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Abstract
Lonicera japonica is used in Chinese herbal medicines with a wide spectrum of pharmacological properties associated with 
chlorogenic acid, flavonoid and iridoid. The biosynthesis of these compounds could be affected by genetic inheritance and 
epigenetic modification. However, the mechanisms that regulate the expression of genes involved in the biosynthesis of these 
compounds are rarely known. The results of qRT-PCR showed that the biosynthesis gene expression of these compounds 
was related to histone H3K4 and H3K9 methylation levels. These active compounds content of L. japonica were measured 
by UPLC-MS/MS. H3K4me3 showed a positive correlation with chlorogenic acid and loganic acid content, and H3K9me 
positively correlated with luteolin content. The correlation between histone methylation levels and the levels of luteolin and 
loganic acid in L. japonica from different producing areas validate the regulatory role of histone methylation in biosynthesis 
of bioactive compounds. Our study demonstrated a potential regulatory network of H3K9/H3K4 methylation to gene expres-
sion and content of secondary metabolites, and provided a basis for understanding the mechanism underlying the variation 
of major bioactive compounds in L. japonica.
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4CL  4-Coumarate CoA ligase
HQT  Hydroxycinnamoyl-CoA quinate 

transferase
CHI  Chalcone isomerase

CHS  Chalcone synthase
IPP  Isopentenyl pyrophosphate
DMAPP  Dimethylallyl diphosphate triammonium 
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HDT  Histone demethylase
H3K4me1/2/3  Monomethylation/dimethylation/trimeth-

ylation of histone H3 at lysine 4
H3K9me1/2/3  Monomethylation/dimethylation/trimeth-

ylation of histone H3 at lysine 9
3LS  (3S)-linalool/(E)-nerolidol synthase
IO  Iridoid oxidase
7H7D  7-Deoxyloganic acid 7-hydroxylase
8HD  8-Hydroxygeraniol dehydrogenase
LAM  (E)-beta-ocimene/myrcene synthase
MOS  (E)-beta-ocimene/myrcene synthase
SS  Ecologanin synthase

Introduction

Lonicera japonica is an important medicinal herb and its 
buds are used in the preparation of herbal tea in East-Asia 
including China, Japan, and Korea [1]. L. japonica buds are 
widely used to treat pancreatic cancer [2], H1N1 influenza 
infection [3], severe acute respiratory syndrome, and hand-
foot-and-mouth disease [4].

The major bioactive components of L. japonica are chlo-
rogenic acids, flavonoids and iridoids [5–7]. Chlorogenic 
acids possess anti-oxidative, anti-hypoxic, antibacterial, 
antiviral, and anti-inflammatory properties [8–15]. Luteolo-
side inhibits the risk of cardiovascular disease, severe acute 
respiratory syndrome [16], and hepatitis, and ameliorates 
intervertebral disk degeneration [17]. Other pharmaceuti-
cally active metabolites include iridoids and secoiridoids, 
and over 30 iridoids have been identified in L. japonica in 
the past decades [18, 19]. Loganin possesses anti-inflamma-
tory and anti-shock effects [20–23].

Phenylalanine ammonia-lyase (PAL), cinnamate 
4-hydroxylase (C4H), and 4-coumarate CoA ligase (4CL) 
are essential enzymes required for the initial steps of chloro-
genic acid and luteoloside biosynthesis. Hydroxycinnamoyl-
CoA quinate transferase (HQT) is a key enzyme acting 
downstream of the chlorogenic acid metabolic pathway [24]. 
Chalcone isomerase (CHI) is required for the conversion 
of naringenin chalcone to naringenin and is considered an 
essential enzyme for the biosynthesis of flavonoids [25] (Fig. 
S1A). Isopentenyl pyrophosphate (IPP) and dimethylallyl 
diphosphate triammonium salt (DMAPP) were produced by 
the mevalonate (MVA) and methylerythritol 4-phosphate 
(MEP) pathways. IPP and DMAPP condense to form gera-
nyl pyrophosphate (GPP) in a reaction catalyzed by GPP 
synthase (GPPS). Geraniol synthase (GES) catalyzes the 
formation of geraniol from GPP. Geraniol is converted to 
10-hydroxygeraniol by the geraniol-10-hydroxylase (G10H), 
and 10-hydroxygeraniol is converted to 10-oxogeranial 
by 8-hydroxygeraniol dehydrogenase (10HGO). Finally, 

10-oxogeranial is converted to epi-iridodial by iridoid syn-
thase (IS) [26] (Fig. S1B).

