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fold’s height have a significant influence on capsule’s 
crossing motion. We also realise that Young’s modu-
lus of the tissue has a critical influence on the bifurca-
tion pattern of the capsule, where a stiffer tissue may 
lead to the co-existence of three stable attractors. On 
the contrary, the capsule’s length and stiffness of the 
impact springs have less influence on the capsule’s 
dynamics. The findings of this study can help with 
the optimisation and control of capsule’s locomotion 
in the small intestine.

Keywords  Vibro-impact · Piecewise-smooth 
dynamical system · Self-propulsion · Capsule 
endoscopy · Capsule robot · Intestinal resistance

1  Introduction

Before the introduction of capsule endoscopy [1], 
visualisation of the stomach, the small bowel and the 
colon was realised by using the fibre-optic endos-
copy, which has many limitations in practice, such as 
patient’s discomfort, long duration of diagnosis and 
limited reachable area. As an alternative technology, 
capsule endoscopy becomes the primary modality for 
small-bowel diagnosis, especially for the patients with 
the Crohn’s disease, the refractory celiac disease, and 
the Peutz Jeghers syndrome, which require repeated 
monitoring of the ongoing active disease [2]. Many 
commercial capsules are passively driven by the 
peristaltic wave of the gastrointestinal tract, lacking 
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impact capsule moving on an intestinal substrate with 
the consideration of a circular fold which provides 
the main resistance for the capsule’s progression. To 
this end, a new mathematical model of the capsule-
fold contact that can depict the entire procedure of 
fold crossing is proposed. Our bifurcation analyses 
suggest that the capsule always performs period-1 
motion when the driving force is small, and fold 
crossing requires a large excitation amplitude, espe-
cially when the duty cycle ratio is small. By contrast, 
the excitation period of the capsule does not have a 
strong influence on fold crossing. It is found that the 
inner mass, capsule mass, frictional coefficient and 

Y. Yan · B. Zhang 
School of Aeronautics and Astronautics, University 
of Electronic Science and Technology of China, Chengdu, 
China
e-mail: y.yan@uestc.edu.cn

B. Zhang 
e-mail: zhangbaoquan1997@std.uestc.edu.cn

Y. Liu (*) 
College of Engineering, Mathematics and Physical 
Sciences, University of Exeter, Exeter, UK
e-mail: y.liu2@exeter.ac.uk

S. Prasad 
Royal Devon and Exeter NHS Foundation Trust, Barrack 
Road, Exeter EX2 5DW, UK
e-mail: shyamprasad@nhs.net

http://orcid.org/0000-0003-3867-5137
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-022-01528-2&domain=pdf


452	 Meccanica (2023) 58:451–472

1 3
Vol:. (1234567890)

control of their locomotion speed, so fast translating 
capsule could miss some diseases during the proce-
dure. For example, in the detection of obscure gastro-
intestinal bleeding, the reported accuracy is around 
60% [3]. Thus, various active capsules have been 
being developed for effective targeting movement and 
precise diagnosis [4].

The simplest active capsule uses screw impeller 
[5], which propels the capsule by fluid dynamic pres-
sure. Gao et  al. [6] designed a tetherless inchworm-
like capsule robot to explore the intestine, which used 
an expanding mechanism to contact the digestive 
tract for locomotion. In a more complicated proto-
type, several legs were used for both locomotion and 
anchoring [7]. These capsules adopt various external 
mechanism, where the moving parts are potentially 
hazard to the gastrointestinal tract. In clinical prac-
tice, an average size of 26 mm in length and 11 mm 
in diameter without any sharp edges is suggested for 
the design of a safe capsule accessible to the whole 
digestive system [8]. Therefore, a feasible option is 
to encapsulate all the necessary components by using 
a shell and without employing any external mecha-
nisms. Such a design is hard to propel but can benefit 
miniaturisation. To drive this kind of capsule robot, 
Erin et al. [9] employed the power for magnetic reso-
nance imaging to generate strong magnetic fields for 
controlling its position and orientation. Instead of a 
constant driving force, periodic vibro-impact actua-
tion can also be used for high-efficient propulsion 
[10].

