Skip to main content
Log in

VCl3 catalyzed imine-based multicomponent reactions for the facile access of functionalized tetrahydropyridines and β-amino carbonyls

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A simple, mild, and highly efficient method has been developed for the preparation of functionalized tetrahydropyridines and β-amino carbonyls from the multicomponent reactions involving in situ imines and vanadium (III) chloride as a Lewis acid. The multicomponent reaction of two equivalents of aromatic aldehyde, two equivalents of amine, and one equivalent β-keto ester in the presence of catalytic amount of VCl3 provides highly atom economic five-component tetrahydropyridines in very good yields. The same catalyst was found useful for the efficient synthesis of a wide variety of β-amino ketones using direct-type Mannich reaction of aromatic aldehyde, amine, and aromatic ketones. The notable advantages of this method are simple procedure, short reaction time and good yields, and applicable to broad range of substrates.

Graphical Abstract

VCl3catalyzed imine based-multicomponent reactions for the facile access of functionalized tetrahydropyridines and β-amino carbonyls

Suman Pal, Lokman H Choudhury and Tasneem Parvin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  2. Zhu J, Bienayme′ H (2005) Multicomponent reactions; Eds. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Tempest PA (2005) Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction. Curr Opin Drug Disc Dev 8: 776–788

    CAS  Google Scholar 

  4. Clarke PA, Zaytsev AV, Whitwood AC (2008) Pot, atom, and step economic (PASE) synthesis of highly substituted piperidines: A five-component condensation. Synthesis 3530–3532. doi:10.1055/s-0028-1083182

  5. Clarke PA, Zaytsev AV, Morgan TW, Whitwood AC, Wilson C (2008) One-pot synthesis of functionalized piperid-4-ones: a four-component condensation. Org Lett 10: 2877–2880. doi:10.1021/ol801051g

    Article  PubMed  CAS  Google Scholar 

  6. Dhawan R, Dghaym RD, Cyr DJS, Arndtsen BA (2006) Direct, palladium-catalyzed, multicomponent synthesis of β-Lactams from imines, acid chloride, and carbon monoxide. Org Lett 8: 3927–3930. doi:10.1021/ol061308j

    Article  PubMed  CAS  Google Scholar 

  7. Black DA, Arndtsen BA (2005) Copper-catalyzed cross-coupling of imines, acid chlorides, and organostannanes: A multicomponent synthesis of α-substituted amides. J Org Chem 70: 5133–5138. doi:10.1021/jo0503557

    Article  PubMed  CAS  Google Scholar 

  8. Lu Y, Arndtsen BA (2009) A direct phosphine-mediated synthesis of pyrroles from acid chlorides and α, β-unsaturated imines. Org Lett 11: 1369–1372. doi:10.1021/ol900185n

    Article  PubMed  CAS  Google Scholar 

  9. Maiti S, Biswas S, Jana U (2010) Iron(III)-catalyzed four- component coupling reaction of 1,3-dicarbonyl compounds, amines, aldehydes, and nitroalkanes: A simple and direct synthesis of functionalized pyrroles. J Org Chem 75: 1674–1683. doi:10.1021/jo902661y

    Article  PubMed  CAS  Google Scholar 

  10. Worrall K, Xu B, Bontemps S, Arndtsen BA (2010) A palladium-catalyzed multicomponent synthesis of imidazolinium salts and imidazolines from imines, acid chlorides, and carbon monoxide. J Org Chem 76: 170–180. doi:10.1021/jo101858d

    Article  PubMed  Google Scholar 

  11. Choudhury LH, Parvin T (2011) Recent advances in the chemistry of imine based-multicomponent reactions. Tetrahedron 67: 8213–8228. doi:10.1016/j.tet.2011.07.020

    Article  CAS  Google Scholar 

  12. Lemonnier G, Charette AB (2010) Stereoselective synthesis of 2,3,6-trisubstituted tetrahydropyridines via Tf2O-mediated grob fragmentation: access to indolizidines (–)-209I and (–)-223J. J Org Chem 75: 7465–7467. doi:10.1021/jo1015344

