Skip to main content
Log in

Phenotypic profiling and gene expression analyses for aromatic and volatile compounds in Chamoes (Cucumis melo)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Gotgam chamoe (GgC), a native oriental melon in Korea, is known to possess the aroma of a dried persimmon, an agronomic relevance for melon breeding program. The volatile compounds and the transcript levels of aromatic compound genes in cultivar (Ohbokggul chamoe [OC]) and GgC were profiled. A total of 62 volatile compounds were identified and quantified. Twenty-eight volatile compounds were specific to either the OC or the GgC. The amounts of volatile alcohol, saturated hydrocarbon, and unsaturated hydrocarbon compounds were 2.2, 2.7, and 1.1 times higher in OC, respectively. The amounts of ketone volatiles were 1.2 times higher in GgC, whereas the total amounts of esters were similar. In the shikimate pathway, transcriptional patterns with the fruit parts were different between the two chamoes for CmDAHPS, CmDHD/SDH, and CmEPSPS. The expression levels of all six genes investigated, especially CmCS, were highest in the peel of both chamoes compared to the other parts. The transcript levels of the aromatic amino acid biosynthesis genes demonstrate that phenylalanine and tyrosine are present more in edible parts of the chamoe, while tryptophan may be accumulated low in the chamoe. In addition, phenylalanine and tryptophan are synthesized more in GgC than the OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Cm :

Cucumis melo

PE:

Peel

PU:

Pulp

S:

Stalk

OC:

Ohbokggul chamoe

GgC:

Gotgam chamoe

GC:

Gas chromatography

E4P:

Erythrose 4-phosphate

PEP:

Phosphoenolpyruvate

CM:

Chorismatemutase

AS:

Anthranilate synthase

DAHPS:

3-deoxy-d-arabino-heptulosonate 7-phosphate synthase

CS:

Chorismate synthase

EPSP:

5-enolpyruvylshikimate 3-phosphate synthase

AAT:

Alcohol acetyltransferase

References

  1. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321(5890):836–838

    Article  CAS  PubMed  Google Scholar 

  2. Pech JC, Bouzayen M, Latché A (2008) Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175(1–2):114–120

    Article  CAS  Google Scholar 

  3. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135–1138

    Article  CAS  PubMed  Google Scholar 

  4. Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O (2010) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci USA 107(30):13532–13537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Choi YJ, Chun H, Choi YH, Yum SH, Lee SY, Kim HJ, Shin YS, Chung DS (2007) Nutritional components content of oriental melon fruits cultivated under different greenhouse covering films. J Bio-Env Con 16(1):72–77

    Google Scholar 

  6. Shin Y-S, Lee J-E, Yeon I-K, Do H-W, Cheung J-D, Kang C-K, Choi S-Y, Youn S-J, Cho J-G, Kwoen D-J (2008) Antioxidant effects and tyrosinase inhibition activity of oriental melon (Cucumis melo L. var. makuwa Makino) extracts. J Life Sci 18(7):963–967

    Article  Google Scholar 

  7. Kim J-H, Suh J-K, Kang Y-H (2012) Anticancer effects of the extracts of oriental melon (Cucumis melo L. var. makuwa Makino) seeds. Korean J Plant Res 25(5):647–651

    Article  Google Scholar 

  8. Garcia-Masa J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Meléc M, Yang L, Wengk Y, Navarroj A, Marques-Bonet T, Aranda MA, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, Casacuberta JM, Arús P, Puigdomènech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109(29):11872–11877

    Article  Google Scholar 

  9. Thomson DMH (1987) The meaning of flavor. Elsevier, London, pp 1–21

    Google Scholar 

  10. Kuentzel H, Bahri D (1990) Synthetic ingredients of food flavourings. Blackie & Son, London, pp 115–157

    Google Scholar 

  11. Tucker GA (1993) Biochemistry of fruit ripening. Chapman and Hall, London, pp 1–51

    Book  Google Scholar 

  12. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732

    Article  CAS  PubMed  Google Scholar 

  13. Dirinck P, Pooter HD, Schamp N (1989) Aroma development in ripening fruits. American Chemical Society, Washington, DC, pp 24–34