Design of an active  capsule endoscope should 
consider the anatomy of the digestive system, espe-
cially for the small intestine which is beyond the reach 

of fibre-optic endoscopy. On average, adults’ small 
intestine has a length of 6 m and a diameter of 3.5 cm, 
consisting of 0.25 m duodenum, 2.5 m jejunum, and 
3.25 m ileum at its proximal, middle, and distal sec-
tions [11]. To increase the surface area for slowing 
down the passage of food and absorbing nutrient, 
mucosa in these sections is highly folded, with plicae 
circulares extending transversely for about 50–60% 
of circumference of the small intestine [12]. A sim-
plified anatomy of the small intestine and a piece of 
cut-open synthetic small intestine with a circular fold 
are presented in Fig.  1. For any device entering the 
small intestine, it is supposed to overcome the resist-
ance of the circular folds for forward locomotion. In 
our previous studies on the vibro-impact capsule [10, 
13, 14], however, only the flat small intestine without 
the circular folds was considered. The model assumes 
that the capsule distends the digestive tract in radial 
direction, and the hoop stress is regarded as the major 
source of resistance [15].

In our experimental study [16], a sharp increase 
in the resistance was observed when the capsule 
climbed over a circular fold, showing the significance 
of considering intestinal anatomy in the design of the 
vibro-impact capsule system [17]. A pioneering ana-
lytical study on the capsule-fold interactive force was 
performed by Sliker et al. [18], who assumed that the 
maximum resistance arises when the capsule’s head 
touches the peak of the fold. However, this presump-
tion is not necessarily true in many cases. Moreover, 
the model given by Sliker et al. [18] is only applica-
ble for evaluating static resistance, which cannot be 
used to study the dynamical response of the capsule 
when it  crosses over the fold. Therefore, the model 

Fig. 1   (Colour online) a A simplified anatomy of the small intestine and b a piece of cut-open synthetic small intestine with a circu-
lar fold
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of the capsule-fold interaction should be generalised 
for analysing the vibro-impact capsule moving in the 
small intestine.

To this end, this paper is organised as follows. A 
new mathematical model of the vibro-impact cap-
sule engaged with the small intestine is proposed 
in Sect. 2, where the circular fold is considered as a 
major source of the intestinal resistance. Next, bifur-
cation analysis is performed in Sect. 3, revealing the 
complex dynamics of the capsule when it engages 
with the circular fold, and finding the critical driving 
force required for climbing over the fold. Finally, con-
clusions are drawn in Sect. 4.

2 � Mathematical modelling of the capsule‑fold 
dynamics

2.1 � Capsule‑fold interaction

Figure 2 illustrates a small capsule horizontally mov-
ing in the x-direction on the small intestine with a 
thickness of H. The capsule has a cylindrical body 
with a length of L and a radius of R, which connects 

its hemispheric head and tail. It is seen in Fig.  2c 
that the capsule is very rigid compared with the soft 
tissue, so it is assumed that the deformation of the 
incompressible and isotropic intestine conforms to 
the capsule profile. To further simplify the model of 
capsule-fold interaction, it is assumed that the capsule 
can only translate in the xoy plane without any rota-
tion [18]. Thus the capsule does not tilt when it con-
tacts the fold as illustrated in Fig. 2d.

As seen in Fig. 2b for the front view of cross-sec-
tion A-A, the capsule’s gravity results in a  penetra-
tion into the tissue substrate for a depth of �

max
 in the 

y-direction. In front of the capsule at x = xb , the small 
intestine has a circular fold with a height of h and a 
width of w, which can be described by the following 
shape function

A side view of cross-section B-B for x ∈ [x
c
− L−

R, x
c
+ R] is displayed in Fig.  2c, showing a round 

cross-section of the capsule with a radius of

(1)f (x) =

{
h cos

(
x−x

b

2w
𝜋

)
, |x − x

b
| ≤ w,

0, |x − xb| > w.

(a)

(b)

(c)

(d)

Fig. 2   (Colour online) a 3D schematic of the capsule moving on a tissue substrate of intestine with a circular fold, with the b front 
view and c side view of the capsule-intestine interaction. d The capsule can only translate without any rotation
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where the horizontal position of capsule’s head is 
denoted as xc. Given Eq. (2) and the capsule’s radius 
and penetration, one obtains the shape function of the 
capsule bottom displayed in Fig. 2b as follows

At a given position, Fig.  2c shows the vertical dis-
tance from the capsule’s central axis to the tissue sur-
face as follows

When the distance is larger than the radius of the sec-
tion, d(x) > 𝜌(x) , there is no capsule-intestine inter-
action. On the contrary, they have a limited contact 
angle, � ∈ [−�(x), �(x)] for d(x) ≤ �(x) , where �(x) is 
the limit given by

