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Abstract
Isoflurane (Iso) preconditioning (PC) is known to be cardioprotective against ischemia/reperfusion (I/R) injury. It was previ-
ously shown that microRNA-21-5p (miR-21-5p) is regulated by Iso-PC. It is unclear, if expression of cardiac enriched miR-
1-3p is also affected by Iso-PC, and associated with activation of HIF1α (hypoxia-inducible factor 1-alpha).  Male Wistar 
rats (n = 6–8) were randomly assigned to treatment with or without 1 MAC Iso for 30 min, followed by 25 min of regional 
myocardial ischemia, with 120 min reperfusion. At the end of reperfusion, myocardial expression of miR-1-3p, miR-21-5p 
and mRNAs of two HIF-1α-dependent genes, VEGF (vascular endothelial growth factor) and HO-1 (heme oxygenase-1), 
were determined by quantitative PCR. Protein expression of a miR-21 target gene, PDCD4 (programmed cell death protein 
4), was assessed by western blot analysis. Infarct sizes were analyzed with triphenyltetrazoliumchloride staining. MiR-21-5p 
expression was increased by Iso, whereas expression of miR-1-3p was not altered. The expression of VEGF but not HO-1 was 
induced by Iso. Iso-PC reduced infarct sizes compared to untreated controls. No regulation of miRNA and mRNA expression 
was detected after I/R. PDCD4 protein expression was not affected after Iso exposure. Expression of miR-21-5p, in contrast 
to miR-1-3p, is altered during this early time point of Iso-PC. HIF1α signaling seems to be involved in miR-21-5p regulation.
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Introduction

Cardiac diseases are the leading cause of death in the 
United States [1] and are initiated or often accompanied by 
ischemia-reperfusion (I/R) injury. Murry et al. discovered 
that short intervals of I/R prior to global ischemia reduce 
I/R injury [2], a phenomenon named ischemic precondition-
ing (IPC). The effect of IPC can be mimicked pharmaco-
logically. Volatile anesthetics, like isoflurane (Iso), show 
cardioprotective effects via reducing infarct size in in vivo 
models [3, 4].

The underlying mechanisms of preconditioning (PC) are 
yet not fully understood. Evidence suggests, that microRNAs 
(miRNAs), a class of small non coding RNAs, serve as medi-
ators for preconditioning and influence the protective effect 
of preconditioning via regulation of apoptosis-related pro-
teins (reviewed in [5]). Yin et al. showed that IPC, followed 
by I/R, induces expression of miRNAs, e.g. miR-1a-3p, 
−21a-5p and − 24-3p [6]. In 2015, Qiao et al. demonstrated 
that isoflurane exposure upregulates miR-21a-5p expression 
in mouse hearts [7]. Olson et al. underlined this finding with 
similar results in rat hearts [8]. Mir-21 plays a critical role 
in Iso-PC demonstrated by a failed reduction in infarct size 
after Iso-PC in knock out mice of miR-21 [8]. This group 
also showed that cardioprotection by Iso is mediated by the 
Akt/nitric oxide synthase (NOS)/mitochondrial permeability 
transition pore (mPTP) pathway [7]. The expression of miR-
21 during PC may be regulated by HIF1α (hypoxia-inducible 
factor 1-alpha), which was shown through an induction of 
HIF1α and miR-21 expression induced by hypoxia or renal 
ischemic preconditioning [9]. Isoflurane is also able to 
induce HIF1α under normoxic conditions, which was shown 
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in vivo in rat brains and in vitro in primary rat neurons [10]. 
HIF1α transcriptionally enhances miR-21 promoter activ-
ity by binding to its promoter region. Additionally, there 
exists a regulatory feedback loop via the PTEN (Phosphatase 
and Tensin homolog)/Akt pathway, which reduces HIF1α 
expression due to miR-21-5p inhibition [11]. MiR-21-5p 
itself is able to bind directly to PDCD4 (programmed cell 
death protein 4), resulting in an anti-apoptotic effect in car-
diomyocytes after hypoxia and reoxygenation, mimicking 
I/R injury in vitro [12]. Zhu et al. supported the assumption 
that PDCD4 is involved in cardioprotection, showing a clear 
decrease of PDCD4 protein by ischemic postconditioning 
in rats [13].