    Google Scholar 

  14. Latrasse A (1991) Volatile compounds in food and beverages. Marcel Dekker, New York, pp 329–387

    Google Scholar 

  15. Rapparini F, Predieris S (2003) Pear fruit volatiles. Hort Rev 28:237–324

    CAS  Google Scholar 

  16. Beaulieu JC, Grimm CC (2001) Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J Agric Food Chem 49(3):1345–1352

    Article  CAS  PubMed  Google Scholar 

  17. Khanom MM, Ueda Y (2008) Bioconversion of aliphatic and aromatic alcohols to their corresponding esters in melons (Cucumis melo L. cv. Prince melon and cv. Earl’s favorite melon). Postharvest Biol Technol 50(1):18–24

    Article  CAS  Google Scholar 

  18. Obando-Ulloa JM, Ruiz J, Monforte AJ, Fernández-Trujillo JP (2010) Aroma profile of a collection of near-isogenic lines of melon. Food Chem 118(3):815–822

    Article  CAS  Google Scholar 

  19. Manríquez D, El-Sharkawy I, Flores FB, Regad F, Bouzayen M, Latché A, Pech JC (2006) Fruit-specific gene expression and biochemical characteristics of two highly divergent alcohol dehydrogenases of melon. Plant Mol Biol 61(4–5):675–685

    Article  PubMed  Google Scholar 

  20. D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49(2):194–207

    Article  PubMed  Google Scholar 

  21. Kishore GM, Shah DM (1988) Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem 57:627–663

    Article  CAS  PubMed  Google Scholar 

  22. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  CAS  PubMed  Google Scholar 

  23. Campbell SA, Richards TA, Mui EJ, Samuel BV, Coggins JR, McLeod R, Roberts CW (2004) A complete shikimate pathway in Toxoplasma gondii: an acident eukaryotic innovation. Int J Parasitol 34(1):5–13

    Article  CAS  PubMed  Google Scholar 

  24. Dewick PM (1998) The biosynthesis of shikimate metabolites. Nat Prod Rep 15(1):17–58

    Article  CAS  PubMed  Google Scholar 

  25. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  CAS  PubMed  Google Scholar 

  26. Kutchan TM (1995) Alkaloid biosynthesis: the basis for metabolic engineering of medicinal plants. Plant Cell 7(7):1059–1070

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7(7):921–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Itay G, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61(4):1111–1123

    Article  Google Scholar 

  29. Beaulieu JC (2006) Volatile changes in cantaloupe during growth, maturation, and in stored fresh-cuts prepared from fruit harvested at various maturities. J Am Soc Hort Sci 131(1):127–139

    CAS  Google Scholar 

  30. Pan Q-H, Chen F, Zhu B-Q, Ma L-Y, Li L, Li J-M (2012) Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in ‘Vidal blanc’ grape berries. Mol Biol Rep 39(4):4319–4325

    Article  CAS  PubMed  Google Scholar 

  31. Qiao Y, Xie BJ, Zhang Y, Zhang Y, Fan G, Yao XL, Pan SY (2008) Characterization of aroma active compounds in fruit juice and peel oil of jinchen sweet orange fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O. Molecules 13(6):1333–1344

    Article  PubMed  Google Scholar 

  32. Li G, Huijuan J, Ruiyuan W, Sayed H, Yuanwen T (2012) Characterization of aromatic volatile constituents in 11 Asian pear cultivars belonging to different species. Afr J Agric Res 7(34):4761–4770

    Article  Google Scholar 

  33. Cumplido-Laso G, Medina-Puche L, Moyano E, Hoffmann T, Sinz Q, Ring L, Studart-Wittkowski C, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R (2012) The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J Exp Bot 63(11):4275–4290