Given the contact angle, the shape function of the 
capsule bottom is revised to be

which is compatible with Eq. (3) as p(x, 0) = p(x).
Wherever the tissue conforms to the capsule pro-

file, the small intestine deforms from its own shape 
function to the capsule’s shape function, yielding the 
deformation

Dividing the deformation by the original thickness of 
the substrate yields the tissue strain

The strain is then multiplied by the Young’s module 
of the tissue, E, for the stress

(2)

𝜌(x) =

⎧
⎪⎨⎪⎩

√
R2 − (x − x

c
)2, x

c
< x ≤ x

c
+ R,

R, x
c
− L ≤ x ≤ x

c
,√

R2 − (x − x
c
+ L)2, x

c
− R − L ≤ x < x

c
− L,

(3)

p(x) = R − 𝛿
max

− 𝜌(x)

=

⎧⎪⎨⎪⎩

R − 𝛿
max

−
√
R2 − (x − x

c
)2, x

c
< x ≤ x

c
+ R,

−𝛿
max

, x
c
− L ≤ x ≤ x

c
,

R − 𝛿
max

−
√
R2 − (x − x

c
+ L)2, x

c
− R − L ≤ x < x

c
− L.

(4)d(x) = R − �
max

− f (x).

(5)�(x, �
max

) = arccos

(
min

(
1,

d(x)

�(x)

))
.

(6)p(x, �) = R − �
max

− �(x) cos(�),

(7)�(x, �) = max (0, f (x) − p(x, �)).

(8)�(x, �) =
�(x, �)

H + f (x)
.

It is seen in Fig. 3a that the stress exerts normal pres-
sure on the capsule shell, which is mapped onto x− 
and y−axes as follows

where

is the angle of anticlockwise rotation from R to �(x).
Integrating �y(x, �) over the capsule shell yields 

the vertical reaction force exerted by the tissue on the 
capsule as follows

From the free body diagram of the capsule shell in 
Fig. 3c, one can see that the vertical force cancels the 
capsule’s gravity by

which implicitly determines the penetration depth, 
�
max

 , for a given position, x
c
 . Namely, �

max
(x

c
) is an 

implicit function of x
c
 . Next, integrating �

x
(x, �) 

yields the horizontal reaction force as follows

2.2 � Model of the vibro‑impact capsule

As displayed in Fig. 3b, the capsule’s shell has a mass 
m

c
 , inside of which there is a magnet of mass m

m
 . 

(9)�(x, �) = �(x, �)E(x).

(10)
�x(x, �) = �(x, �) sin(�),

�y(x, �) = �(x, �) cos(�) cos(�),

(11)

𝜑(x) =

⎧⎪⎨⎪⎩

−arcsin
�

x−x
c

R

�
, x

c
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c
+ R,
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c
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c
,
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c
+L

R

�
, x

c
− R − L ≤ x < x

c
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(12)
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y
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c
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Compared with Fig. 3c, one can see that the capsule’s 
gravity involves both of the inner mass and the shell, 
i.e., G =

(
m

1
+ m

2

)
g , where g = 9.81 m/s

2 is the 
gravitational acceleration. The magnetic inner mass is 
connected to the capsule shell via a primary damped 
spring, which has stiffness k and damping c. Besides, 
there are secondary and tertiary springs in front of 
and behind the magnet to constrain its motion. They 
have stiffness, k

1
 and k

2
 , and gaps, g

1
 and g

2
.

The magnetic inner mass is periodically driven by 
an external excitation as follows

where mod (t, T) indicates t modulo T, and P
d
 , T and 

D ∈ (0%, 100%) are the amplitude, period, and duty 
cycle ratio of the force, respectively. Via the springs, 
the inner mass drives the capsule shell by the follow-
ing piecewise linear interactive force

where x
r
= x

m
− x

c
 and v

r
= ẋ

m
− ẋ

c
 are the relative 

displacement and velocity, respectively, between the 
magnetic inner mass and the capsule shell.