The cardiac enriched miR-1-3p is upregulated during 
acute myocardial infarction [14] and belongs to the most 
commonly described regulated miRNAs in the context of 
preconditioning [5]. Brandenburger et al. showed that miR-
1-3p was downregulated by remote IPC alone, I/R, or a 
combination of both, after 120 min of reperfusion in the 
area at risk (AAR), while expression remained unaffected 
in the non-AAR. Interestingly, after 360 min of reperfusion, 
miR-1-3p expression increased in the non-AAR [15]. This 
indicates that miR-1-3p expression is time, treatment, and 
localization dependent.

To our knowledge, it is not clear whether miR-1-3p 
expression is altered by Iso and if this plays a potential 
role in the cardioprotective effect of Iso-PC. To analyze 
these aims we measured miR-1-3p and miR-21-5p expres-
sion under (1) isoflurane exposure alone and (2) additional 
I/R treatment, in rats in vivo. Additionally, (3) possible 
HIF1α mediated miR-1-3p and miR-21-5p regulation was 

investigated through two HIF1α targets, VEGF (vascular 
endothelial growth factor) and HO-1 (heme oxygenase-1), 
and (4) possible consequences on the direct miR-21-5p tar-
get PDCD4 were analyzed.

Materials and methods

Animal experiments

In accordance with the German legislation on protection 
of animals and the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals (NIH publication 
85–23, revised 1996) animal experiments were performed. 
Experiments were done as described in detail in the study 
of Heinen et al. [16]. Briefly, 12 weeks old, male Wistar rats 
were anesthetized by an intraperitoneal pentobarbital (Nar-
coren, Merial, Germany) injection (80 mg/kg body weight). 
For maintenance of anesthesia, pentobarbital was infused 
continuously via a jugular catheter (40 mg/kg/hour). An 
arterial line was inserted via the left carotid artery. A lateral 
left-sided thoracotomy was performed, and a suture (5–0) 
was looped around the left anterior descending coronary 
artery (LAD).

Surgery protocol

In a first set of experiments, rats were randomized into four 
groups (n = 6/group; Fig. 1A). The Sham group received 
anesthesia and thoracotomy, but no further intervention. The 
Iso group was treated by 30 min inhalation of 1 MAC Iso 

Fig. 1  Experimental protocol. 
A 1st set of experiments for 
harvesting heart tissue for 
molecular analysis. B 2nd set 
of experiments for infarct size 
determination. Con control, 
Iso isoflurane, PC precondition-
ing
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(1.5% Iso (Baxter Deutschland GmbH, Germany), 40% oxy-
gen in compressed air). Animals in the control group (Con) 
were not preconditioned before 25 min ischemia of LAD and 
120 min reperfusion. Isoflurane preconditioned (Iso-PC) rats 
received 30 min Iso, with a 10 min washout phase, prior to 
25 min ischemia (LAD occlusion) and 120 min reperfusion. 
At the end of the experiments, each animal was injected with 
4 mL Evans blue solution in vivo (after occlusion of the 
LAD) before heart excision, which allows for the separation 
of the area at risk (AAR) and the area not at risk (non-AAR). 
Tissue of the non-AAR was used for further expression anal-
ysis and was snap frozen in liquid nitrogen.

For infarct size measurements a second set of experiments 
was performed (Fig. 1B). Rats were randomized to the pro-
tocol of Con (n = 8) and Iso-PC (n = 9). After reperfusion, 
hearts were perfused with Evans Blue, excised and stained 
with 0.75% triphenyltetrazoliumchloride (TTC; # 37130.03, 
Serva, Germany) solution. The infarct size measurement was 
carried out, using planimetry, by a blinded investigator [17].

