Skip to main content
Log in

Prediction of auxin response elements based on data fusion in Arabidopsis thaliana

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The plant hormone “auxin” is a key regulator of plant development and environmental responses. Many genes in Arabidopsis thaliana are known to be up-regulated in response to auxin. Auxin response factors activate or repress the expression of genes by binding at their promoter regions within auxin response elements (AuxRE) that are key regulatory cis-acting motives. Therefore, the identification of auxin-response elements is among the most important issues to understand the auxin regulation mechanisms. Thus, searching the TGTCTC motif is an unreliable method to identify AuxRE because many AuxRE variants may also be functional. In the present study, we perform an In-silico prediction of AuxREs in promoters of primary auxin responsive genes. We exploit microarray data of auxin response in Arabidopsis thaliana seedlings, in order to provide biological annotation to AuxRE. We apply a data fusion method based on the combined use of evidence theory and fuzzy sets to scan upstream sequences of response genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Davies PJ (2010) Plant hormones. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  2. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460. https://doi.org/10.1016/j.pbi.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  3. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80. https://doi.org/10.1146/annurev.cellbio.23.090506.123214

    Article  CAS  PubMed  Google Scholar 

  4. Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792. https://doi.org/10.3389/fpls.2014.00792

    Article  PubMed  PubMed Central  Google Scholar 

  5. Theologis A, Ray PM (1982) Early auxin-regulated polyadenylylated mRNA sequences in pea stem tissue. Proc Natl Acad Sci USA 79:418–421. https://doi.org/10.1073/PNAS.79.2.418

    Article  CAS  PubMed  Google Scholar 

  6. Gray WM, Kepinski S, Rouse D et al (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276. https://doi.org/10.1038/35104500

    Article  CAS  PubMed  Google Scholar 

  7. Guilfoyle TJ (1999) Auxin-regulated genes and promoters. New Compr Biochem 33:423–459. https://doi.org/10.1016/S0167-7306(08)60499-8

    Article  CAS  Google Scholar 

  8. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  CAS  Google Scholar 

  9. Cole M, Chandler J, Weijers D et al (2009) DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136:1643–1651. https://doi.org/10.1242/dev.032177

    Article  CAS  PubMed  Google Scholar 

  10. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385. https://doi.org/10.1023/A:1015207114117

    Article  CAS  PubMed  Google Scholar 

  11. Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623. https://doi.org/10.1105/tpc.7.10.1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of Brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:e258. https://doi.org/10.1371/journal.pbio.0020258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants key words introduction: hormones act by regulating genome expression. Annu Rev Genet. https://doi.org/10.1146/annurev-genet-102108-134148

    Article  PubMed  Google Scholar 

  14. Boer DR, Freire-Rios A, van den Berg WAM et al (2014) Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156:577–589. https://doi.org/10.1016/J.CELL.2013.12.027

    Article  CAS  PubMed  Google Scholar 

  15. Berendzen KW, Weiste C, Wanke D et al (2012) Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol 12:125. https://doi.org/10.1186/1471-2229-12-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mironova VV, Omelyanchuk NA, Wiebe DS, Levitsky VG (2014) Computational analysis of auxin responsive elements in the Arabidopsis thaliana L. genome. BMC Genom 15(Suppl 12):S4. https://doi.org/10.1186/1471-2164-15-S12-S4

    Article  Google Scholar 

  17. Ponomarenko PM, Ponomarenko MP (2015) Sequence-based prediction of transcription upregulation by auxin in plants. J Bioinform Comput Biol 13:1540009. https://doi.org/10.1142/S0219720015400090

    Article  CAS  PubMed  Google Scholar 

  18. Cherenkov P, Novikova D, Omelyanchuk N et al (2018) Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. J Exp Bot 69:329–339. https://doi.org/10.1093/jxb/erx254

    Article  CAS  PubMed  Google Scholar 

  19. Goda H, Sasaki E, Akiyama K et al (2008) The AtGenExpress hormone- and chemical-treatment data set: experimental design, data evaluation, model data analysis, and data access. Plant J 55:526–542. https://doi.org/10.1111/j.0960-7412.2008.03510.x

    Article  Google Scholar 

  20. Paponov IA, Paponov M, Teale W et al (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337. https://doi.org/10.1093/MP/SSM021

    Article  CAS  PubMed  Google Scholar 

  21. Sawa S, Ohgishi M, Goda H et al (2002) The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J 32:1011–1022. https://doi.org/10.1046/j.1365-313X.2002.01488.x

    Article  CAS  PubMed  Google Scholar 

  22. Huala E, Dickerman AW, Garcia-Hernandez M et al (2001) The Arabidopsis information resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102–105