Lonicera japonica plantation accounts for more than 
360,000 hectares of land in China, and the production of L. 
japonica flower buds is about 26,000 tons per year. In 2010, 
the domestic demand for L. japonica flower buds exceeded 
80,000 tons, and the demand has increased annually since 
then. Analysis of gene transcript levels have shown that a 
variation in active compound content changes the pharmaco-
logical activities and medicinal qualities owing to artificial 
selection in germplasm, tissue, different growth stages, and 
pruning [27]. The synthesis and accumulation of chlorogenic 
acids and luteoloside at different growth stages and different 
tissues [28–30] in L. japonica also correlated with variations 
in the activities of enzymes involved in the metabolism of 
phenylalanine, which included PAL, C4H, and 4CL. The 
synthesis and accumulation of chlorogenic acid was directly 
affected by variations in HQT activity, and the synthesis of 
luteoloside was directly affected by variations in CHI activ-
ity. Pruning decreased HQT and CHI gene expression, which 
led to a decrease in chlorogenic acid and luteoloside content 
in the flower bud of L. japonica.

However, plant introduction is the most important fac-
tor affecting the variation of active compounds during 
cultivation. The north of China is a traditional L. japonica 
producing area, and seedlings from this region have been 
introduced to many places with different ecological char-
acteristics. There is a crucial need to improve the chemical 
quality of L. japonica for population growth, and the change 
in active compounds after plant introduction is largely reg-
ulated by epigenetic modifications. There is growing evi-
dence indicating that plants employ sophisticated epigenetic 
mechanisms to fine-tune their responses to environmental 
stress following plant introduction. Epigenetic processes and 
elements, including DNA methylation, histone modification, 
chromatin remodeling, and noncoding RNAs, are involved in 
plant responses to abiotic and biotic stresses [31]. A previous 
report has revealed the presence of several miRNAs involved 
in the regulation of fatty acid and flavonoid biosynthesis in 
different varieties of L. japonica from different regions [32]. 
However, epigenetic variations in the bud of L. japonica 
after plant introduction and their correlation with accumula-
tion of chlorogenic acids, luteoloside, and iridoids remain 
largely unknown.

Histone modification, including histone methylation and 
demethylation, is one of the most common types of epi-
genetic regulation and has been widely studied. Histone 
modification regulates development and responses to biotic 
and abiotic stresses in plants [33]. The majority of histone 
methylation takes place on the lysine residue of histone H3 
in which H3K4 and H3K9 are highly conserved epigenetic 
markers for gene activation [34, 35]. Histone methylation is 
dynamically regulated by histone methyltransferases (HMTs) 



9303Molecular Biology Reports (2020) 47:9301–9311 

1 3

and histone demethylases (HDMs) [31, 36]. In this study, 
we reported for the first time the potential mechanism of 
bioactive compound biosynthesis regulated by H3K4 and 
H3K9 methylation in L. japonica, and elucidated the cor-
relation among transcriptional levels of HMTs and HDTs, 
histone methylation levels, and bioactive compounds of L. 
japonica. This work will provide a basis for understanding 
the epigenetic mechanism of bioactive compound synthesis 
and gene expression regulated by H3K4 and H3K9 methyla-
tion in L. japonica.

Material and methods

Plant materials

Fresh buds of L. japonica were collected from Yunnan, Bei-
jing, Hebei, and Hubei provinces of China, and the seedlings 
in Yunnan, Hebei, and Hubei were introduced from Beijing. 
Fresh leaves of L. japonica were treated with 80 μM 5-aza-
cytidine (5-azaC) for 48 h, while untreated leaves served 
as control. The treated and untreated leaves were from the 
same trees, and the leaves were stored at − 80 °C until use. 
All experiments were performed in triplicate.