During both sets of experiments, hemodynamic param-
eters were measured continuously, digitized using an ana-
logue to digital converter (PowerLab/8SP, ADInstruments 
Pty Ltd, Castle Hill, Australia) at a sampling rate of 500 Hz, 
and recorded on a personal computer using Chart for Win-
dows v5.0 (ADInstruments Pty Ltd, Castle Hill, Australia). 
Heart rate (bmp) and mean aortic pressure (mmHg) were 
statistically analyzed during baseline, ischemia, and reperfu-
sion (15, 30, 120 min).

RNA isolation

From frozen heart tissue total RNA was isolated using TRI-
zol™ Reagent (Invitrogen™) according to the manufactures 
instructions. RNA integrity, purity and concentrations were 
confirmed by agarose gel analysis and spectrophotometry 
(absorbance at 260 and 280 nm; NanoDrop® ND-1000 
(Thermo Scientific, Waltham (Massachusetts, USA)).

Quantitative polymerase chain reaction (qPCR) 
assay

Reverse transcription of total RNA was performed using 
the High Capacity RNA-to-cDNA Master Mix (Applied 
Biosystems, Life Technologies, Darmstadt, Germany). 
The qPCR for miRNA expression was performed with 
TaqMan®MicroRNA Assays 20X (Applied Biosystems, Life 
Technologies, Darmstadt, Germany), according to the manu-
facturer’s protocol: rno-miR-1-3p (assay ID: 002064), U6 
(assay ID: 001973), and hsa-miR-21-5p (assay ID: 000397). 
The qPCR for mRNA expression was performed with 
TaqMan® Gene Expression Assays 20X (Applied Biosys-
tems, Life Technologies, Darmstadt, Germany), according 
to the manufacturer’s protocol: HO-1 (Rn01536933_m1), 

VEGF (Rn01511601_m1), GAPDH (Glyceraldehyde 
3-phosphate dehydrogenase) (Rn01462661_g1). QPCR con-
ditions were as follows: 50 °C for 2 min, 95 °C for 10 min, 
40 cycles of 95 °C for 15 s, 60 °C for 60 s using an ABI 
7300HT thermocycler (Applied Biosystems, Life Technolo-
gies, Darmstadt, Germany). The relative expression of miR-
NAs was calculated using the ΔΔCq-method [18].

Western blot analysis

Frozen heart tissue was homogenized in lysis buffer (20 mM 
Tris HCl (Sigma-Aldrich, Germany), 150 mM NaCl (Roth, 
Germany), 1 mM Na-EDTA (Sigma-Aldrich, Germany), 
1 mM EGTA (Roth, Germany), 1% NP40, 2.5 mM sodium 
pyruvate (Sigma-Aldrich, Germany), 2.5 mM sodium vana-
date (Sigma-Aldrich, Germany) and freshly added protease 
inhibitor mix (Complete; Roche, Germany). After deter-
mination of protein concentration via the Lowry method 
[19] the western blot analysis was performed, as previ-
ously described in detail [16]. As primary antibodies were 
used: rabbit anti PDCD4 (#9535, cell signaling, 1:1000) 
and mouse anti GAPDH (ab8245, abcam, 1:40,000). For 
detection chemiluminescence was used via the following 
secondary antibodies purchased from Jackson ImmunoRe-
search Laboratories Inc.: Peroxidase AffiniPure Donkey 
Anti-Rabbit IgG (H + L) (#711-035-152, 1:10,000) and 
Peroxidase AffiniPure Goat Anti-Mouse IgG (H + L) (115-
035-003, 1:10,000).