    Article  PubMed  CAS  Google Scholar 

  13. Zhu XF, Lan J, Kwon O (2003) An expedient phosphine-catalyzed [4 + 2] annulation: synthesis of highly functionalized tetrahydropyridines. J Am Chem Soc 125: 4716–4717. doi:10.1021/ja0344009

    Article  PubMed  CAS  Google Scholar 

  14. Glase SA, Akunne HC, Heffner TG, Jaen JC, MacKenzie RG, Meltzer LT, Pugsley TA, Smith SJ, Wise LD (1996) Aryl 1-but-3-ynyl-4-phenyl-1,2,3,6-tetrahydropyridines as potential antipsychotic agents: synthesis and structure-activity relationships. J Med Chem 39: 3179–3187. doi:10.1021/jm950721m

    Article  PubMed  CAS  Google Scholar 

  15. Finke PE, Oates B, Mills SG, MacCoss M, Malkowitz L, Springer MS, Gould SL, Demartino JA, Carella A, Carver G, Holmes K, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller M, Schleif WA, Emini EA (2001) Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 4: synthesis and structure-activity relationships for 1-[N-(Methyl)-N-(phenylsulfonyl) amino]-2-(phenyl)-4-(4-(N-(alkyl)-(benzyloxycarbonyl) amino) piperidin-1-yl) butanes. Bioorg Med Chem Lett 11: 2475–2479. doi:10.1016/S0960-894X(01)00492-9

    Article  PubMed  CAS  Google Scholar 

  16. Trabaco AA, Aerts N, Alvarez RM, Andres JI, Boeckx I, Fernandez J, Gomez A, Janssens FE, Leenaerts JE, Lucas AID, Matesanz E, Steckler T, Pullan S (2007) 4-Phenyl-4-[1H-imidazol-2-yl]-piperidine derivatives as non-peptidic selective δ-opioid agonists with potential anxiolytic /antidepressant properties. Part 2. Bioorg Med Chem Lett 17: 3860–3863. doi:10.1016/j.bmcl.2007.05.012

    Article  Google Scholar 

  17. Misra M, Pandey SK, Pandey VP, Pandey V, Tripathi RP (2009) Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials. Bioorg Med Chem 17: 625–633. doi:10.1016/j.bmc.2008.11.062

    Article  PubMed  CAS  Google Scholar 

  18. Tsukamoto H, Kondo Y (2008) Palladium(0)-catalyzed alkynyl and allenyl iminium ion cyclizations leading to 1,4-disubstituted 1,2,3,6-tetrahydropyridines. Angew Chem Int Ed 47: 4851–4854. doi:10.1002/anie.200800823

    Article  CAS  Google Scholar 

  19. Han RG, Wang Y, Li YY, Xua PF (2008) Proline-mediated enantioselective construction of tetrahydropyridines via a cascade Mannich-type/intramolecular cyclization reaction. Adv Synth Catal 350: 1474–1478. doi:10.1002/adsc.200800253

    Article  CAS  Google Scholar 

  20. Lee HS, Kim ES, Kim SH, Kim JN (2009) Synthesis of poly-substituted tetrahydropyridines from Baylis–Hillman adducts modified with N-allylamino group via radical cyclization. Tetrahedron Lett 50: 2274–2277. doi:10.1016/j.tetlet.2009.02.225

    Article  CAS  Google Scholar 

  21. Takizawa S, Inoue N, Sasai H (2011) An enantioselective organocatalyzed aza-MBH domino process: application to the facile synthesis of tetrahydropyridines. Tetrahedron Lett 52: 377–380. doi:10.1016/j.tetlet.2010.11.045

    Article  CAS  Google Scholar 

  22. Clarke PA, Zaytzev AV, Whitwood AC (2007) Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: a five-component condensation. Tetrahedron Lett 48: 5209–5212. doi:10.1016/j.tetlet.2007.05.141