Methods

RNA isolation, cDNA synthesis, and cloning

Total RNA was extracted using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA). An aliquot of 1 µg of total RNA was 
used to synthesize the first strand of cDNA using Prime-
Script  1st Strand cDNA Synthesis Kit (Takara Bio, Dalian, 
China), according to the manufacturer’s protocol. Each 
cDNA was cloned using PrimeSTAR DNA polymerase 
(Takara Bio). Full-length cDNAs of HMTs and HDTs were 
cloned using PrimeSTAR ® HS DNA polymerase (TaKaRa 
Biotechnology Co., Dalian, China) and ORF-PCR primers 
(Table 1).

Gene cloning and bioinformatics analysis

The cDNA sequences of HMTs and HDTs were obtained 
from the L. japonica transcriptome database [28]. The open 
reading frames (ORFs) and deduced amino acid sequences 
of HMTs and HDTs were analyzed using ORF Finder (https 
://www.ncbi.nlm.nih.gov/gorf/gorf.html). The structural and 
functional domains were predicted by NCBI’s conserved 
domain database (https ://www.ncbi.nlm.nih.gov/Struc ture/
cdd/wrpsb .cgi). The neighbor-joining method was used 
to construct phylogenetic trees of HMTs and HDTs using 
MEGA 6.06 software. The phylogenetic tree was constructed 
based on the amino acid sequences of HMTs and HDTs from 
L. japonica and other species (Table S1).

Total histone extraction and concentration determination

Total core histone proteins (H2A, H2B, H3, and H4) of 
L. japonica were extracted using EpiQuik™ Total His-
tone Extraction Kit (Epigentek, USA), according to the kit 
manufacturer’s instructions. The total core histones were 
extracted by treatment with pre-lysis, lysis, and balance buff-
ers. Post-translational modifications were kept intact and did 
not affect histone modification status or levels. The total 
histone concentration was determined using Modified Brad-
ford Protein Assay Kit (Sangon Biotech, Shanghai, China), 
and histone concentration was calculated from the histone 
concentration curve.

Analysis of H3K4 and H3K9 methylation levels

Bioinformatics analysis showed that HMTs and HDTs were 
involved in H3K4 and H3K9 methylation. Therefore, meth-
ylation levels of histones H3K4 and H3K9 were measured 
using the EpiQuik™ Global Pan-Methyl Histone H3K4 
Quantification Kit (Fluorometric, Epigentek, USA) and the 
EpiQuik™ Global Pan-Methyl Histone H3K9 Quantification 
Kit (Fluorometric, Epigentek, USA), respectively, following 
the kit manufacturer’s instructions.

Subsequently, H3K4 and H3K9 methylation curves 
were established. The standard curves included: (1) protein 

Table 1  PCR primers used for 
cloning full-length cDNAs of 
HMTs and HDTs 

Primer name Primer sequence F (5′ → 3′) Primer sequence R (5′ → 3′)

HMT1 ATG ATT TAC GAT TCC CTT AGG GTT TTA GTT ACA AAT GGG AAG CTT CCC 
HMT2 ATG GGG AGC TCA GCT AAC GGC TTC TCA TTC TAT GTA GTA CTT GCT TTT G
HMT3 ATG GAG GTT CCT CAA GTT CAA AAG CA TCA ATG GAG CTC AGC ACC CGA ACC 
HMT4 ATG GAA CAA GGA GTG GGT TCG GAC T CTA GTA AAA ACA GCC CCT GCA CTT C
HDT1 ATG GAA GTA CTA ATT GCA AAG CAA TCA TTG CCA GGT AGA CGC CAG AGC 
HDT2 ATG ACT TTC AGC GGC GAA GGA AGG G TCA TTG CCA GGT AGA CGC CAG AGC 
HDT3 ATG GGA ATG GAA CGC ATG GGA ACT TG TCA TTG CCA GGT AGA CGC CAG AGC 
HDT4 ATG ACA GGC GAT AAC GGA GTT GTT G TCA GCT TAT GCT GGC CCT ACT GGA TC

https://www.ncbi.nlm.nih.gov/gorf/gorf.html
https://www.ncbi.nlm.nih.gov/gorf/gorf.html
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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concentration vs. absorbance value, Y = 0.02X + 0.3124 
(r = 0.9895); (2) H3K4 methylation level vs. fluores-
cence value, Y = 87.532X + 0.1914 (r = 0.9903); and 
(3) H3K9 methylation level vs. f luorescence value, 
Y = 93.662X + 0.1691 (r = 0.9882).