Driven by F
i
 , the capsule shell may move either 

forward or backward, which is subjected to the 

(15)F
e
=

{
P
d
, mod (t, T) ∈ [0,DT],

0, otherwise,

(16)

F
i
=

⎧⎪⎨⎪⎩

kx
r
+ cv

r
+ k

1

�
x
r
− g

1

�
, if x

r
> g

1
,

kx
r
+ cv

r
, if − g

2
≤ x

r
≤ g

1
,

kx
r
+ cv

r
+ k

2

�
x
r
+ g

2

�
, if x

r
< −g

2
,

reaction from the small intestine including Fx and 
Coulomb friction, F

f
 . Depending on the moving 

speed and the other forces, the frictional force is 
given by

where sign (∗) and abs(∗) return the sign and absolute 
values of ∗ , and � is the frictional coefficient, respec-
tively. Here, it is worth noting that Coulomb friction 
has been verified experimentally in [16] that it is suf-
ficient to depict the friction between the capsule and 
the small intestine. Given all of the forces and free-
body diagram in Fig. 3c, the governing equations of 
the capsule dynamics are written as

It is worth noting that Fx in Eq. (18) is the horizontal 
reaction force exerted by the small intestine and the 
fold on the capsule. It can be calculated numerically 
by solving Eqs. (12), (13), and (14).

3 � Bifurcation analysis

The model, Eq. (18), involves many parameters influ-
encing the capsule response moving in the small 

(17)

F
f
=

⎧
⎪⎨⎪⎩

− sign (ẋ
c
)𝜇G, if ẋ

c
≠ 0,

− sign (F
i
+ F

x
)𝜇G, if ẋ

c
= 0 and abs

�
F
i
+ F

x

� ≥ 𝜇G,

−F
i
− F

x
, if ẋ

c
= 0 and abs

�
F
i
+ F

x

�
< 𝜇G,

(18)
{

m
m
ẍ
m
= F

e
− F

i
,

m
c
ẍ
c
= F

i
+ Fx + F

f
.

(a) (b) (c)

Fig. 3   (Colour online) a Pressure exerted on the capsule shell. b The vibro-impact capsule has an inner mass, which interacts with 
the shell via a primary damped spring and two impact springs. c Free-body diagrams of the capsule shell and the inner mass
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intestine and engaged with the circular fold. It is 
impossible to go through all the parameter values, but 
bifurcation analysis can be performed based on our 
primary studies, which proposed a millimetre-scale 
capsule moving in the small intestine [17], and inves-
tigated the intestinal friction on the capsule in vari-
ous capsule-intestine contacts [16]. Given these two 
works, the default selection of the system parameters 
is listed in Table 1.

For the bifurcation analysis, Rung-Kutta method 
was used to numerically solve Eq. (18), with the tran-
sient phase omitted for steady state. In general, simu-
lation was performed for 100 excitation periods, and 
the last 10 periods were used to construct the bifur-
cation diagrams. For complex responses with more 
than 10 periods, the simulation was extended accord-
ingly. Because the numerical simulations were very 
time-consuming, a relative large interval of 1  mN 
was firstly used to construct the bifurcation diagrams. 
Then, a small interval of 0.2  mN was adopted to 
improve the resolution in the vicinities of bifurcation 
points and of the regions with multiple stabilities. In 
each excitation period, the minimum magnet-capsule 
relative velocity, min(v

r
) , was recorded as the Poin-

caré section, and the excitation amplitude was used 

as the bifurcation parameter. In addition, we used 
the abbreviation, P-l-m-n, to denote the nonlinear 
response of period-l motion with m left impacts and 
n right impacts.

3.1 � Influence of the excitation amplitude

In this work, we are interested in the steady-state 
response when the capsule is engaged with the cir-
cular fold, and it is critical to know the capsule’s 
progression in the presence of the fold. As seen in 
Fig.  4, this criticality is determined by the driving 
force, showing that a large excitation amplitude is 
required for the capsule to cross the fold. In addition, 
it is seen that a 50 mN excitation force is sufficient for 
the fold crossing when the duty cycle is large enough, 
D > 30% , while a small duty cycle ( D = 10% ) may 
requires up to 100 mN force. By contrast, the influ-
ence of excitation period, T, on the fold crossing is 
not as significant as the duty cycle. Except the line of 
a very short period, T = 0.01 s, which requires rela-
tively larger force for the crossing, other excitation 
periods yield very similar results.

