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Abstract We consider a reinforcement learning setting where the learner is given

a set of possible models containing the true model. While there are algorithms that

are able to successfully learn optimal behavior in this setting, they do so without

trying to identify the underlying true model. Indeed, we show that there are cases in

which the attempt to find the true model is doomed to failure.
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Introduction

In reinforcement learning problems, an agent acts in an unknown environment that

allows the agent to take actions that are followed by a response of the environment.

The paradigm for representing such reinforcement learning problems are Markov

decision processes, where starting in some initial state s1, the agent at time steps

t ¼ 1; 2; . . . chooses an action at from a set of actions A, obtains a random reward

depending on the current state st and the chosen action at, and then moves to state

stþ1 according to transition probabilities that also depend on the state-action pair

ðst; atÞ. Formally, a Markov decision process is defined as follows.

Definition 1 AMarkov decision process (MDP)M consists of a set of states S with

some distinguished initial state s1, a set of actions A, reward distributions with mean

r(s, a) for the reward when choosing action a in state s, and transition probabilities

pðs0js; aÞ for the probability of moving to state s0 when choosing action a in state s.
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However, in many practical reinforcement learning problems (e.g. applications in

robotics) the underlying state space can either be huge or even unknown. Thus, a

chess playing robot may be confronted with the same board position on two

different occasions, but the respective video signals of the board may be different.

Thus, it makes sense to distinguish between observations and states. In more

complex scenarios as we will consider here, the agent only has direct access to

observations (like the video signal of the robot) but has no information about the

underlying state (the respective board position). In the motivating example, states

could be considered as sets of observations (corresponding to the same state), or

equivalently, mappings from the set of observations O to a state space S. Without

prior knowledge the agent has to consider various such models that map

observations to states. In our example, the true model would map all images

showing the same board position to the same state, but of course when learning from

scratch it is not clear that this is the correct model. Rather, it seems that the learner

has to learn the true model or a good approximation of it as well. Actually, we will

consider more general models that need not aggregate observations but more

generally histories, that is, the sequences of observations, rewards, and chosen

actions. This notion of models has been introduced by Hutter (2009).

Definition 1 In a reinforcement learning problem, the history ht after t time steps

is the sequence ht :¼ o1; a1; r1; o2; a2; r2; . . .; at; rt; otþ1 of observations os 2 O,

collected rewards rs 2 R, and chosen actions as 2 A at time steps s ¼ 1; . . .; t.

Definition 2 A model / : H ! S/ is a mapping from the set of histories H to the

state space S/ (under /) and maps each history h 2 H to a state /ðhÞ in the state

space S/.

That is, similar to our motivating example, a model assigns a respective state to

each situation in which the agent can find himself in (i.e., a history). In the example of

the chess playing robot, the observation of the board is actually not always sufficient

to decide whose move it is, and one has to take into account also the recent history of

observations to determine the correct state of the game. Note that the notion of model

in Definition 2 is still rather modest, as we do not demand that a model also specifies

the precise values of the mean rewards and transition probabilities of all state-action

pairs, which would make things obviously much harder.

Now, we assume that there is a true model utrue that maps histories to states with

respect to which the environment behaves like a Markov decision process.1

However, this model is unknown to the learner. Rather, the learner has a set of

possible models U, each mapping histories to states, at her disposal which we

assume to contain the true model utrue.

In this paper we are interested in the following questions: Is it possible to identify

the true model? Can an agent learn to behave optimally in the underlying true

Markov decision process? Is the identification of the true model a necessary

prerequisite for optimal behavior? Surprisingly, it turns out that not only is the

1 Note that the crucial property of an MDP is itsMarkovian behavior, that is, rewards and transitions only

depend on the current state and not on the history.
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answer to the latter question negative, in general it is not possible to identify the true

model, while it is still possible to learn optimal behavior.