Based on the fluorescence value of  530EX/590EM nm, 
H3K4 and H3K9 methylation levels were calculated from 
the H3K4 and H3K9 methylation curves. The concrete for-
mula used for calculation of relative methylation level was: 
Amount of protein (ng/mg) = RFU (sample − blank) × 1000 
/ protein (μg) × slope.

Gene expression analysis

Transcriptional levels of HMTs, HDTs, and key genes 
involved in active compound biosynthesis were analyzed 
using quantitative real-time polymerase chain reaction 
(qRT-PCR). The specificity of amplification was assessed 
using melting curve analysis, and the relative expression of 
genes was determined using the comparative Ct method. 
qRT-PCR analysis was performed using  LightCycler®480 
and  SYBR® Premix Ex Taq™ (TaKaRa Biotechnology Co., 
Dalian, China), according to the manufacturer’s protocol. 
The house-keeping gene Lj18S was used as an internal con-
trol for each reaction. Primers for HMTs, HDTs, key genes 
involved in active compound biosynthesis, and housekeeping 
gene were designed using Primer Premier 5.0 (Table S2). 
The relative gene expression level compared to that of con-
trol was calculated using the  2−ΔCt method.

UPLC–MS/MS analysis and quantification

Chromatographic analysis was performed using Acquity 
UPLC I-Class system (Waters, Milford, MA, USA). 
The column used was Acquity UPLC BEH  C18 column 
(2.1 mm × 100 mm, 1.8 μm), and the column temperature 
was maintained at 40 °C. The binary gradient consisted of 
solvent system A (formic acid/water, 0.1:99.9, v/v) and sol-
vent system B (formic acid/acetonitrile, 0.1:99.9, v/v). The 

chromatographic conditions were as follows: 0 min, 5% B; 
5.5 min, 30% B. The injection volume was 1.0 μL, and the 
flow rate was 0.50 mL·min−1.

Tandem mass spectrometry (MS/MS) was performed 
using QTRAP 6500 system (AB SCIEX, Los Angeles, CA, 
USA) equipped with an electrostatic ionization (ESI) source 
(AB SCIEX). MS analysis was carried out in negative ioni-
zation mode by monitoring the protonated molecular ions 
under the following operating conditions: ion source volt-
age, − 4500 V; and turbo spray temperature (TEM), 550 °C. 
The MS parameters for chlorogenic acids, flavonoids, and 
iridoids were manually optimized. Quantification was per-
formed using multiple reaction monitoring (MRM) mode 
for the above transitions. Data were acquired using Analyst 
Software 1.6.2 (AB SCIEX, Los Angeles, CA, USA) and 
analyzed using MultiQuant Software 3.0 (AB SCIEX, Los 
Angeles, CA, USA).

To investigate the active compounds of L. japonica treated 
with 5-azaC, ultra performance liquid chromatography–tan-
dem mass spectrometry (UPLC–MS/MS) was performed. 
The optimized mass spectrum conditions of UPLC–MS/
MS for chlorogenic acids, flavonoids, and iridoids are given 
in Table S3. Linear relation tests revealed that these com-
pounds had a good linear relationship (r > 0.995) in their 
linearity ranges (Table S4).

Results

Sequence analyses of HMTs and HDTs

A preliminary BLASTx search was performed using the 
transcriptome sequencing dataset of L. japonica. The 
sequences of four HMTs and four HDTs of L. japonica were 
screened out and submitted to GenBank (accession numbers: 
KX812448–KX812455). Details of the HMTs and HDTs are 
shown in Table 2.

