Skip to main content

Advertisement

Log in

Dominant bacterial communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens) and Yunnan Yellow Cattle (Bos taurs) revealed by denaturing gradient gel electrophoresis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The dominant rumen bacteria in Gayals, Yaks and Yunnan Yellow Cattle were investigated using PCR-DGGE approach. The analysis of DGGE profiles, identification of dominant bands and phylogenetic analysis 16S rDNA sequences in DGGE profiles were combined to reveal the dominant bacterial communities and compared the differences between those cattle species. DGGE profiles revealed that Gayals had the most abundant dominant bacteria and the lowest similarity of intraspecies between individuals than other two cattle species. A total of 45 sequences were examined and sequence similarity analysis revealed that Gayals had the most sequences appeared to uncultured bacteria, accounting for 85.0% of the total sequences, Yaks and Yunnan Yellow Cattle had 44.4 and 68.8% uncultured bacterial sequences, respectively. According to phylogenetic analysis, the rumen dominant bacteria of Gayals were mainly phylogenetically placed within phyla firmicutes and bacteroidetes, and the known bacteria were mainly belonged to the genera Lachnospiraceae bacterium, Ruminococcus flavefaciens and Clostridium celerecrescens. Moreover, the dominant bacteria of Yaks were also mainly belonged to phyla firmicutes and bacteroidetes, and the known dominant bacteria were including Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, Pseudobutyrivibrio ruminis, Schwartzia succinivorans and Clostridiales bacterium, most of them are common rumen bacteria. In addition, the dominant bacteria in Yunnan Yellow Cattle were belonged to phyla firmicutes, bacteroidetes and Actinobacteria, and the known dominant bacteria containing Prevotella sp., Staphylococci lentus, Staphylococcus xylosus and Corynebacterium casei. Present study first detected Staphylococcus lentus and Staphylococcus xylosus in the rumen of cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ogimoto K, Imai S (1981) Atlas of rumen microbiology. Tokyo, Japan, p 71

    Google Scholar 

  2. Koike S, Handa Y, Goto H, Sakai K, Miyagawa E, Matsui H, Ito S, Kobayashi Y (2010) Molecular monitoring and isolation of previously uncultured bacterial strains from the sheep rumen. Appl Environ Microbiol 76:1887–1894

    Article  PubMed  CAS  Google Scholar 

  3. Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matusi H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    Article  CAS  Google Scholar 

  4. Wanapat M, Cherdthong A (2009) Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Curr Microbiol 58:294–299

    Article  PubMed  CAS  Google Scholar 

  5. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  6. Kocherginskaya SA, Aminov RI, White BA (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistically ecology approaches. Anaerobe 7:119–134

    Article  CAS  Google Scholar 

  7. Konstantinov SR, Zhu WY, Williams BA, Tamminga S, de Vos WM, Akkermans ADL (2003) Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol 43:225–235

    Article  PubMed  CAS  Google Scholar 

  8. Sun YZ, Mao SY, Yao W, Zhu WY (2008) DGGE and 16S rDNA analysis reveals a highly diverse and rapidly colonising bacterial community on different substrates in the rumen of goats. Animal 3:391–398

    Google Scholar 

  9. Li SP, Chang H, Ma GL, Cheng HY (2008) Molecular phylogeny of the gayal in Yunnan China inferred from the analysis of cytochrome b gene entire sequences. Asian-australas J Anim Sci 21:789–793

    CAS  Google Scholar 

  10. Mondal M, Dhali A, Rajkhowa C, Prakash BS (2004) Secretion patterns of growth hormone in growing captive mithuns (Bos frontalis). Zool Sci 21:1125–1129

    Article  PubMed  CAS  Google Scholar 

  11. Yang SL, Ma SC, Chen J, Mao HM, He YD, Xi DM, Yang LY, He TB, Deng WD (2010) Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Mol Biol Rep 37:2063–2073

    Article  PubMed  CAS  Google Scholar 

  12. Mao HM, Deng WD, Wen JK (2005) The biology characteristics of gayals (Bos frontalis) and potential exploitation and utilization. J Yunnan Agric Univ 20:258–261 (in Chinese, with English abstract)

    Google Scholar 

  13. Xi DM, Wanapat M, Deng WD, He TB, Yang ZF, Mao HM (2007) Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): in vitro dry matter digestibility and gas production for a range of forages. Asian-australas J Anim Sci 20:1208–1214

    CAS  Google Scholar 

  14. Deng WD, Wanapat M, Ma SC, Chen J, Xi DM, He TB, Yang ZF, Mao HM (2007) Phylogenetic analysis of 16S rDNA sequences manifest rumen bacterial diversity in Gayals (Bos frontalis) fed fresh bamboo leaves and twigs (Sinarumdinaria). Asian-australas J Anim Sci 20:1057–1066

    CAS  Google Scholar 

  15. Deng WD, Wang LP, Ma SC, Jin B, He TB, Yang ZF, Mao HM, Wanapat M (2007) Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos Taurus): rumen function, digestibilities and nitrogen balance during feeding of pelleted Lucerne (Medicago sativum). Asian-australas J Amin Sci 20:900–907