Learning Optimal Behavior is Possible (and Not Much More Difficult
than in the MDP Setting)

MDP Preliminaries

We are interested in learning optimal behavior in the setting introduced in the

previous section, competing with an optimal strategy that maximizes the collected

rewards. Before making this more precise, we will introduce some assumptions

concerning the formal framework. First, in the following we assume that the random

rewards are bounded. Intuitively, if we allowed rewards to be unbounded, any

learning algorithm may miss a very large reward at a particular time step, a loss

which it may not be able to recover anymore. For the sake of simplicity we assume

the rewards to be bounded in the unit interval [0, 1], which can be easily achieved

by rescaling the rewards in a suitable way.

Further, while there are a few theoretical results for reinforcement learning in

MDPs with infinite state space under some additional assumptions (see e.g. Ortner

and Ryabko 2012; Lakshmanan et al. 2015), we also assume that the state space and

the action space are finite. Note however, that the set of observations is allowed to

be infinite, and it may well be that the learner sees no observation twice.

We continue with some preliminary theory on Markov decision processes, see

e.g. (Puterman 1994). A (stationary) policy on an MDP M fixes for each state a

respective action, that is, it is a mapping p : S ! A. The average reward of such a

policy p is defined as

qðM; pÞ :¼ lim
T!1

1

T

XT

t¼1

E r
�
st; pðstÞ

�� �
;

where st denotes the random state that is visited at step t when choosing actions

according to policy p. An optimal policy p� on M maximizes the average reward,

that is, qðM; p�Þ � qðM; pÞ for all policies p. It can be shown that the average

reward cannot be increased by using non-stationary policies (that may choose

different actions when visiting the same state on different time steps), so that the

restriction to stationary policies in the definition of p� is justified. However, a

learning algorithm may still perform optimally employing a nonstationary policy.

Now, by learning optimal behavior in an MDP, we mean that an agent operating on

an MDP succeeds in converging to an optimal (possibly nonstationary) policy that

maximizes the average reward.

Learning Optimal Behavior in MDPs

There are several algorithms such as E3 (Kearns and Singh 2002), R-max (Brafman

and Tennenholtz 2002), or UCRL (Jaksch et al. 2010) that are able to learn optimal
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behavior in an MDP setting when the learner only has knowledge of the state and

action space of the underlying MDP. The E3 algorithm (E3 stands for ‘‘explicit

explore or exploit’’) maintains a partial model2 of the underlying MDP and plays an

exploration strategy in states that are not sufficiently known, while exploiting (i.e.,

playing the optimal policy in the estimated model) in known states. R-max and

UCRL are based on the idea of ‘‘optimism in the face of uncertainty’’. Thus, R-max

maintains a model in which all states that have not been visited sufficiently often

have maximal possible reward (hence the name ‘‘R-max’’) and plays the optimal

policy in this model. The UCRL algorithm refines this idea by using confidence

intervals for rewards and transition probabilities and assuming the most optimistic

parameters3 in these confidence intervals. Again, the algorithm then chooses the

optimal policy based on this optimistic model of the MDP.4

The theoretical results for these algorithms go beyond simple convergence to an

optimal policy for time T ! 1. Indeed, for all the mentioned algorithms there are

also guarantees on their finite-time behavior. Thus, the sample-complexity bounds

for E3 (Kearns and Singh 2002) and R-max (Brafman and Tennenholtz 2002) give

bounds on the number of time steps after which the algorithm is probably

approximately correct (PAC), that is, close to optimal with high probability.5 For

UCRL there are even bounds on the regret the algorithm suffers with respect to an

optimal policy after any T steps. More precisely, the regret of an algorithm is

defined as follows.

Definition 3 The regret of an algorithm in an MDP M after T steps is defined as

the difference between the total reward of an optimal policy and the accumulated

reward of the algorithm, that is,

T � qðM; p�Þ �
XT

t¼1

rt;

where rt is the (random) reward obtained by the algorithm at step t.

For the UCRL algorithm it was shown (Jaksch et al. 2010) that the regret after

any T steps is upper bounded by a term of order
ffiffiffiffi
T

p
(ignoring parameters of the

MDP that also appear in the bound6), that is, the per-step regret of UCRL converges

to 0 at a rate of 1ffiffiffi
T

p .