The HMT1 gene was 1485 bp in length, and it encoded 
494 amino acids. The isoelectric point (pI) value and the 

Table 2  Sequences of four HMTs and four HDTs of L. japonica 

Name Accession number Sequence 
length (bp)

Amino acids 
number (aa)

pI MW/KDa Conserved domains

HMT1 KX812448 1485 494 6.18 55.84 SET
HMT2 KX812449 1140 379 5.31 42.75 AdoMet-MTases
HMT3 KX812450 1614 537 5.43 59.89 AdoMet-MTases, PRMT5
HMT4 KX812451 2187 728 8.55 80.05 SAD-SRA, Pre-SET, SET
HDT1 KX812452 3567 1188 6.82 136.34 JmjC
HDT2 KX812453 3018 1005 5.57 113.98 JmjC
HDT3 KX812454 2226 741 7.88 84.93 JmjC, JmjN
HDT4 KX812455 1578 525 5.35 57.78 FAD/NAD, Amino oxidase, SWIRM
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molecular weight (MW) of the HMT1 protein were calcu-
lated using the Compute pI/Mw tool of the ExPASy online 
server and found to be 6.18 and 55.84 kDa, respectively, 
and it contained one functional conserved domain i.e., the 
SET domain. The HMT4 gene was 2187 bp in length, and 
it encoded 728 amino acids. The pI value and MW of the 
HMT4 protein were 8.55 and 80.05 kDa, respectively, and 
it contained three conserved domains, including SAD-SRA, 
Pre-SET, and SET.

The HDT2 gene was 3018 bp in length, and it encoded 
1005 amino acids. The pI value and MW of the HDT2 pro-
tein were 5.57 and 113.98 kDa, respectively, and it contained 
the JmjC conserved domain.

In order to better understand the functional details of 
HMTs and HDTs, phylogenetic trees were constructed with 
the amino acid sequences of histone methyltransferases and 
demethylases of other species using the neighbor-joining 
method. The bootstrap condition was 1000 times. Descrip-
tion of different types of histone methyltransferases and 
demethylases used in construction of phylogenetic trees are 
listed in Table S1.

Based on sequence similarity, the identified HMTs were 
clustered into two subgroups. It was observed that HMT1 
and HMT4 of L. japonica and histone lysine methyltrans-
ferases were clustered in one clade (Fig. 1a). Therefore, 
HMT1 and HMT4 of L. japonica containing the SET domain 
were considered to be histone lysine transferases, combined 
with phylogenetic analysis, suggested that HMT1 and HMT4 
belong to histone H3K9 methyltransferases group. Moreover, 
it was observed that HMT4 of L. japonica was located close 
to histone methyltransferase H3 lysine-9 specific SUVH1 

of A. thaliana, and SUVH1 was found to maintain H3K4 
methylation levels. Similarly, HDT2 were closely related to 
lysine-specific demethylase JMJ25 (Fig. 1b), which removes 
H3K4 methyl markings in gene bodies.

Dynamic changes in the levels of HMTs/
HDTs and H3K4/H3K9 methylation levels 
in 5‑azaC‑treated samples

Expression levels of HMTs and HDTs were analyzed using 
qRT-PCR, and it was observed that 5-azaC treatment signifi-
cantly decreased the expression levels of HMT1 and HMT4 
(p < 0.05) and increased the expression levels of HMT2, 
HMT3, and HDT2 (p < 0.05) (Fig. 2).

Our results (Fig. 3) suggest that histone H3K9 methyla-
tion level increased after 5-azaC treatment because HMT1, 
HMT4, and HDT2 were all related to histone H3K9. Analy-
sis of H3K4 and H3K9 methylation levels further showed 
that 5-azaC treatment significantly decreased H3K4me3 
methylation level and significantly increased H3K9me1, 
H3K9me2, and H3K9me3 methylation levels.