To illustrate the capsule response before fold 
crossing, the bifurcation diagram for D = 40% and 
T = 0.05 s is displayed in Fig. 5 as an example, with 
the time series of displacements of the inner mass 
and capsule shell, and the phase portraits of the rela-
tive displacement and velocity plotted for some typi-
cal responses. For a small driving force, P

d
≤ 11.8 

mN, as illustrated in Fig.  5b, the capsule performs 

Table 1   Default parameter values for the bifurcation analysis 
(obtained from [16, 17])

Parameter Symbol Unit Value

Intestine thickness H mm 0.69
Fold height h mm 1.67
Fold width w mm 1.665
Fold location x

b
mm 10

Frictional coefficient � mm 0.2293
Inner mass m

m
g 1.8

Capsule mass m
c

g 1.67
Damping c N s m

−1 0.0156
Stiffness of the primary spring k N m

−1 62
Stiffness of the secondary spring k

1 N m
−1 27900

Stiffness of the tertiary spring k
2 N m

−1 53500
Right gap g

1
mm 1.6

Left gap g
2

mm 0
Capsule radius R mm 5.5
Capsule length L mm 15
Duty cycle ratio D – 50%
Excitation period T s 0.05
Intestine stiffness E kPa 25

Fig. 4   (Colour online) Critical excitation amplitudes for the 
capsule to cross the circular fold, with the duty cycle and exci-
tation period selected for D ∈ [10%, 90%] and T ∈ [0.01, 0.09] 
s, respectively
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a P-1-3-0 response, i.e., period-1 motion with three 
left impacts and without any right impact. Then a 
periodic doubling occurs for P

d
= 12 mN, yielding 

a P-2-5-0 motion for P
d
=∈ [12, 14.1] mN. Then a 

reverse periodic doubling results in P-1-2-0 motion 
for P

d
= [14.6, 16.6] mN. For P

d
= 16.6 mN, a graz-

ing bifurcation occurs, inducing a P-1-1-0 motion 
co-existing with the P-1-2-0 response which sud-
denly disappears thereafter. Then the P-1-1-0 motion 

lasts until it changes into quasi-periodic before the 
capsule crosses the fold for P

d
> 26 mN. To illus-

trate, the time series of the capsule and inner mass 
for P

d
= 27 mN are displayed in Fig.  5g, where the 

regions enclosed by the  dashed lines AB (marked 
by yellow background) and CD denote the head-fold 
and tail-fold contacts, respectively. As seen, the cap-
sule motion is decreased by the fold once it enters the 

(a)

(b) (c) (d) (e)

(f)

(g)

Fig. 5   (Colour online) a Bifurcation diagram of the mini-
mum relative velocities plotted as a function of the excitation 
amplitude, for D = 40% . Grey region indicates the case of 
fold crossing. Additional windows demonstrate the trajecto-
ries on the phase plane ( xr , vr ) and the time histories of inner 
mass and capsule’s displacements (denoted by blue and red 
lines, respectively) obtained for b Pd = 9 mN, c Pd = 13 mN, 

d, f Pd = 16.6  mN, and e Pd = 26  mN. g Time series for 
Pd = 16.6  mN, where the regions enclosed by the dashed 
lines AB (marked by yellow background) and CD denote the 
head-fold and tail-fold contacts, respectively. The locations of 
the left impact surface are shown by vertical dashed lines, and 
Poincaré sections on the phase plane are marked by red dots
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yellow region, which is re-accelerated from t > 0.25 s 
when the capsule stands on the top of the fold.

3.2 � Influence of the capsule design

With respect to the increase of the inner mass, m
m

 , 
from 1 g to 2.5 g, as seen in Fig. 6, the bifurcation pat-
tern becomes more complex, and the required excita-
tion amplitude for crossing becomes larger. In Figs. 6a 
for m

m
= 1.5 g, the capsule response is always P-1-2-

0, where the crossing occurs when P
d
> 21 mN. For 

m
m
= 2  g, as seen in Fig.  6b, the P-1-2-0 motion is 

changed into quasi-periodic for P
d
= 16.9 mN, which 

is transformed into P-3-1-0 motion for P
d
= 17.5 

mN. The motion becomes P-4-1-0 for P
d
= 20.5 mN, 

which is then changed into P-1-0-0 for P
d
> 20.7 mN 

until the crossing occurs at P
d
= 22  mN. The bifur-

cation pattern is even more complex for m
m
= 2.5  g 

in Fig.  6c, showing three regions of non-periodic 

motion for P
d
∈ [15.3, 15.9] mN, P

d
= 16.9 mN and 

P
d
∈ [19.1, 19.5]  mN dividing the regions for P-1-

2-0, P-5-3-0, P-3-1-0, and P-1-0-0 motions. The 
period-1 response is then kept with respect to the 
increase of P