2 In this section, model is not used in the sense of Definition 2 but rather refers to a model of the

underlying MDP based on the estimates for rewards and transition probabilities so far.
3 That is, those parameters that maximize the optimal average reward.
4 For more discussion of the concept of ‘‘optimism in the face of uncertainty’’ and its limits see (Ortner

2008).
5 Such PAC bounds also exist in other learning settings, cf. the discussion in Sect. 4 below.
6 These other parameters are the size of the state and the action space as well as the diameter, the largest

expected time it takes to reach any state from some other state. The appearance of these parameters in the

bound has also been shown to be necessary. For details see (Jaksch et al. 2010).
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Reinforcement Learning with Model Selection

The question of learning optimal behavior in the model selection setting introduced

in Sect. 1 was first considered by Hutter (2009). A bit later, Maillard et al. (2012)

gave the first regret bounds in this setting. Using the UCRL algorithm as a

subroutine, the suggested BLB algorithm computes confidence intervals for the

regret of each model, and chooses the model for which the lower value of the

confidence interval is maximal (accordingly, BLB stands for ‘‘best lower bound’’).

The regret of BLB after any T steps was shown to be upper bounded by a term of

order
ffiffiffiffiffi
T23

p
(again disregarding other parameters than T). Although learning in the

model selection setting looks more difficult, as the learner seems to have the

additional task of identifying the right model, recently an algorithm was presented

by Maillard et al. (2013) which has the same regret rate of
ffiffiffiffi
T

p
as UCRL in the MDP

setting.7 This algorithm (called OMS for ‘‘optimistic model selection’’) actually

does not try to identify the true model, but chooses the model on an optimistic basis

(just like the UCRL algorithm in the MDP case). That is, OMS chooses the model

which promises the highest reward (based on the estimates so far). Even if a non-

Markov model is chosen, the algorithm compares the collected rewards to a

respective (fictitious) Markov model. The model is rejected if it performs below the

threshold determined by this Markov model. In particular, this means that the

algorithm is willing to act according to a wrong non-Markov model as long as the

rewards collected under this model are high enough, that is, are indistinguishable

from the rewards a Markov model would give. Thus, the truth of the applied model

is not important for the algorithm.

Finding the True Model May be Impossible

The question of identifying the true model in a similar setting as considered here has

already been investigated by Hallak et al. (2013).8 It is shown that under certain

assumptions the true model indeed can be identified in the long run. However, the

assumptions made by Hallak et al. (2013) are so strong that they will be satisfied

only in a small fraction of learning problems and rarely hold in applications. Thus,

on one hand it is assumed that all state-action pairs are visited infinitely often when

time T ! 1, on the other hand, the policy applied shall be constant. Thus, the

existence of an ergodic policy is assumed. Such ergodic policies however do not

even exist in simple scenarios such as when all transitions are deterministic. On the

7 While the dependence on the horizon T of these bounds is the same as in the MDP setting, the

dependence on the other parameters is worse than in the MDP case. In particular, the bounds of Maillard

et al. (2012) depend on the size of the state spaces of all the models. An improved bound has recently

been achieved by Ortner et al. (2014). However, this new bound has worse dependence on the size of the

state space and the diameter of the true model, too. Also the number of models given to the learner

appears in the bound. Unlike in the MDP setting, it is still an open problem which of these parameters

necessarily have to appear in any regret bound.
8 The main difference is that models in (Hallak et al. 2013) map observations (instead of histories) to

states.
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other hand, even if ergodic policies exist, without knowing the correct model in

advance it is not clear that such a policy can be identified. Moreover, it is assumed

that each observation has only one possible predecessor state, and that the models

given to the learner are hierarchical, that is, the models /1; . . .;/n given to the

learner are such that each /i is a refinement9 of all models /j with j\i. Obviously,

the latter restriction on the model structure is particularly strong.

The following example, violating the condition of hierarchical models, shows

that identification of the true model is not always possible.