Chlorogenic acid, flavonoid, and iridoid content 
in 5‑azaC‑treated samples

In L. japonica treated with 80 μM 5-azaC for 48 h, it was 
observed that the levels of chlorogenic acids (chlorogenic 
acid, neochlorogenic acid, cryptochlorogenic acid, isochlo-
rogenic acid A, and isochlorogenic acid C) and iridoids 
(loganic acid, loganin, secoxyloganin, and 7-epi-loganin) 
were significantly decreased (p < 0.05), whereas the level 

Fig. 1  Phylogenetic tree of 
HMTs and HDTs. a Phylo-
genetic tree of HMTs; and b 
phylogenetic tree of HDTs. The 
bootstrap was 1000
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of flavonoids (luteolin and luteoloside) was significantly 
increased as compared to the control group (Table 3).

The results of qRT-PCR showed that the gene expres-
sion levels of HQT and 8HD1 decreased, while the expres-
sion levels of PAL, CHS, CHI, and FNSII increased sig-
nificantly after 5-azaC treatment as compared to control. 
As the number of cycles in the logarithmic phase was 
greater than 35, it was considered that (3S)-linalool/(E)-
nerolidol synthase (3LS), (E)-beta-ocimene/myrcene syn-
thase (MOS), iridoid oxidase (IO), 7-deoxyloganic acid 

7-hydroxylase (7D7H), ecologanin synthase (SS), and 
(E)-beta-ocimene/myrcene synthase (LAM) genes were 
not expressed or expressed at very low levels (Fig. 4). 
These results were in accordance with the content of bio-
active compounds in L. japonica.

Loganic acid and chlorogenic acid content showed 
significant positive correlation with H3K4me3 methyla-
tion level (p < 0.05); whereas, H3K9 methylation level 
showed significant positive correlation with luteolin con-
tent (p < 0.05) (Table S5).

Fig. 2  Relative gene expression 
levels of HMTs and HDTs in 
L. japonica. a Gene expres-
sion level of HMTs; and b 
gene expression level of HDTs. 
Control group, untreated leaves; 
5-azaC group, leaves treated 
with 5-azaC; *compared with 
the control group, p < 0.05

Fig. 3  Histone methylation levels in untreated and 5-azaC-treated 
leaves of L. japonica. a H3K4 methylation levels; and b H3K9 meth-
ylation levels. Control group, untreated leaves; 5-azaC group, leaves 

treated with 5-azaC; *compared with the control group, p < 0.05, 
**compared with the control group, p < 0.01

Table 3  Chlorogenic acid, 
flavonoid, and iridoid content of 
L. japonica treated with 5-azaC

*Compared with the control group, p < 0.05, **Compared with the control group, p < 0.01

Category Analyte Control (μg/g) 5-azaC (μg/g)

Chlorogenic acids Chlorogenic acid 1903.44 ± 133.24 576.82 ± 51.91*
Neochlorogenic acid 74.67 ± 1.99 25.51 ± 2.52*
Cryptochlorogenic acid 14.43 ± 0.58 6.01 ± 0.20*
Isochlorogenic acid A 123.80 ± 8.58 31.48 ± 2.20*
Isochlorogenic acid C 13.53 ± 0.77 5.25 ± 0.37*

Flavonoids Luteolin 75.95 ± 5.32 427.01 ± 24.89**
Luteoloside 994.33 ± 33.81 1368.20 ± 46.52*

Iridoids Loganic acid 66.58 ± 4.29 32.46 ± 2.27*
Loganin 168.30 ± 16.32 72.26 ± 5.06*
7-epi-loganin 2536.57 ± 177.56 1037.17 ± 48.23*
Secoxyloganin 571.71 ± 40.02 196.32 ± 13.74*
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Histone methylation levels and bioactive 
compounds in L. japonica from different producing 
areas

To further validate the relationship between H3K4/H3K9 
methylation level and the content of bioactive compounds 
in L. japonica, we analyzed H3K4 and H3K9 methylation 
levels in L. japonica from different producing areas after 
plant introduction. The results indicated higher levels of 
H3K4me2 and H3K4me3 in buds obtained from Beijing 
than in buds obtained from Yunnan (Fig. 5a). Meanwhile, a 
significant difference (p < 0.05) in H3K9me3 level was also 
observed between buds from Yunnan and Beijing as well as 
between buds from Yunnan and Hebei (Fig. 5b).

