Skip to main content
Log in

Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The heating behavior of silicon carbide reaction platforms under 2.45 GHz microwave irradiation was investigated with the aid of online thermoimaging cameras and multiple-channel fiber-optic probe temperature sensors placed inside the wells/vials of the silicon carbide microtiter plates. Microwave irradiation leads to a rapid and homogeneous heating of the entire plate, with minimal deviations in the temperature recorded at different positions of the plate or inside the wells. In temperature-controlled experiments using dedicated multimode reactors, solvents with different microwave absorption characteristics can be heated in parallel in individual wells/vials of the silicon carbide plate reaching the same set temperature. Due to the large heat capacity and high thermal conductivity of silicon carbide, the plates are able to moderate any field inhomogeneities inside a microwave cavity. Although the heating of the plates can be performed extremely efficiently inside a microwave reactor, heating and synthetic applications can alternatively be carried out by applying conventional conductive heating of the silicon carbide plates on a standard hotplate. Due to the slower heating of the silicon carbide material under these conditions, somewhat longer reaction times will be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcázar J (2005) Reproducibility across microwave instruments: preparation of a set of 24 compounds on a multiwell plate under temperature-controlled conditions. J Comb Chem 7: 353–355. doi:10.1021/cc049815k

    Article  PubMed  Google Scholar 

  2. Baeraky TA (2002) Microwave measurements of the dielectric properties of silicon carbide at high temperature. Egypt J Sol 25: 263–273

    Google Scholar 

  3. Baghbanzadeh M, Molnar M, Damm M, Reidlinger C, Dabiri M, Kappe CO (2009) Parallel microwave synthesis of 2-styrylquinazolin-4(3H)-ones in a high-throughput platform using HPLC/GC vials as reaction vessels. J Comb Chem 11: (in press)

  4. Carvalho AP, Malcata FX (2005) Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. J Agric Food Chem 53: 5049–5059. doi:10.1021/jf048788i

    Article  PubMed  CAS  Google Scholar 

  5. Choyke, WJ, Matsunami, H, Pensl, G (eds) (2004) Silicon carbide: recent major advances. Springer, Berlin

    Google Scholar 

  6. Damm M, Kappe CO (2009) High-throughput experimentation platform: parallel microwave chemistry in HPLC/GC vials. J Comb Chem 11: 460–468. doi:10.1021/cc900007w

    Article  PubMed  CAS  Google Scholar 

  7. Damm M, Rechberger G, Kollroser M, Kappe CO (2009) An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques. J Chrom A (in press)

  8. Dimitrakis GA, National Centre for Industrial Microwave Processing (NCIMP), University of Nottingham (unpublished results).

  9. Gupta, M, Wong Wei Leong, E (eds) (2007) Microwaves and metals. J. Wiley & Sons, Asia

    Google Scholar 

  10. Harris GL (ed) (1995) Properties of silicon carbide. Institute of Electrical Engineers

  11. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73: 36–47. doi:10.1021/jo7022697

    Article  PubMed  CAS  Google Scholar 

  12. Horikoshi S, Hamamura T, Kajitani M, Yoshizawa-Fujita M, Serpone N (2008) Green chemistry with a novel 5.8-GHz microwave apparatus. Prompt one-pot solvent-free synthesis of a major ionic liquid: the 1-butyl-3-methylimidazolium tetrafluoroborate system. Org Process Res Dev 12: 1089–1093

    Article  CAS  Google Scholar 

  13. Igarashi M, Tsuzuki T, Kambe T, Miyazawa T (2004) Recommended methods of fatty acid methylester preparation for conjugated dienes and trienes in food and biological samples. J Nutr Sci Vitaminol (Tokyo) 50: 121–128

    CAS  Google Scholar 

  14. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43: 6250–6284. doi:10.1002/anie.200400655

    Article  CAS  Google Scholar 

  15. Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis. Highlights from the 2004–2008 literature. Mol Divers 13: 71–193. doi:10.1007/s11030-009-9138-8

    Article  PubMed  CAS  Google Scholar 

  16. Kappe CO, Stadler A (2001) Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation. J Comb Chem 3: 624–630. doi:10.1021/cc010044j