Statistical analysis

For expression analyses we aimed to detect a minimal dif-
ference of 20% by t-test. The sample size calculation with 
a power of 80% (α < 0.05 (two-tailed)), and a within group 
standard deviation (SD) of 12% predicted a group size of 
n = 6 [20]. For infarct size analysis we aimed to detect a 
minimal difference of 25% by t-test. The sample size cal-
culation with a power of 80%, α < 0.05, and a within group 
standard deviation (SD) of 17% predicted a group size of 
n = 8 [20]. To compare hemodynamic parameters between 
groups or between different time points within groups, we 
used a two-way analysis of variance (ANOVA) and a Tukey 
post hoc test (SPSS Science Software, Version 12.0.1).

Data are presented as mean ± SD. Changes between 
groups were be considered statistically significant if P < .05.

Results

Iso exposure: MiR expression

To determine if expression of miR-1-3p is altered by Iso, rats 
were treated in vivo with or without inhalation of 1 MAC 
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Iso for 30 min and after 155 min heart tissue was analyzed 
by qPCR. Furthermore, to confirm previous observations 
using a similar animal model [8], miR-21-5p expression was 
measured. Iso significantly increased relative miR-21-5p 
expression compared to Sham (Fig. 2A) (Iso: 172 ± 56% vs. 
Sham: 100 ± 27%, P < .05). In contrast to miR-21-5p, miR-1 
expression levels remained unchanged after Iso exposure 
(Fig. 2B) (Iso: 94 ± 16% vs. Sham: 100 ± 27%, n.s.). The 
hemodynamic variables, heart rate and mean aortic pressure, 
were not different between groups or time points (Table 1).

Iso preconditioning: MiR expression and infarct 
sizes

To examine, if Iso followed by I/R influences the expres-
sion of miR-21-5p and miR-1-3p in the non-AAR, rats were 
preconditioned for 30 min with or without isoflurane fol-
lowed by I/R. The hemodynamic variables were not different 
between groups or time points (Table 1). Also miR-21-5p 
and miR-1-3p expression levels were not differently influ-
enced by Iso preconditioning (Fig. 2C and D).

Furthermore, to confirm the cardioprotective effect of Iso-
PC in this model, infarct sizes were determined. PC with 
isoflurane significantly reduced infarct sizes compared to 
Con (Con: 65 ± 12% vs. Iso-PC: 43 ± 15%, P < .05) (Fig. 3). 
Hemodynamic variables (Table 2), heart rate and mean aor-
tic pressure, were not different between Con and Iso-PC at 
baseline or other time point. Mean aortic pressure was only 
significantly reduced in Iso-PC at 120 min reperfusion com-
pared to baseline.

HIF1α signaling

To investigate a potential role of HIF1α in the regulation of 
miR-1-3p and − 21-5p, HIF1α-activation was analyzed. We 
used the HIF1α target genes HO-1 and VEGF expression 
as surrogate parameters for HIF1α-activation [21]. Iso-PC 
significantly increased VEGF mRNA expression compared 
to Sham (Iso: 143 ± 22% vs. Sham: 100 ± 18%, P < .05; 
Fig. 4B), while HO-1 mRNA levels remained unaltered (Iso: 
131 ± 76% vs. Sham: 100 ± 51%; Fig. 4A). Additionally, sub-
sequent I/R intervention revealed similar mRNA expression 
levels of HO-1 (Iso-PC: 112 ± 75% vs. Con: 100 ± 67%, n.s.) 
and VEGF (Iso-PC: 101 ± 34% vs. Con: 100 ± 40%, n.s.), 
with or without Iso exposure (Fig. 4C and D).

PDCD4

As a direct target of miR-21-5p we analyzed the protein 
expression of PDCD4 [9]. Protein amounts of PDCD4 
were not affected by Iso treatment compared to Sham (Iso: 
128 ± 41% vs. Sham: 100 ± 54%; n.s.; Fig. 5).