The relative content of chlorogenic acids was almost the 
same in the four producing areas. Luteolin level was sig-
nificantly lower in buds from Hebei as compared to buds 
from Yunnan (p < 0.05). The content of loganic acid was 
also significantly different between buds from Yunnan and 
Hebei (p < 0.05) (Fig. 5c).

Discussion

Analysis of histone methylase in L. japonica

Epigenetic regulatory mechanisms involve DNA meth-
ylation, noncoding RNAs, and histone modification 
[37]. Results of protein domain analysis and BLAST 
suggest that HMT1 belongs to the SVUH9 subgroup of 
SU(VAR)3–9 family and HMT4 belongs to the SUVH1 
subgroup of SU(VAR)3–9 family. SVUH9 from Arabi-
dopsis thaliana silence transcribed genes through het-
erochromatin condensation [38], which is related to the 
methylation of H3K9. Therefore, we speculated that 
HMT1 is related to the methylation of histone H3K9. The 
SRA domain of the histone methyltransferase SUVH fam-
ily directly binds to methylated DNA, and simultaneously 
demethylates histone H3K9 [39]. Studies have shown 
that SUVH1 is related to H3K9 methylation, but unlike 
SUVH9, it acts downstream of DNA methylation in the 

Fig. 4  Expression levels of genes involved in active compound bio-
synthesis in L. japonica. Control group, untreated leaves; 5-azaC 
group, leaves treated with 5-azaC. PAL phenylalanine ammonia-lyase, 
C4H cinnamate 4-hydroxylase, 4CL 4-coumarate CoA ligase, HQT 
hydroxycinnamoyl-CoA quinate transferase, CHS chalcone synthase, 

CHI chalcone isomerase, FNSII flavone synthase II, 3LS (3S)-linal-
ool/(E)-nerolidol synthase, IO iridoid oxidase, 7D7H 7-deoxyloganic 
acid 7-hydroxylase, 8HD 8-hydroxygeraniol dehydrogenase, LAM 
(E)-beta-ocimene/myrcene synthase. *p < 0.05; ***p < 0.001

Fig. 5  Histone methylation 
levels and active compound 
content in L. japonica from dif-
ferent producing areas (Yunnan, 
Beijing, Hubei, and Hebei). a 
Methylation levels of H3K4; b 
methylation levels of H3K9; and 
c content of active compounds. 
*p < 0.05, **p < 0.01, ##p < 0.01, 
#p < 0.05
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promoter region with anti-gene silencing effect, which is 
related to H3K4me3 [40]. Thus, we considered that HMT4 
is both related to the methylation of histone H3K9me and 
H3K4me3.

Histone lysine demethylase can be classified into two 
major categories: lysine-specific demethylase 1 (LSD1) and 
Jmjc domain-containing histone demethylases (JHDM) [41]. 
HDT2 belonged to the JHDM group, and their sequences 
were similar to that of JMJ25/JMJ25-like H3K9 demethyl-
ase [42]. Lysine demethylases containing the JmjC domain 
could demethylate multiple sites including H3K4 and H3K9 
[43]. Therefore, we concluded that HDT2 is related to the 
methylation of histone H3K9.

Effects of H3K4 and H3K9 methylation levels 
on active compound content and the expression 
levels of biosynthetic genes

Bioinformatic analysis of histone methyltransferase and 
demethylase genes from L. japonica transcriptome data 
showed that these genes are mainly associated with H3K4 
and H3K9 methylation. Among them, H3K4me3 and 
H3K9me1/2/3 play a key role in histone methylation in L. 
japonica. The H3K4me3 region is mainly distributed in 
the euchromatin region, which is related to gene expres-
sion and promotes gene transcription [44]. Meanwhile, 
H3K9me is regarded as a hallmark of heterochromatin and 
gene silencing.

5-AzaC is a nucleotide analog that decreases DNA meth-
yltransferase activity [45]. Recent studies have shown that 
5-azaC influences histone H3K9me3 and H3K27me3 meth-
ylation levels [46]. Therefore, we attempted to illustrate the 

relationship among histone methylation, active compounds, 
and relative gene expression with the help of 5-azaC.

