Skip to main content

Advertisement

Log in

Differentially expressed proteins associated with myogenesis and adipogenesis in skeletal muscle and adipose tissue between bulls and steers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The objective of this study was to identify some proteins associated with testosterone-related differences in myogenesis and adipogenesis between bulls and steers. Global proteins were monitored in skeletal muscle and adipose tissue from bulls (n = 20) and steers (n = 20), respectively. We identified four differentially expressed (twofold or more) proteins in skeletal muscle from bulls, myosin light chain 1 (MLC1), ankyrin repeat domain-containing protein 1 (ANKRD1) and heat shock protein beta 1 (HSPB1) that were up-regulated and cofilin 2 (CFL2) that was down-regulated, and also identified two down-regulated proteins in adipose tissue, transaldolase 1 (TALDO1) and l-lactate dehydrogenase B chain (LDHB). In vitro, after myogenic differentiation of a bovine cell line, the mRNA expression of HSPB1 not only increased approximately tenfold in response to differentiation but threefold in response to testosterone addition, respectively, but that of ANKRD1 and CFL2 did not significantly change in response to myogenic differentiation or testosterone addition. Likewise, after adipogenic differentiation of a bovine cell line, the mRNA expression of TALDO1 and LDHB did not significantly vary in response to adipogenic differentiation or testosterone addition. Therefore, we suggest that HSPB1 could have an important role during testosterone-related myogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mellor D, Molony V, Robertson I (1991) Effects of castration on behaviour and plasma cortisol concentrations in young lambs, kids and calves. Res Vet Sci 51:149

    PubMed  CAS  Google Scholar 

  2. IS J (1995) Assessment of acute and chronic pain after different methods of castration of calves. Appl Anim Behav Sci 46:33–48. doi:10.1016/0168-1591(95)00635-4

    Google Scholar 

  3. Fisher A, Knight T, Cosgrove G, Death A, Anderson C, Duganzich D, Matthews L (2008) Effects of surgical or banding castration on stress responses and behaviour of bulls. Aust Vet J 79:279–284. doi:10.1111/j.1751-0813.2001.tb11981

    Google Scholar 

  4. Jacobs J, Miller J, Sauter E, Howes A, Araji A, Gregory T, Hurst C (1977) Bulls versus steers. II. Palatability and retail acceptance. J Anim Sci 45:699

    Google Scholar 

  5. Zhou Z-K, Gao X, Li J-Y, Chen J-B, Xu S-Z (2011) Effect of castration on carcass quality and differential gene expression of longissimus muscle between steer and bull. Mol Biol Rep. doi:10.1007/s11033-011-0680-y

  6. Bmed B, Klueber K (2004) Structural and functional analysis of murine skeletal muscle after castration. Muscle Nerve 12:67–77. doi:10.1002/mus.880120113

    Google Scholar 

  7. Schoonmaker J, Loerch S, Fluharty F, Turner T, Moeller S, Rossi J, Dayton W et al (2002) Effect of an accelerated finishing program on performance, carcass characteristics, and circulating insulin-like growth factor I concentration of early-weaned bulls and steers. J Anim Sci 80:900

    PubMed  CAS  Google Scholar 

  8. Singh R, Artaza J, Taylor W, Gonzalez-Cadavid N, Bhasin S (2003) Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 144:5081. doi:10.1210/en.2003-0741

    PubMed  CAS  Google Scholar 

  9. Singh R, Artaza J, Taylor W, Braga M, Yuan X, Gonzalez-Cadavid N, Bhasin S (2006) Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with {beta}-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology 147:141. doi:10.1210/en.2004-1649

    PubMed  CAS  Google Scholar 

  10. Oh Y, Cho S, Baek K, Choi C (2005) Effects of testosterone, 17β-estradiol, and progesterone on the differentiation of bovine intramuscular adipocytes. Asian australas J Anim Sci 18:1589–1593

    CAS  Google Scholar 

  11. Christoffersen B, Raun K, Svendsen O, Fledelius C, Golozoubova V (2006) Evalution of the castrated male Sprague–Dawley rat as a model of the metabolic syndrome and type 2 diabetes. Int J Obes 30:1288–1297. doi:10.1038/sj.ijo.0803261

    CAS  Google Scholar 

  12. Mauras N, Hayes V, Welch S, Rini A, Helgeson K, Dokler M, Veldhuis J et al (1998) Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol Metab 83:1886

    PubMed  CAS  Google Scholar 

  13. Urban R, Bodenburg Y, Gilkison C, Foxworth J, Coggan A, Wolfe R, Ferrando A (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol Endocrinol Metab 269:E820

    CAS  Google Scholar 

  14. Fryburg D, Jahn L, Hill S, Oliveras D, Barrett E (1995) Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J Clin Invest 96:1722. doi:10.1172/JCI118217

    PubMed  CAS  Google Scholar 

  15. Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053. doi:10.1002/(SICI)1522-2683(20000401)21:6<1037

    PubMed  Google Scholar 

  16. Jin X, Lee JS, Kwak S, Jung JE, Kim TK, Xu C, Hong Z et al (2006) Myogenic differentiation of p53- and Rb-deficient immortalized and transformed bovine fibroblasts in response to MyoD. Mol Cells 21:206–212

    PubMed  CAS  Google Scholar 

  17. Jin X, Kim JG, Oh MJ, Oh HY, Sohn YW, Pian X, Yin JL et al (2007) Opposite roles of MRF4 and MyoD in cell proliferation and myogenic differentiation. Biochem Biophys Res Commun 364:476–482. doi:10.1016/j.bbrc.2007.10.042