    Article  CAS  Google Scholar 

  23. Khan AT, Parvin T, Choudhury LH (2008) Effects of substituents in the β-Position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: A facile access to functionalized piperidines. J Org Chem 73: 8398–8402. doi:10.1021/jo8014962

    Article  PubMed  CAS  Google Scholar 

  24. Khan AT, Lal M, Khan MM (2010) Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett 51: 4419–4424. doi:10.1016/j.tetlet.2010.06.069

    Article  CAS  Google Scholar 

  25. Khan AT, Khan MM, Bannuru KKR (2010) Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron 66: 7762–7772. doi:10.1016/j.tet.2010.07.075

    Article  CAS  Google Scholar 

  26. Wang H-J, Mo L-P, Zhang Z-H (2011) Cerium ammonium nitrate-catalyzed multicomponent reaction for efficient synthesis of functionalized tetrahy dropyridines. ACS Comb Sci 13: 181–185. doi:10.1021/co100055x

    Article  PubMed  CAS  Google Scholar 

  27. Mishra S, Ghosh R (2011) Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2· 8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron Lett 52: 2857–2861. doi:10.1016/j.tetlet.2011.03.116

    Article  CAS  Google Scholar 

  28. Sabitha G, Reddy GSKK, Reddy KB, Yadav JS (2003) Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Lett 44: 6497–6499. doi:10.1016/S0040-4039(03)01564-8

    Article  CAS  Google Scholar 

  29. Sabitha G, Reddy GSKK, Reddy KB, Yadav JS (2003) Vanadium(III) chloride-catalyzed preparation of β-amino alcohols from epoxides. Synthesis 15: 2298–2300. doi:10.1055/s-2003-41070

    Article  Google Scholar 

  30. Sabitha G, Reddy GSKK, Reddy KB, Reddy NM, Yadav JS (2005) Vanadium(III) chloride: a mild and efficient catalyst for the chemoselective deprotection of acetonides. J Mol Cat A 238: 229–232. doi:10.1016/j.molcata.2005.05.028

    Article  CAS  Google Scholar 

  31. Wang XS, Li Q, Wu JR, Li YL, Yao CS, Tu SJ (2008) An efficient and highly selective method for the synthesis of 3-arylbenzo-quinoline derivatives catalyzed by iodine via three-component reactions. Synthesis 12: 1902–1910. doi:10.1055/s-2008-1067087

    Article  Google Scholar 

  32. Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37: 10441070. doi:10.1002/(SICI)15213773(19980504)37:8<1044::AIDANIE1044>3.0.CO;2-E

    Article  Google Scholar 

  33. Kobayashi S, Ishitani H (1999) Catalytic enantio selective addition to imines. Chem Rev 99: 1069–1094. doi:10.1021/cr980414z

    Article  PubMed  CAS  Google Scholar 

  34. Mannich C, Krosche W (1912) Ueber ein kondensations produkt aus formaldehyd, ammoniak und antipyrin. Arch Pharm 250: 647–667. doi:10.1002/ardp.19122500151

    Article  CAS  Google Scholar 

  35. Marques MMB (2006) Catalytic enantioselective cross-Mannich reaction of aldehydes. Angew Chem Int Ed 45: 348–352. doi:10.1002/anie.200502630

    Article  CAS  Google Scholar 

  36. Bohme H, Haake M (1976) Iminium salts in organic chemistry. In: Taylor EC (eds) Advances in organic chemistry: methods and results. John Wiley and Sons, New York, p 107

    Google Scholar 

  37. Müller R, Goesmann H, Waldmann H (1999) N, N-Phthaloylamino acids as chiral auxiliaries in asymmetric Mannich-type reactions. Angew Chem Int Ed 38: 184–187. doi:10.1002/(SICI)15213773(19990115)38:1/2<184::AID-ANIE184>3.0.CO;2-E