d
 before the capsule crosses the fold for 

P
d
> 22.9 mN.
Increasing the capsule mass, m

c
 , as displayed in 

Fig.  7, also complicates the bifurcation pattern and 
delays the occurrence of fold crossing. With a small 
capsule mass, Figs.  7a and b illustrate a region of 
P-1-3-0 motion for a small excitation amplitude, 
which is then transformed into P-1-2-0 motion by 
increasing either m

c
 or P

d
 . For m

c
= 1 g, the P-1-2-0 

response is kept until the excitation is strong enough, 
P
d
> 20  mN, to drive the capsule to climb over the 

fold. For m
c
= 1.5 g, the P-1-2-0 motion suddenly dis-

appears for P
d
= 18.7  mN, with a P-2-1-0 response 

showing up for P
d
> 16.9 mN to co-exist with it. The 

P-2-1-0 motion is then transformed into P-3-1-0 for 

Fig. 6   Bifurcation dia-
grams of the minimum 
relative velocities plotted as 
functions of the excitation 
amplitude, for a m

m
=1.5 g, 

b m
m

 =2 g, and c m
m

=2.5 
g. Grey regions indicate the 
cases of fold crossing

(a)

(b)

(c)
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P
d
∈ [19.9, 20.1] mN, which becomes quasi-periodic 

for P
d
∈ [20.3, 20.9] mN. Before the capsule crosses 

the fold, P-1-0-0 motion shows up for P
d
> 20.9 mN. 

Compared with Fig.  7b, the bifurcation diagram in 
Fig. 7c for m

c
= 2.5 g is much different. Two regions 

for non-periodic motions for P
d
∈ [16.9, 17.3]  mN 

and P
d
∈ [18.1, 18.9] mN divide the P-1-2-0, P-3-

5-0 and P-2-3-0 motions without any sudden jumps. 
In addition, the region for P

d
∈ [19.7, 22.3] mN wit-

nesses an isolated branch of P-1-1-0 response coex-
isting with the P-2-3-0 motion. Finally, the fold 
crossing is realised by a quasi-periodic response for 
P
d
> 22.9 mN, instead of the period-1 motions.
In Fig. 8, it is seen that increasing the stiffness, k, 

also complicates the bifurcation pattern, but it has 
inapparent influence on the critical excitation ampli-
tude for fold crossing, which occurs for P

d
≈ 22 mN. 

For k = 50 N m
−1 in Fig.  8a, the P-1-2-0 motion 

is successively transformed into P-4-4-0, P-2-3-0, 

P-3-2-0, P-2-3-0, P-3-1-0, quasi-periodic and P-1-
1-0 response for P

d
= 15.5 , 15.7, 16.1, 16.3, 16.7, 

18.5, and 18.9 mN, respectively. For k = 100 N/m in 
Fig. 8b, there exists a region for P-1-3-0 motion when 
the excitation amplitude is small, which is changed 
into P-1-2-0 for P

d
> 11 mN. It is then changed into 

P-2-4-0 response for P
d
∈ [20.9, 21.1] mN to co-exist 

with a P-2-2-0 motion. The P-2-2-0 response is kept 
before crossing occurs at P

d
> 22.3 mN by a P-4-5-0 

motion. Moreover, it can be seen in Fig. 8c that fur-
ther increase of k makes the nonlinear responses even 
more plentiful. Without any co-existing attractors, 
Fig.  8c shows nine different periodic motions and 
three isolated regions for non-periodic responses until 
the fold is crossed at P

d
> 22.3 mN.

By contrast, alternating the stiffness k
2
 between 

20 × 10
3  N/m and 40 × 10

3  N/m, which is much 
stiffer compared with k, as seen in Fig.  9, does not 
have a significant influence on the bifurcation 

Fig. 7   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for 
a m

c
= 1 g, b m

c
= 1.5 g, 

and c m
c
= 2.5 g. Blue 

diamonds and grey regions 
indicate the coexisting 
attractors and the cases of 
fold crossing, respectively

(a)

(b)

(c)
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pattern. As an example, the P-1-2-0 motion shown 
in Fig.  9b disappears at P

d
> 18.5  mN. Before that, 

it co-exists with the P-2-1-0 and P-4-2-0 motions 
for P

d
∈ [17.5, 17.7]  mN and P

d
∈ [17.9, 18.5]  mN, 

respectively. Thereafter, a mono-stability of P-3-1-0 
shows up for P

d
∈ [18.7, 20.5]  mN, which becomes 

non-periodic for P
d
∈ [20.7, 21.1] mN. Then the P-1-

0-0 motion turns up again before the fold crossing 
occurs at P

d
> 21.5 mN.

