ins and mod-
ules, native testing (i.e., with physical access point hard-
ware) and debugging of the Aurora framework itself are
required. Such a testbed can be assembled using re-
sources on the SAVI testbed within a slice of the infra-
structure, in the same way Aurora-AP is currently
deployed.

(4). Deployment of architecture: At last, the custom wireless
virtualization architecture can be deployed over the
virtualized infrastructure. In the case without Aurora, it
is hardly possible to run multiple wireless virtualization
architectures at the same time over the same infrastruc-
ture. With Aurora, the resources and components con-
nection topology is fully defined in a centralized blue-
print file, facilitating the deployment and customization
of an architecture. At the same time, some components
such as Capsulator already exist as Aurora plug-ins.
These components can be directly used by the blueprint
file without much setup overhead by the tenant.

6 Conclusion

Aurora is mainly based on open-source implementations of
various technologies and is itself open to extensions devel-
oped by a tenant. The advantage of running virtualization
projects under Aurora is the fact that other pre-written com-
ponents are available for maximum technology reuse. Writing
new modules and plug-ins is encouraged as it is a more
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organized way of implementing new virtualization technolo-
gies. At the same time, these new components are automati-
cally standardized under a common framework, in turn en-
abling other tenants to reuse them to build their own slice and
maintaining a good ecosystem for research and development.
Thus, this software-defined approach to wireless virtualization
is a viable way to keep up with the rapidly evolving wireless
ecosystem.

Overall, this article only presents half of the picture, mostly
focusing on the virtualization of the individual radio resource
nodes and the skeleton of the framework. The management of
virtualized wireless networks on an infrastructure-wide level,
such as the mobility management and dynamic provisioning
of resources, is the other half of the picture and can be the
subject of further research. Furthermore, advanced scheduling
and traffic shaping techniques can be implemented within
Aurora as extensions to the slice creation core engine. The
integration of SDR platforms should also be considered in
order to implement full protocol virtualization and spectrum
virtualization. Advanced radio technologies such as cognitive
radios and distributed antennas are also potential targets for
integration with Aurora. Of course, they will require the
design of a different “flavor” of Aurora-Agent. Finally, cellu-
lar technologies were not extensively mentioned in this article.
However, the architecture of the cellular network can be
mapped to the Aurora framework. For instance, the packet
core can be implemented on tenant VMs (Aurora-Tenant),
whereas the base-stations can be interfaced with a cellular
technology-specific Aurora-Agent.
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