    CAS  Google Scholar 

  16. An D, Dong X, Dong Z (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 4:207–215

    Article  Google Scholar 

  17. Cai L (1995) The Yak. Bangkok, Thailand, pp 37–56

  18. Yang LY, Chen J, Cheng XL, Xi DM, Yang SL, Deng WD, Mao HM (2009) Phylogenetic analysis of 16S rDNA sequences reveals rumen bacterial diversity in Yaks (Bos grunniens). Mol Biol Rep 37:553–562

    Article  Google Scholar 

  19. Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies in ruminal microbial ecology. Appl Environ Microbiol 154:1079–1084

    Google Scholar 

  20. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen G, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  21. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  23. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  24. Regensbogenova M, Pristas P, Javorsky P, Moon-Van Der Staay SY, Van Der Staay GWM, Hackstein JHP, Newbold CJ, McEwan NR (2004) Assessment of ciliates in the sheep rumen by DGGE. Lett Appl Microbiol 39:144–147

    Article  PubMed  CAS  Google Scholar 

  25. Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using Real-Time PCR. J Nutr 134:3378–3384

    PubMed  CAS  Google Scholar 

  26. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  PubMed  CAS  Google Scholar 

  27. Muyze G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  Google Scholar 

  28. Sadet S, Martin C, Meunier B, Morgavi DP (2007) PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal 1:939–944

    Article  CAS  Google Scholar 

  29. Edward JE, McEwan NR, Travis AJ, Wallace RJ (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 86:263–281

    Article  Google Scholar 

  30. Kobayashi Y (2006) Inclusion of novel bacteria in rumen microbiology: need for basic and applied science. Anim Sci J 77:375–385

    Article  CAS  Google Scholar 

  31. Flint HJ, Mcpherson EC, Bisset J (1989) Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and β(1-3,1-4) glucanase activities. Appl Environ Microbiol 55:1230–1233

    PubMed  CAS  Google Scholar 

  32. Kirby J, Martin JC, Daniel AS, Flint HJ (1997) Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett 149:213–219

    Article  PubMed  CAS  Google Scholar 

  33. Wina E, Muetzel S, Becker K (2006) The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins. J Appl Microbiol 100:114–122

    Article  PubMed  CAS  Google Scholar 

  34. Bryant MP, Small N (1956) Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J Bacteriol 72:16–21

    PubMed  CAS  Google Scholar 

  35. Braune A, Gutshow M, Engst W, Blaut M (2001) Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 67:5558–5567

    Article  PubMed  CAS  Google Scholar 

  36. Palop MLL, Valles S, Pinaga F, Flors A (1989) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 39:68–71

    Article  Google Scholar 

  37. Forster RJ, Teather RM, Gong J, Deng SJ (1996) 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23:218–222

    Article  PubMed  CAS  Google Scholar 

  38. Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman and Hall, London, pp 10–72

    Chapter  Google Scholar 

  39. Tajima K, Arai S, Ogata K, Nagamine T, Matsui H, Nakamura M, Aminov RI, Benno Y (2000) Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273–284

    Article  CAS  Google Scholar 

  40. Gylswyk NO, Hippe H, Rainey FA (1997) Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source. Int J Syst Bacteriol 47:155–159

    Article  PubMed  Google Scholar 

  41. Griswold KE, White BA, Mackie RI (1999) Diversity of extracellular proteolytic activities among Prevotella species from the rumen. Curr Microbiol 39:187–194

    Article  PubMed  CAS  Google Scholar 

  42. Wen Z, Morrison M, Wen ZZ (1997) Glutamate dehydrogenase activity profiles for type strains of ruminal Prevotella spp. Appl Environ Microbiol 63:3314–3317

    PubMed  CAS  Google Scholar 

  43. Brennan NM, Brown R, Goodfellow M, Ward AC, Beresford TP, Simpson PJ, Fox PF, Cogan TM (2001) Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51:843–852

    Article  PubMed  CAS  Google Scholar 

  44. Dehority BA, Tirabasso PA (1998) Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J Anim Sci 76:2905–2911

    PubMed  CAS  Google Scholar 

  45. Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69:6808–6815

    Article  PubMed  CAS  Google Scholar 

  46. Wanapat M, Ngarmsang A, Korkhuntot S, Nontaso N, Wachirapakorn C, Beakes G, Rowlinson P (2000) A comparative study on the rumen microbial population of cattle and swamp buffalo raised under traditional village conditions in the Northeast of Thailand. Asian-australas J Anim Sci 13:918–921

    Google Scholar 

  47. Latham MJ, Brooker BE, Pettipher GL, Harris PJ (1978) Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl Environ Microbiol 35:1166–1173

    PubMed  CAS  Google Scholar 

  48. Koike S, Yoshitani S, Kobayashi Y, Tanaka K (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229:23–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 31060314), Yunnan Natural Science Foundation (Grant No. 2010C0038M) and the ‘‘863’’ Key Program of China (Grant No. 2008AA101001) are acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Mao.

Additional information

Jing Leng and Linjun Xie contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, J., Xie, L., Zhu, R. et al. Dominant bacterial communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens) and Yunnan Yellow Cattle (Bos taurs) revealed by denaturing gradient gel electrophoresis. Mol Biol Rep 38, 4863–4872 (2011). https://doi.org/10.1007/s11033-010-0627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0627-8

Keywords

Navigation