Example 1 Assume a model selection problem where the learner is given four

models /1, /2, /3, /4. The action set contains two actions a1, a2, and the first

observation made by the learner is o1. Assume that /1 and /2 coincide on all

histories (that is, map all histories to the same state) except the history o1a2, which

is mapped to different states under /1 and /2. Also assume that /3 and /4 coincide

on all histories except the history o1a1.

Then, if the learner chooses a1 as her first action, obviously it is not possible to

decide between the models /1 and /2, as the only history where the two models

differ never appears. Similarly, if the learner first chooses a2, she cannot decide

between the models /3 and /4. Consequently, independent of which action the

learner chooses there are two indistinguishable models. Since each of the models

can be made to be the true model, the example shows that there are learning

problems in which it is impossible to identify the true model.

While Example 1 gives an extreme case, it is easy to weaken it. Indeed,

whenever two models differ from each other on sufficiently few histories, no

statistical test will be able to distinguish them, even if—unlike in Example 1—the

respective histories are observed by the learner.

Even in more convenient settings where models differ more strongly, the

identification of the true model constitutes a difficult problem: The learner has to

determine whether samples collected in the same state (according to some model)

and given an action are really generated by the same process. Similar problems have

been e.g. considered by Navarro et al. (2004) or Wagenmakers et al. (2004), cf. also

the discussion in Sect. 4.2 below.

Discussion

Other Notions of Learning

It is important to note the difference between the reinforcement learning setting we

consider and other learning scenarios that appear in the machine learning literature.

Historically, the first formal setting for learning—introduced by Gold (1967)—was

that of learning recursive functions from their graphs. In this setting, different

9 Here, a model / is a refinement of a model /0 if for all observations o1; o2 it holds that /ðo1Þ ¼ /ðo2Þ
implies that /0ðo1Þ ¼ /0ðo2Þ. Intuitively, this means that if / maps two observations to the same state,

these observations have to correspond to the same state in the less refined model as well.
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notions of learning in the limit have been considered (cf. e.g. Case and Smith

(1983)) that imply different classes of recursive functions that turn out to be

learnable. An overview of this field, also known as inductive inference, has been

given by Angluin and Smith (1983).

Later, classification problems such as introduced in the formal setting of concept

learning by Valiant (1984) became increasingly important. Given a set X and a set

of concepts C � 2X , the learner has the task to identify a target concept10 C� 2 C by

evaluating training examples x 2 X (picked according to some probability

distribution over X) together with a corresponding label, indicating whether x is

contained in the target concept C�. So-called PAC bounds give theoretical bounds

on the number of such training examples necessary to identify the target concept

probably approximately correct. For an overview of such results for different

concept classes see Angluin (1992). For practical purposes, there is a wide range of

algorithms for classification tasks available (like neural networks, decision trees, or

support vector machines) some of which also come with theoretical guarantees in

form of PAC bounds. Boosting approaches that combine several weak learners (i.e.,

learners that are only a bit better than random guessing) to achieve PAC learnability

(Freund and Schapire 1997) are of particular theoretical interest in our context, as

there are no similar techniques in reinforcement learning.

Note that both of the mentioned learning scenarios already pursue more modest

aims than identifying an underlying truth in finite time. While inductive inference is

interested in learning in the limit, in concept learning one is happy with an

approximation of the target concept.

Comparing these settings to our reinforcement learning scenario, the latter

corresponds to a multiclass classification11 task for which PAC bounds have been

derived by Morvant et al. (2012)): Each history is assigned to one (unique)

corresponding state. Actually, there are indeed results about reduction of

performance in reinforcement learning problems to performance in (a sequence

of) classification tasks (Langford and Zadrozny 2005).12 However, while error rates

for classification tasks in this framework can be translated into regret bounds, this

does not give a concrete algorithm. In particular, it is not clear how to construct

training sets for the respective classifiers. For a detailed discussion of the subtleties

of the reduction see (Langford and Zadrozny 2005).