    Article  Google Scholar 

  38. Du Y, Li Q, Xiong B, Hui X, Wang X, Feng Y, Meng T, Hu D, Zhang D, Wang M, Shen J (2010) Aromatic β-amino-ketone derivatives as novel selective non-steroidal progesterone receptor antagonists. Bioorg Med Chem 18: 4255–4268. doi:10.1016/j.bmc.2010.04.092

    Article  PubMed  CAS  Google Scholar 

  39. Lin Y, Huangshu L, Junhua Z, Xiujuan X (1991) The Mannich reaction between aromatic ketones, aromatic aldehydes and aromatic amines. Synthesis 9: 717–718. doi:10.1055/s-1991-26554

    Article  Google Scholar 

  40. Wu H, Shen Y, Fan L, Wan Y, Zhang P, Chen C, Wang W (2007) Stereoselective synthesis of β-amino ketones via direct Mannich-type reaction catalyzed with silica sulfuric acid. Tetrahedron 63: 2404–2408. doi:10.1016/j.tet.2007.01.015

    Article  CAS  Google Scholar 

  41. Khan AT, Parvin T, Choudhury LH (2008) Bromodimethylsulfonium bromide catalyzed three-component Mannich-type reactions. Eur J Org Chem 834–839. doi:10.1002/ejoc.200700643

  42. Ollevier T, Nadeau E (2004) Bismuth triflate-catalyzed three-component Mannich-type reaction. J Org Chem 69: 9292–9295. doi:10.1021/jo048617c

    Article  PubMed  CAS  Google Scholar 

  43. Ollevier T, Nadeau E, Guay-Begin AA (2006) Direct-type catalytic three-component Mannich reaction in aqueous media. Tetrahedron Lett 47: 8351–8354. doi:10.1016/j.tetlet.2006.09.082

    Article  CAS  Google Scholar 

  44. Wang R, Li B, Huang T, Shi L, Lu X (2007) NbCl5-Catalyzed one-pot Mannich-type reaction: three component synthesis of β-amino carbonyl compounds. Tetrahedron Lett 48: 2071–2073. doi:10.1016/j.tetlet.2007.01.142

    Article  CAS  Google Scholar 

  45. Ranu BC, Samanta S, Guchhait SK (2002) Zinc tetrafluoroborate catalyzed Mannich-type reaction of aldimines and silyl enol ethers in aqueous medium. Tetrahedron 58: 983–988. doi:10.1016/S0040-4020(01)01177-2

    Article  CAS  Google Scholar 

  46. Azizi N, Torkiyan L, Saidi MR (2006) Highly efficient one-pot three-component Mannich reaction in water catalyzed by heteropoly acids. Org Lett 8: 2079–2082. doi:10.1021/ol060498v

    Article  PubMed  CAS  Google Scholar 

  47. Yi W-B, Cai C (2006) Mannich-type reactions of aromatic aldehydes, anilines, and methyl ketones in fluorous biphase systems created by rare earth (III) perfluorooctane sulfonates catalysts in fluorous media. J Fluorine Chem 127: 1515–1521. doi:10.1016/j.jfluchem.2006.07.009

    Article  CAS  Google Scholar 

  48. Eftekhari-Sis B, Abdollahifar A, Hashemi MM, Zirak M (2006) Stereoselective synthesis of β-amino ketones via direct Mannich-type reactions, catalyzed with ZrOCl2·8H2O under solvent-free conditions. Eur J Org Chem 5152–5157. doi:10.1002/ejoc.200600493

  49. Li H, Zeng H, Shao H (2009) Bismuth(III) chloride-catalyzed one-pot mannich reaction: three-component synthesis of β-amino carbonyl compounds. Tetrahedron Lett 50: 6858–6860. doi:10.1016/j.tetlet.2009.09.131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokman Hakim Choudhury.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 22596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Choudhury, L.H. & Parvin, T. VCl3 catalyzed imine-based multicomponent reactions for the facile access of functionalized tetrahydropyridines and β-amino carbonyls. Mol Divers 16, 129–143 (2012). https://doi.org/10.1007/s11030-011-9339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9339-9

Keywords

Navigation