    PubMed  CAS  Google Scholar 

  18. Yin J, Jin X, Beck S, Kang D, Hong Z, Li Z, Jin Y et al (2010) In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines. Biotechnol Lett 32:195–202. doi:10.1007/s10529-009-0142-y

    PubMed  CAS  Google Scholar 

  19. Ihara Y, Suzuki Y, Kitta K, Jones L, Ikeda T (2002) Modulation of gene expression in transgenic mouse hearts overexpressing calsequestrin. Cell Calcium 32:21–29. doi:10.1016/S0143-4160(02)00096-9

    PubMed  CAS  Google Scholar 

  20. Baudet S (2003) Another activity for the cardiac biologist: CARP fishing. Cardiovasc Res 59:529. doi:10.1016/S0008-6363(03)00503-0

    PubMed  CAS  Google Scholar 

  21. Hamelin M, Sayd T, Chambon C, Bouix J, Bibe B, Milenkovic D, Leveziel H et al (2006) Proteomic analysis of ovine muscle hypertrophy. J Anim Sci 84:3266. doi:10.2527/jas.2006-162

    PubMed  CAS  Google Scholar 

  22. Berner P, Somlyo A, Somlyo A (1981) Hypertrophy-induced increase of intermediate filaments in vascular smooth muscle. Cell Biol 88:96. doi:10.1083/jcb.88.1.96

    CAS  Google Scholar 

  23. Zhao W, Su Y, Su R, Ba C, Zeng R, Song H (2009) The full length cloning of a novel porcine gene CFL2b and its influence on the MyHC expression. Mol Biol Rep 36:2191–2199. doi:10.1007/s11033-008-9434-x

    PubMed  CAS  Google Scholar 

  24. Zhang S, Xie H, Xu Y, Li X, Wei R, Zhi W, Deng L et al (2008) Regulation of cell proliferation by fast myosin light chain 1 in myoblasts derived from extraocular muscle, diaphragm and gastrocnemius. Exp Biol Med 233:1374. doi:10.3181/0804-RM-134

    CAS  Google Scholar 

  25. Kelly R, Buckingham M (2000) Modular regulation of the MLC1F/3F gene and striated muscle diversity. Microsc Res Tech 50:510–521. doi:10.1002/1097-0029(20000915)50:6<510

    PubMed  CAS  Google Scholar 

  26. Seo Y, Lee K, Park K, Bae K, Choi I (2006) A proteomic assessment of muscle contractile alterations during unloading and reloading. J Biochem 139:71. doi:10.1093/jb/mvj007

    PubMed  CAS  Google Scholar 

  27. Gibson A (1977) The effect of testosterone and of castration on anococcygeus muscle contractility and on plasma corticosterone levels in the rat. Eur J Pharmacol 41:7–11. doi:10.1016/0014-2999(77)90364-8

    PubMed  CAS  Google Scholar 

  28. Shea J, French CR, Bishop J, Martin G, Roebothan B, Pace D, Fitzpatrick D et al (2009) Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men. Am J Clin Nutr 89:407–415. doi:10.3945/ajcn.2008.25970

    PubMed  CAS  Google Scholar 

  29. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. doi:10.1210/jc.2006-1055

    PubMed  CAS  Google Scholar 

  30. Sutherland C, Esser K, Elsom V, Gordon M, Hardeman E (2005) Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation. Am J Anat 196:25–36. doi:10.1002/aja.1001960104

    Google Scholar 

  31. Keller L, Emerson C (1980) Synthesis of adult myosin light chains by embryonic muscle cultures. Proc Natl Acad Sci USA 77:1020

    PubMed  CAS  Google Scholar 

  32. Lyons G, Ontell M, Cox R, Sassoon D, Buckingham M (1990) The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol 111:1465–1476

    PubMed  CAS  Google Scholar 

  33. Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht B (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553. doi:10.1101/gad.1281105

    PubMed  CAS  Google Scholar 

  34. Mo K, Razak Z, Rao P, Yu Z, Adachi H, Katsuno M, Sobue G et al (2010) Microarray analysis of gene expression by skeletal muscle of three mouse models of kennedy disease/spinal bulbar muscular atrophy. PLoS ONE 5(9):e12922

    PubMed  Google Scholar 

  35. Huang L, Min J, Masters S, Mivechi N, Moskophidis D (2007) Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 45:487–501. doi:10.1002/dvg.20319

    PubMed  CAS  Google Scholar 

  36. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C et al (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67:10455–10465

    PubMed  CAS  Google Scholar 

  37. Yonezawa N, Nishida E, Sakai H (1985) pH control of actin polymerization by cofilin. J Biol Chem 260:14410

    PubMed  CAS  Google Scholar 

  38. Nishida E, Maekawa S, Sakai H (1984) Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23:5307–5313. doi:10.1021/bi00317a032

    PubMed  CAS  Google Scholar 

  39. Hackl H, Burkard T, Sturn A, Rubio R, Schleiffer A, Tian S, Quackenbush J et al (2005) Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 6:R108. doi:10.1186/gb-2005-6-13-r108

    PubMed  Google Scholar 

  40. Si Y, Shi H, Lee K (2009) Impact of perturbed pyruvate metabolism on adipocyte triglyceride accumulation. Metab Eng 11:382–390. doi:10.1016/j.ymben.2009.08.001

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant to M. Baik from the National Research Laboratory Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology, Republic of Korea (ROA-2007-000-20057-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Jaie Choi.

Additional information

Qiankun Zhang and Hong-Gu Lee contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Supplementary material 2 (PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Lee, HG., Han, JA. et al. Differentially expressed proteins associated with myogenesis and adipogenesis in skeletal muscle and adipose tissue between bulls and steers. Mol Biol Rep 39, 953–960 (2012). https://doi.org/10.1007/s11033-011-0821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0821-3

Keywords

Navigation