Histone methylation modification regulate the expres-
sion of key enzyme genes in the biosynthetic pathway of 
secondary metabolites in a variety of ways, which affects 
the accumulation of secondary metabolites to improve stress 
resistance in plants [47, 48]. The loss of ATX1 cause the lev-
els of H3K4me3, NCED3 and ABA reduced in atx1 mutant 
[49, 50]. SDG8 and SDG25 contribute to plant immunity 
through histone methylation and regulating expression of 
plant immunity genes, accumulation of lipids, biosynthesis 
of carotenoids, and maintenance of cuticle integrity [51]. 
Combined with the results, we speculated that the significant 
changes in the content of active compounds and expression 
levels of related genes were due to variations in H3K9 and 
H3K4me3 levels. H3K9 methylation level negatively corre-
lated with luteolin content, while H3K4me3 level positively 
correlated with chlorogenic acid and loganic acid content 
(Fig. 6). Therefore, histone methylation might influence 
secondary metabolite biosynthesis in L. japonica by tran-
scriptionally regulating the expression of biosynthetic genes.

Histone methylation levels and bioactive 
compounds in L. japonica from different producing 
areas

Chromatin remodeling affects a range of life processes, 
including flowering time, stress memory, and secondary 
metabolism [52]. It has been reported that regulation of his-
tone methylation in plant defense and flowering is related to 
secondary metabolism [53]. However, it is unclear whether 
a similar link exists between active compound biosynthesis 
and histone methylation in medicinal plants from different 

Fig. 6  Schematic diagram of 
regulation of active compound 
biosynthesis by histone meth-
ylation. The red arrows indicate 
increased methylation levels, 
gene expression levels and 
content; and the green arrows 
indicate the opposite
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regions. Fengqiu in Henan, Pingyi in Shandong, and Julu in 
Hebei are the three main L. japonica producing areas [54]. 
The phenotype of L. japonica and the methylation level of 
genes for key enzymes are closely related to the place of 
origin and are easily affected by biological and abiotic fac-
tors in the environment. DNA methylation and miRNAs play 
vital regulatory roles in phenotype of L. japonica [34, 55].

In order to exclude the impact of germplasm on histone 
methylation, similar varieties were selected from Beijing and 
introduced to three other geographical locations. The results 
showed that H3K4me2/3 methylation levels in L. japonica 
from Yunnan were significantly different from that in Bei-
jing, while H3K9me3 methylation levels were significantly 
different between L. japonica from Yunnan and Hebei. 
Metabolomic analysis has revealed obvious differences in 
the chemical composition of L. japonica from different 
producing areas [56]. In this study, we found that luteolin 
content was different between L. japonica from Yunnan 
and Hebei. The main components of L. japonica includ-
ing chlorogenic acid and loganic acid were not significantly 
different among L. japonica from the four producing areas. 
A comprehensive analysis of L. Japonica from four pro-
ducing areas showed that the expression of genes involved 
in active compound biosynthetic pathway was also related 
to histone H3K4 and H3K9 methylation levels. Therefore, 
H3K4 methylation may regulate the chlorogenic acid and 
iridoid biosynthetic pathway in L. japonica. Thus, variation 
of histone methylation level in L. japonica indicates that the 
regulation of epigenetic modifications of active compounds 
is closely related to the environment.

Conclusion

In conclusion, our study is the first to demonstrate a potential 
regulatory network of H3K9/H3K4 methylation, transcrip-
tion of secondary biosynthetic genes, content of second-
ary metabolites in L. japonica, and is also the first report 
revealing the regulatory mechanism of histone methylation 
in medicinal plants. Our findings on the role of histone 
H3K4 and H3K9 methylation in secondary metabolism of L. 
japonica open an interesting perspective for understanding 
the possible molecular mechanism of regulation of bioac-
tive compound synthesis in functional plants. Moreover, our 
results demonstrate that the levels of histone H3K4me3 and 
H3K9me3 can be used as molecular markers for evaluating 
the quality of chlorogenic acids, flavonoids, and iridoids in 
L. japonica.
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