    Article  CAS  PubMed  Google Scholar 

  34. Song J, Forney CF (2007) Flavor volatile production and regulation in fruit. Can J Plant Sci 88(3):537–550

    Article  Google Scholar 

  35. Echeverria G, Graell J, Lara I, Lopez ML (2008) Physico chemical measurements in ‘Mondial Gala’ apples stored at different at mospheres: influence on consumer acceptability. Postharvest Biol Technol 50(2):135–144

    Article  CAS  Google Scholar 

  36. Villatoro C, Echeverria G, Graell J, Lopez ML, Lara I (2008) Long-Term storage of Pink Lady apples modifies volatile-involved enzyme activities: consequences on production of volatile esters. J Agric Food Chem 56(19):9166–9174

    Article  CAS  PubMed  Google Scholar 

  37. Bauer K, Garbe D, Surburg H (1990) Common fragrance and flavor materials. VCH, New York, pp 87–88

    Google Scholar 

  38. Beaulieu JC (2006) Effect of cutting and storage on acetate and nonacetate esters in convenient, ready-to-eat fresh-cut melons and apples. Hort Sci 41(1):65–73

    CAS  Google Scholar 

  39. Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavour volatile concentration: a review. NZ J Crop Hortic Sci 28:155–173

    Article  CAS  Google Scholar 

  40. Larson M, Poll L (1992) Odour thresholds of some important aroma compounds in strawberries. Z. Lebensm. Unters Forsch 195(2):120–123

    Article  Google Scholar 

  41. Ulrich D, Hoberg E, Rapp A, Kecke S (1997) Analysis of strawberry flavor description of aroma types by quantification of volatile compounds. Z Lebensm. Unters Forsch 205:218–223

    Article  CAS  Google Scholar 

  42. Salcher O, Lingens F (1980) Regulation of phospho-2-keto-3-deoxy-heptonate aldolase (DAHP Synthase) and anthranilate synthase of Pseudomonas aureofaciens. J Gen Microbiol 121(2):473–476

    CAS  PubMed  Google Scholar 

  43. Hartmann M, Schneider TR, Pfeil A, Heinrich G, Lipscomb WN, Braus GH (2003) Evolution of feedback-inhibited beta/alpha barrel isoenzymes by gene duplication and a single mutation. Proc Natl Acad Sci USA 100(3):862–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Entus R, Poling M, Herrman KM (2002) Redox regulation of Arabidopsis 3-Deoxy-D-arabino-Heptulosonate 7-Phosphate Synthase. Plant Physiol 129(4):1866–1871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tzin V, Galili G (2010) The Biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. The Arabidopsis Book 8:e0132. doi:10.1199/tab.0132

  46. Fellman JK, Miller TW, Mattison DS, Mattheis JP (2000) Factors that influence biosynthesis of volatile flavor compounds in apple fruits. Hort Sci 35:1026–1033

    CAS  Google Scholar 

  47. Lucchetta L, Manriquez D, El-Sharkawy I, Flores FB, Sanchez-Bel P, Zouine M, Ginies C, Bouzayen M, Rombaldi C, Pech JC, Latché A (2007) Biochemical and catalytic properties of three recombinant alcohol acyltransferases of melon. Sulfur-containing ester formation, regulatory role of CaSH in activity and sequence elements conferring substrate preference. J Agr Food Chem 55(13):5213–5220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grants from the Next-Generation Bio Green 21 Program (No. PJ008200), Cabbage Genomics assisted breeding supporting Center (CGC) research programs, and Hallym University Research Fund (HRF-201302-006) funded by Rural Development Administration and Ministry for Food, Agriculture, Forestry and Fisheries of the Korean Government, and Hallym University, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soon Sung Lim or HyeRan Kim.

Additional information

Jeongyeo Lee and Min Keun Kim have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, M.K., Hwang, S.H. et al. Phenotypic profiling and gene expression analyses for aromatic and volatile compounds in Chamoes (Cucumis melo). Mol Biol Rep 41, 3487–3497 (2014). https://doi.org/10.1007/s11033-014-3211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3211-9

Keywords

Navigation