Discussion

The results of the present study demonstrate increased 
miR-21-5p expression in rat hearts by isoflurane. In con-
trast, the expression of miR-1-3p was not changed. The 
expression of HIF1α target VEGF, but not HO-1, was 
induced by isoflurane. No differences were detected after 
I/R. The miR-21-5p target PDCD4 was not affected by the 
increase of miR-21-5p after isoflurane exposure.

Olson et al. showed an increase of miR-21-5p expres-
sion shortly (15 min) after exposure to 30 min Iso [8], 
whereas in this study the expression was measured 
155 min after Iso exposure. Interestingly, this increase 
was not detectable after I/R in the non-AAR at the same 
time point. I/R seems to abrogate the miR-21-5p increase 
in the non-AAR. However, the literature on miR-21-5p 
is inconsistent and differs depending on the experimental 
setup and statistical comparisons. Rooji et al. found an 
upregulation of miR-21-5p three and fourteen days after 
acute myocardial injury in the border zone and remote 
myocardium, in comparison to sham operated mice, indi-
cating an upregulation through I/R injury itself [22]. Dong 
et al. showed a downregulation of miR-21-5p in infarcted 
areas, but an increase in the border zone, compared to 
non-infarcted areas [23]. A potential effect of Iso, on miR-
21-5p expression after I/R, could have been masked by a 
concomitant increase of miR-21-5p expression due to I/R 
itself. This could explain the lack of difference in miR-
21-5p in Iso-PC vs. Con. In this study, we focused on the 
comparison of groups with and without Iso. Interestingly, 
IPC itself increased miR-21-5p expression and in infarcted 
hearts IPC inhibited downregulation of miR-21-5p after 
6 h of acute myocardial infarction compared to sham con-
trol [23]. Taken together, miR-21-5p expression seems to 
be dependent on the preconditioning mode, measurement 
time point and tissue area.

The increase of VEGF expression, as an indirect marker 
of HIF1α activity, by Iso exposure indicates that HIF1α 
could be responsible for miR-21-5p upregulation. This is 
in line with the findings of Wang et al. showing that pro-
tein expression of VEGF, HIF1α and extracellular signal-
regulated kinase (Erk) increased shortly (15 min) after Iso 
exposure and was sustained at least up to 155 min after Iso 
exposure [24]. Additionally, Jiang et al. also demonstrated 
that Iso induces HIF1α expression [10]. These findings 
suggest that HIF1α is involved in Iso-PC.

An increase of miR-1-3p expression due to Iso expo-
sure was not detected, indicating that miR-1-3p does not 
seem to play a critical role in Iso-PC. But there is evidence 
for a role of miR-1-3p in other forms of PC. Branden-
burger et al. showed that remote IPC (RIPC) alone led 
to an early downregulation (165 min after conditioning), 
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Fig. 2  MiR expression analysis in heart tissue. A/B: Expression 
of miR-21-5p A  and miR-1-3p B  without (Sham) or with isoflu-
rane (Iso). C/D: miR-21-5p C and miR-1-3p D expression following 

regional myocardial ischemia without (Con) or with (Iso-PC) isoflu-
rane pretreatment. Data are mean ± SD. n = 6 per group. *P < .05 vs 
Sham
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but later upregulation (405 min) of miR-1-3p expression 
[15]. Additional I/R intervention did not influence miR-
1-3p expression at the early time point. In contrast, after 
6 h miR-1-3p expression was upregulated indicating a 

time-dependent regulation of miR-1-3p in the non-AAR 
after I/R. Dong et al. also found an upregulation of miR-
1-3p levels after 6 h, in an in vivo rat model of left coro-
nary artery ligation [23]. In this study, miR-1-3p expres-
sion was measured after 2.5 h Iso exposure which was 
possibly too early to detect an influence on expression. 
Thus, at early time points miR-1-3p expression does not 
seem to be regulated by Iso, but a regulation at later time 
points might be possible.