    Article  CAS  Google Scholar 

  23. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  CAS  Google Scholar 

  24. Ballas N, Wong L-M, Theologis A (1993) Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible Gene, PS-IAA4/5, of Pea (Pisum sativum). J Mol Biol 233:580–596. https://doi.org/10.1006/JMBI.1993.1537

    Article  CAS  PubMed  Google Scholar 

  25. Ballas N, Wong LM, Ke M, Theologis A (1995) Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci USA 92:3483–3487. https://doi.org/10.1073/PNAS.92.8.3483

    Article  CAS  PubMed  Google Scholar 

  26. Liu ZB, Ulmasov T, Shi X et al (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657. https://doi.org/10.1105/tpc.6.5.645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arteca JM, Arteca RN (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219. https://doi.org/10.1023/A:1006177902093

    Article  CAS  PubMed  Google Scholar 

  28. McClure BA, Hagen G, Brown CS et al (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239. https://doi.org/10.1105/tpc.1.2.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Mourik H, van Dijk ADJ, Stortenbeker N et al (2017) Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC Plant Biol 17:245. https://doi.org/10.1186/s12870-017-1210-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura A, Higuchi K, Goda H et al (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853. https://doi.org/10.1104/pp.103.030031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abel S, Nguyen MD, Theologis A (1995) ThePS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251:533–549. https://doi.org/10.1006/jmbi.1995.0454

    Article  CAS  PubMed  Google Scholar 

  32. Taniguchi M, Nakamura M, Tasaka M, Morita MT (2014) Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems. Plant Signal Behav 9:e29570. https://doi.org/10.4161/psb.29570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  34. Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007. https://doi.org/10.1093/jxb/ern155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng X, Miller ND, Lewis DR et al (2011) Auxin Up-Regulated F-Box Protein1 regulates the cross talk between auxin transport and cytokinin signaling during plant root growth. Plant Physiol 156:1878–1893. https://doi.org/10.1104/pp.111.179812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brady SM, Orlando DA, Lee J-Y et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. https://doi.org/10.1126/science.1146265

    Article  CAS  PubMed  Google Scholar 

  37. Visscher AM, Belfield EJ, Vlad D et al (2015) Overexpressing the multiple-stress responsive gene At1g74450 reduces plant height and male fertility in Arabidopsis thaliana. PLoS ONE 10:e0140368. https://doi.org/10.1371/journal.pone.0140368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. https://doi.org/10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mudgil Y, Uhrig JF, Zhou J et al (2009) Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway. Plant Cell 21:3591–3609. https://doi.org/10.1105/tpc.109.065557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hieno A, Naznin HA, Hyakumachi M et al (2014) ppdb: plant promoter database version 3.0. Nucleic Acids Res 42:D1188–D1192. https://doi.org/10.1093/nar/gkt1027

    Article  CAS  PubMed  Google Scholar 

  41. Narusaka Y, Nakashima K, Shinwari ZK et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148. https://doi.org/10.1046/j.1365-313X.2003.01708.x

    Article  CAS  PubMed  Google Scholar 

  42. Wu W, Cheng Z, Liu M et al (2014) C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS ONE 9:e99352. https://doi.org/10.1371/journal.pone.0099352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kovtun Y, Chiu W-L, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720. https://doi.org/10.1038/27240

    Article  CAS  PubMed  Google Scholar 

  44. Tena G, Renaudin JP (1998) Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinases in tobacco cells. Plant J 16:173–182

    Article  CAS  Google Scholar 

  45. Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796

    Article  CAS  Google Scholar 

  46. Menges M, Dczi R, krsz L et al (2008) Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol 179:643–662. https://doi.org/10.1111/j.1469-8137.2008.02552.x

    Article  CAS  PubMed  Google Scholar 

  47. Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  48. Markakis MN, Boron AK, Van Loock B et al (2013) Characterization of a small auxin-Up RNA (SAUR)-like gene involved in Arabidopsis thaliana development. PLoS ONE 8:e82596. https://doi.org/10.1371/journal.pone.0082596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z-G, Chen H-W, Li Q-T et al (2015) Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci Rep 5:12477. https://doi.org/10.1038/srep12477

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang Y, Yue R, Sun T et al (2015) Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Appl Microbiol Biotechnol 99:841–854. https://doi.org/10.1007/s00253-014-6311-5

    Article  CAS  PubMed  Google Scholar 

  51. Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Sghaier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies conducted on human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sghaier, N., Ben Ayed, R., Gorai, M. et al. Prediction of auxin response elements based on data fusion in Arabidopsis thaliana. Mol Biol Rep 45, 763–772 (2018). https://doi.org/10.1007/s11033-018-4216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4216-6

Keywords

Navigation