    Article  PubMed  Google Scholar 

  17. Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists—strategies, instruments, and protocols. Wiley-VCH, Weinheim

  18. Karstädt D, Möllmann KP, Vollmer M (2004) Eier im Wellensalat: Experimente mit der Haushaltsmikrowelle. Phys Unserer Zeit 35: 90–96. doi:10.1002/piuz.200401033

    Article  Google Scholar 

  19. Koppitz M (2008) Maximizing efficiency in the production of compound libraries. J Comb Chem 10: 573–579. doi:10.1021/cc800004a

    Article  PubMed  CAS  Google Scholar 

  20. Kremsner JM, Kappe CO (2006) Silicon carbide passive heating elements in microwave-assisted organic synthesis. J Org Chem 71: 4651–4658. doi:10.1021/jo060692v and references cited therein

    Article  PubMed  CAS  Google Scholar 

  21. Kremsner JM, Stadler A, Kappe CO (2007) High-throughput microwave-assisted organic synthesis: moving from automated sequential to parallel library-generation formats in silicon carbide microtiter plates. J Comb Chem 9: 285–291. doi:10.1021/cc060138z

    Article  PubMed  CAS  Google Scholar 

  22. Macleod C, Martinez-Teipel BI, Barker WM, Dolle RE (2006) Annulation of primary amines to piperazines and diazaspirocycles utilizing α-methyl benzyl resin. J Comb Chem 8: 132–140. doi:10.1021/cc050106w

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Teipel B, Green RC, Dolle RE (2004) Microwave-assisted synthesis of di- and trisubstituted ureas from thiophenoxy carbamate resins. QSAR Comb Sci 23: 854–858. doi:10.1002/qsar.200420043

    Article  CAS  Google Scholar 

  24. Matloobi M, Kappe CO (2007) Parallel processing of microwave-assisted organic transformations. Comb Chem High Throughput Screen 10: 735–750. doi:10.2174/138620707783018496

    Article  PubMed  Google Scholar 

  25. Medina I, Aubourg S, Gallardo JM, Perezmartin R (1992) Comparison of six methylation methods for analysis of the fatty acid composition of albacore lipid. Int J Food Sci Technol 27: 597–601

    CAS  Google Scholar 

  26. Nüchter M, Ondruschka B (2003) Tools for microwave-assisted parallel synthesis and combinatorial chemistry. Mol Divers 7: 253–264. doi:10.1023/B:MODI.0000006916.69862.3d

    Article  PubMed  Google Scholar 

  27. Peters FT, Drvarov O, Lottner S, Spellmeier A, Rieger K, Haefeli WE, Maurer HH (2009) A systematic comparison of four different workup procedures for systematic toxicological analysis of urine samples using gas chromatography-mass spectrometry. Anal Bioanal Chem 393: 735–745. doi:10.1007/s00216-008-2471-4

    Article  PubMed  CAS  Google Scholar 

  28. Pfleger, K, Weber, A, Maurer, HH (eds) (2007) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  29. Saddow, SE, Agarwal, A (eds) (2004) Advances in silicon carbide processing and applications. Artech House Inc, Norwood, MA

    Google Scholar 

  30. Segura J, Ventura R, Jurado C (1998) Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B 713: 61–90. doi:10.1016/S0378-4347(98)00089-9

    Article  CAS  Google Scholar 

  31. Stadler A, Yousefi BH, Dallinger D, Walla P, Vander Eycken E, Kaval N, Kappe CO (2003) Scalability of microwave-assisted organic synthesis. From single-mode to multimode parallel batch reactors. Org Process Res Dev 7: 707–716. doi:10.1021/op034075+

    Article  CAS  Google Scholar 

  32. Treu M, Karner T, Kousek R, Berger H, Mayer M, McConnell DB, Stadler A (2008) Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor. J Comb Chem 10: 863–868. doi:10.1021/cc800081b

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Oliver Kappe.

Electronic supplementary material

The Below is the Electronic Supplementary Material

ESM (PDF 918 kb)

ESM (PDF 918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damm, M., Kappe, C.O. Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics. Mol Divers 13, 529–543 (2009). https://doi.org/10.1007/s11030-009-9167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9167-3

Keywords

Navigation