To examine a downstream response of miR-21-5p upregu-
lation, the protein expression of PDCD4 was analyzed. It 
was previously shown that knockdown of miR-21 increased 
PDCD4 expression, and the activity of its own downstream 
target NF-κB (nuclear factor-kappa B), in mice organs (e.g. 
heart and kidney) [9]. In this study, upregulation of miR-
21-5p was not associated with a decrease in the protein 
expression of PDCD4. This could be due to the time point 
of tissue harvesting. The time span is possibly too short 
to detect changes in protein expression and other studies 
used later time points. Two independent groups measured 
the PDCD4 expression 24 h after knockdown of miR-21 
expression in mice organs [9] or isolated rat cardiomyocytes 
[23] and found an upregulation of PDCD4 expression. The 
latter group could also show that PDCD4 has a pro-apoptotic 
effect, which was suppressed by miR-21-5p resulting in the 
miR-21-5p cardioprotective effect during myocardial infarc-
tion [23]. PDCD4 expression is not only regulated by miR-
21-5p, but also at the level of transcription, translation and 
protein degradation [25], therefore mechanisms influenced 
by isoflurane with opposing effects than miR-21-5p could 
be responsible for maintaining the PCDC4 expression. For 
example, isoflurane is able to increase transforming growth 
factor beta-1 (TGF-β1) levels [26], which in turn induces 
apoptosis via PDCD4 overexpression [25].

Table 1  Hemodynamic variables (1st set of experiments; molecular 
analysis)

Data are mean±SD
Con  control, Iso  isoflurane, PC preconditioning

Baseline Ischemia Reperfusion

24 15 60 120

Heart rate 
(bpm)

 Sham 427 ± 20 409 ± 33 403 ± 20 392 ± 20
 Iso 402 ± 20 378 ± 29 390 ± 32 373 ± 18
 Con 364 ± 74 407 ± 18 370 ± 94 381 ± 35 342 ± 75
 Iso-PC 400 ± 31 392 ± 37 392 ± 39 425 ± 34 384 ± 30

Mean aortic 
pressure 
(mmHg)

 Sham 116 ± 7 104 ± 24 102 ± 22 92 ± 30
 Iso 118 ± 13 114 ± 17 105 ± 26 81 ± 15
 Con 106 ± 17 113 ± 11 117 ± 13 106 ± 5 84 ± 29
 Iso-PC 115 ± 37 117 ± 18 116 ± 20 107 ± 24 93 ± 31

Con Iso-PC
0

10
20
30
40
50
60
70
80

*

Fig. 3  Infarct size measurement. Infarct size of control hearts 
(Con) and hearts preconditioned with isoflurane (Iso-PC). Data are 
mean ± SD. Con (n = 8); Iso-PC (n = 9) per group. *P < .05  vs Con

Table 2  Hemodynamic variables (2nd set of experiments; infarct size 
analysis)

Data are mean±SD
Con control, Iso-PC  isoflurane preconditioning
*P < .05 vs. Baseline

Baseline Ischemia Reperfusion

24 15 60 120

Heart Rate 
(bpm)

 Con 397 ± 24 379 ± 60 378 ± 65 382 ± 43 393 ± 53
 Iso-PC 379 ± 41 336 ± 50 340 ± 57 344 ± 57 332 ± 56

Mean aortic 
pressure 
(mmHg)

 Con 114 ± 21 116 ± 22 114 ± 29 114 ± 20 102 ± 21
 Iso-PC 130 ± 16 102 ± 27 104 ± 28 105 ± 25 86 ± 18*
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HO-1 C  and VEGF D  mRNA expression following regional myo-

cardial ischemia without (Con) or with isoflurane (Iso-PC). Data are 
mean ± SD. n = 6 per group. *P < .05 vs Sham
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Conclusions

MiR-1-3p does not seem to play a critical role during the 
early phase of Iso-PC. In this period miR-21-5p signaling 
appears to be more prominent.
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