Generally, compared to other machine learning settings like classification, in

reinforcement learning there is the additional level of acting, with respect to which

performance is measured. It is indeed a characteristic of reinforcement learning that

a high probability identification (or approximation) of the underlying truth is no

guarantee for high performance with respect to reward. Thus, after having identified

the underlying true model after a certain number of steps with error probability

10 The target concept can be e.g. considered to be the set of instances with a certain property.
11 Unlike in binary classification where examples are assigned one of two possible labels (indicating the

membership in the target concept), in multiclass classification there are in general more than two labels.

Still, each example is assigned a unique label.
12 The idea here is however to label the histories not by the respective underlying state but by the

respective optimal action.
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d[ 0, it is still risky to act according to this model for the rest of the time, as with

probability d the model will be wrong and the chosen policy suboptimal. This

problem is known as the ‘‘exploration vs exploitation dilemma’’, which is already

present in very simple reinforcement learning settings, such as the multi-armed

bandit problem (Lai and Robbins 1985; Auer et al. 2002), which corresponds to a

one-state MDP (with obviously trivial transition probabilities).

On the other hand, a model that achieves small regret need not be a good

approximation of the underlying true model. As already indicated in Sect. 2.3, the

OMS algorithm of Maillard et al. (2013) does not even try to identify or

approximate the true model. Even after a large number of steps it would not be able

to tell which model would give a good approximation of the true model.

Different Notions of Model

That an algorithm can be successful without trying to identify the underlying model

may be reminiscent of the discussion of Breiman (2001) about the two cultures in

statistical modeling: while the traditional statistics community tends to assume an

underlying (type of) model for observed data (so that only the parameters of the

model have to be estimated), the machine learning community tries to solve

problems algorithmically without explicitly assuming any underlying (true) model.

However, there are some notable differences to this classical setting: Most

importantly, the notion of model Breiman (2001) uses is different from ours and

rather means a stochastic data model that has generated the observed data. In our

context, this rather corresponds to the underlying Markov decision process. The

assumption that a reinforcement learning agent acts in an unknown Markov decision

process is actually more in the tradition of the first culture criticized by Breiman

(2001). Still, Markov decision processes are a paradigm in reinforcement learning

that has seen few alternatives.13 Also, our assumption that the learner has access to a

set of possible models containing the true model, rather corresponds to the culture

that is criticized by Breiman (2001). It is still an open problem how to come up with

an algorithm that either produces its models automatically or does not need any

explicit models at all. As has been shown recently by Ortner et al. (2014), the

assumption that the true model is part of the considered model can be relaxed if one

is happy to compete with an approximate model. However, this does not imply

convergence to the optimal policy (in the true model).

A related question is that of model mimicry. Thus, a different model than the true

one may lead to comparably high reward even though it is not the true model

(similar to Example 1). This has been discussed for statistical data models e.g. by

Navarro et al. (2004) or Wagenmakers et al. (2004), where it is suggested to

account for the potential of one model to imitate another one and how to measure

this model mimicry. However, while Navarro et al. (2004) and Wagenmakers et al.

(2004) try to identify the true data-generating model, in the reinforcement learning

13 Other popular settings like predictive state-representations (Littman et al. 2002) or partially observable

Markov decision processes (POMDPs) (Kaelbling et al. 1998) are rather extensions of the standard MDP

setting than completely independent approaches.
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context this is not important as we are happy with low regret, independent of

whether the model employed by the algorithm is the true one.

Conclusion

In the considered reinforcement learning setting, it may be arguable that in cases as

the one in Example 1 the question about the true model does not make sense. While

we would not go as far as claiming that the concept of truth is meaningless here, in

the context of reinforcement learning, truth is at least subordinate to other criteria

like regret. One could interpret the situation in the sense of William James’

pragmatic theory of truth. The learner may consistently employ incorrect models

which are however earning high reward. These models may be wrong from the

perspective of an omniscient observer, however from the view of the learning agent

they fit James’ dictum quite well:

Ideas ... become true just in so far as they help us to get into satisfactory

relations with other parts of our experience (James 1907, p. 44).
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