Skip to main content
Log in

Expression of genes related to mitochondrial function in Nellore cattle divergently ranked on residual feed intake

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Several measures have been proposed to investigate and improve feed efficiency in cattle. One of the most commonly used measure of feed efficiency is residual feed intake (RFI), which is estimated as the difference between actual feed intake and expected feed intake based on the animal’s average live weight. This measure permits to identify and select the most efficient animals without selecting for higher mature weight. Mitochondrial function has been indicated as a major factor that influences RFI. The analysis of genes involved in mitochondrial function is therefore an alternative to identify molecular markers associated with higher feed efficiency. This study analyzed the expression of PGC1α, TFAM, UCP2 and UCP3 genes by quantitative real-time PCR in liver and muscle tissues of two groups of Nellore cattle divergently ranked on RFI values in order to evaluate the relationship of these genes with RFI. In liver tissue, higher expression of TFAM and UCP2 genes was observed in the negative RFI group. Expression of PGC1α gene did not differ significantly between the two groups, whereas UCP3 gene was not expressed in liver tissue. In muscle tissue, higher expression of TFAM gene was observed in the positive RFI group. Expression of PGC1α, UCP2 and UCP3 genes did not differ significantly between the two groups. These results suggest the use of TFAM and UCP2 as possible candidate gene markers in breeding programs designed to increase the feed efficiency of Nellore cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oliveira JS, Zanini AM, Santos EM (2007) Fisiologia, manejo e alimentação de bezerros de corte. Arq. Ciênc. Vet. Zool 1:39–48

  2. Basarab JA (2003) Latest indicator of feed efficiency could spur new generation of efficient cattle. Animal Science newsletter, Flórida. IOP Publishing PhysicsWeb. http://ufdcimages.uflib.ufl.edu/UF/00/06/73/34/00047/00001.pdf. Accessed 11 March 2013

  3. Euclides Filho K, Figueiredo GR, Euclides VPB, Silva LOC, Cusinato VQ (2002) Eficiência bionutricional de animais da raça Nelore seus mestiços com caracu, angus e simental. Rev Bras Zootec 31:331–334

    Article  Google Scholar 

  4. Lanna DPD, Calegari L, Almeida R, Berndt A (2003) Conversão alimentar—eficiência econômica da vacas de corte de raças puras e cruzadas. In: simpósio de pecuária de corte lavras,UFLA, Lavras,87–110

  5. Reunol F (2010) Criações mais eficientes, agência FAPESP, especial. IOP Publishing PhysicsWeb. http://www.agencia.fapesp.br/materia/11704/especiais/criacoes-mais-eficientes. Accessed 5 July 2010

  6. Koch RM, Swinger LA, Chambers D, Gregory KE (1963) Efficiency of feed use in beef cattle. J Anim Sci 22:486–494

    Google Scholar 

  7. Del Claro AC, Mercadante MZ, Silva JA II (2012) Meta-analise de parâmetros genéticos relacionados ao consumo alimentar residual e a suas características componentes em bovinos. Pesqui Agropecu Bras 47:302–310

    Article  Google Scholar 

  8. Zulkifli NA, Naik M, Pitchford WS, Bottema CDK (2007) Cattle residual feed intake candidate genes. J Anim Breed Genet 18:668–671

    Google Scholar 

  9. Bottje W, Tang ZX, Iqbal M, Cawthon D, Okimoto R, Wing T, Cooper M (2002) Association of mitochondrial function with feed efficiency within a single genetic line of male broilers. Poult Sci 81:546–555

    Article  CAS  PubMed  Google Scholar 

  10. Bottje W, Pumford NR, Dirain CO, Iqbal M, Lassiter K (2006) Feed efficiency and mitochondrial function. Poult Sci 85:8–14

    Article  CAS  PubMed  Google Scholar 

  11. Kolath WH, Kerley MS, Golden JW, Keisler DH (2006) The relationship between mitochondrial function and residual feed intake in Angus steers. J Anim Sci 84:861–865

    Article  CAS  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  13. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Gen Biol 3(7):RESEARCH 0034

  14. Steibel JP, Poletto R, Coussens PM, Rosa JMG (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94:146–152

    Article  CAS  PubMed  Google Scholar 

  15. Ledesma A, Lacoba MG, Rial E (2002) The mitochondrial uncoupling proteins. Gen Biol 3(12):REVIEWS 3015

    Article  Google Scholar 

  16. Echtay KS (2007) Mitochondrial uncoupling proteins—What is their physiological role? Free Radic Biol Med 43:1351–1371

    Article  CAS  PubMed  Google Scholar 

  17. Nordfors L, Hoffstedt J, Nyberg B, Thome A, Arner P, Schalling M (1998) Reduced gene expression of UCP2 but not UCP3 in skeletal muscle of human obese subjects. Diabetologia 41:935–939

    Article  CAS  PubMed  Google Scholar 

  18. Ricquier D, Casteilla L, Bouillaud F (1991) Molecular studies of the uncoupling protein. FASEB J 5:2237–2242

    CAS  PubMed  Google Scholar 

  19. Tsuboyama-Kasaoka N, Ezaki O (2001) Mitochondrial uncopling proteins 3 (UCP3) in skeletal muscle. Front Biosc 6:570–574

    Article  Google Scholar 

  20. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB (1997) UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 235:79–82

    Article  CAS  PubMed  Google Scholar 

  21. Kolath WH, Kerley MS, Golden JW, Shahid SA, Johnson GS (2006) The relationships among mitochondrial uncoupling protein 2 and 3 expression, mitochondrial deoxyribonucleic acid single nucleotide polymorphisms, and residual feed intake in Angus steers. J Anim Sci 84:1761–1766

    Article  CAS  PubMed  Google Scholar 

  22. Kelly AK, Waters SM, McGee M, Fonseca RG, Carberry C, Kenny DA (2011) mRNA expression of genes regulating oxidative phosphorylation in the muscle of beef cattle divergently ranked on residual feed intake. Physiol Genomics 43:12–23

    Article  CAS  PubMed  Google Scholar 

  23. Ojano-Dirain C, Toyomizu M, Wing T, Cooper M, Bottje WG (2007) Gene expression in breast muscle and duodenum from low and high feed efficient broilers. Poult Sci 86:372–381

    Article  CAS  PubMed  Google Scholar 

  24. Millet L, Vidal H, Andrielli F, Larrouy D, Rion JP, Ricquier D (1997) Increased uncoupling protein-2 and-3 mRNA expression during fasting in obese and lean humans. J Clin Invest 100:2665–2670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Harrold JA, Widdowson PS, Clapham JC, Williams G (2000) Individual severity of obesity in unselected Wistar rats: relationship with hyperphagia. Am J Physiol 279(2):340–347

    Google Scholar 

  26. Basarab JA, Price MA, Aalhus JL, Okine EK, Snelling WM, Lyle KL (2003) Residual feed intake and body composition in young growing cattle. Can J Anim Sci 83:189–204

    Article  Google Scholar 

  27. Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A, Shinagawa H, Hamasaki N, Kang D (2002) Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA binding protein. EMBO Rep 3:451–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N, Kang D (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645

    Article  CAS  PubMed  Google Scholar 

  29. Ohgaki K, Kanki T, Fukuoh A, Kurisaki H, Aoki Y, Ikeuchi M, Kim SH, Hamasaki N, Kang D (2007) The C-terminal tail of mitochondrial transcription factor a markedly strengthens its general binding to DNA. J Biochem 141:201–211

    Article  CAS  PubMed  Google Scholar 

  30. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson N (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944

    Article  CAS  PubMed  Google Scholar 

  31. Gaspari M, Larsson NG, Gustafsson CM (2004) The transcription machinery in mammalian mitochondria. Biochim Biophys Acta 1659:148–152

    Article  CAS  PubMed  Google Scholar 

  32. Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31:289–294

    Article  CAS  PubMed  Google Scholar 

  33. Fisher RP, Clayton DA (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol Biol Cell 8:3496–3509

    CAS  Google Scholar 

  34. Goffart S, Wiesner RJ (2003) Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 88:33–40

    Article  CAS  PubMed  Google Scholar 

  35. Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Ann Rev Biochem 7:177–203

    Google Scholar 

  36. Bottje W, Carstens GE (2009) Association of mitochondrial function and feed efficiency in poultry and livestock species. J Anim Sci 87:48–63

    Article  Google Scholar 

  37. Knutti D, Kralli (2001) A PGC-1, a versatile coactivator. Trends Endocrinol Metab 12:360–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the state funding agency São Paulo Research Foundation FAPESP (grants 2009/16118-5 and 2010/13502-6). We thank the Instituto de Zootecnia for providing the tissue samples and database used in this study. We are also grateful to Departamento de Tecnologia, Laboratório de Bioquímica e Biologia Molecular and Programa de Pós-graduação em Genética e Melhoramento Animal, Faculdade de Ciências Agrárias e Veterinárias for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Galvão de Albuquerque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, L.F.S., Gimenez, D.F.J., Mercadante, M.E.Z. et al. Expression of genes related to mitochondrial function in Nellore cattle divergently ranked on residual feed intake. Mol Biol Rep 42, 559–565 (2015). https://doi.org/10.1007/s11033-014-3801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3801-6

Keywords

Navigation