In Fig. 10, it is seen that increasing the damping, 
c, simplifies the bifurcation pattern, but hardly influ-
ences the critical excitation amplitude for fold cross-
ing. In Fig. 10a, the P-1-2-0 motion for weak excita-
tion disappears at P

d
= 18.1 mN, which co-exists with 

the quasi-periodic, P-5-3-0, and P-2-1-0 motions for 
P
d
= 17.3 , P

d
∈ [17.5, 17.7] , and P

d
∈ [17.9, 18.1] 

mN, respectively. The P-2-1-0 motion is then changed 
into a quasi-periodic response for P

d
= 19.3  mN. 

Afterwards, two more regions of quasi-periodic 

motions for P
d
= 19.9 and P

d
∈ [20.5, 20.9]  mN 

show up to divide the regions of P-3-1-0 and P-1-
0-0 motions. Finally, the fold crossing occurs at 
P
d
= 21.7  mN by the P-1-0-0 motion. The pattern 

in Fig.  10b for c = 0.04 Ns/m is similar to that in 
Fig. 10a, but has less changes in the response after the 
disappearance of P-1-2-0 motion for P

d
= 17.1  mN. 

The bifurcation diagram in Fig. 10c for c = 0.08 Ns/m 
is much simpler than the previous two, without 
change in the number of period or any co-existing 
attractors. It is always period-1, but has less number 
of left impacts with respect to the enhancement of 
excitation amplitude.

Influence of the right gap, g
1
 , is illustrated in 

Fig. 11. When the gap is sufficient large, g
1
> 0.4 mm, 

as seen in Fig. 11c, the inner mass hardly touches the 
right spring, showing a bifurcation pattern similar to 
those discussed in Fig. 9, which is P-1-2-0 for small 
excitation amplitude and jumps to be irregular and 

Fig. 8   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for a 
k = 50 [ N m

−1 ], b k = 100 
[ N m

−1 ], and c k = 200 
[ N m

−1 ]. Blue diamonds 
and grey regions indicate 
the coexisting attractors and 
the cases of fold crossing, 
respectively

(a)

(b)

(c)
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P-3-1-0 for large P
d
 before the fold crossing. When 

the gap is decreased to 0.3 mm, as seen in Fig. 11b, 
the responses with several right impacts, which are 
not observed in any other cases, show up for large 
excitation amplitude. Meanwhile, the fold cross-
ing is delayed from P

d
= 21  mN to 22  mN, and the 

multiple stability disappears. In Fig.  11a, the gap is 
further reduced to 0.1 mm, resulting in a very simple 
bifurcation pattern, which is P-1-2-5 and irregular for 
small and large excitation, respectively. However, due 
to the frequent right impact, the corresponding phase 
portrait in Fig. 11d is much more complex compared 
with those in Figs 11e and f.

It is seen in Fig. 12 that the bifurcation pattern and 
the critical excitation amplitude for the fold cross-
ing are insensitive to the variation of the capsule 
length, L. All bifurcation diagrams are very similar 
to the one displayed in Fig.  13c for R = 6  mm. By 
contrast, increasing the capsule radius, R, from 4 to 
7  mm, as seen in Fig.  13, complicates the bifurca-
tion after the disappearance of the P-1-2-0 motion, 
and slightly reduces the critical excitation amplitude 
for the fold crossing from P

d
= 22.1 to 20.9  mN. 

In Fig.  13a for R = 4  mm, there are two regions of 
quasi-periodic motion for P

d
∈ [17.7, 18.7]  mN and 

P
d
∈ [19.5, 20.1]  mN dividing the regions of P-2-

1-0, P-3-1-0 and P-1-0-0 motions, and the crossing 

is realised by the P-1-0-0 motion. In Fig.  13d for 
R = 7  mm, by contrast, there are four regions of 
quasi-periodic response dividing the regions of P-2-1-
0, P-5-3-0, P-4-2-0 and P-3-1-0 motions, and the fold 
crossing follows a quasi-periodic response.

3.3 � Influence of the small intestine and the circular 
fold

With respect to the increase of the intestine thickness, 
H, from 1 to 2 mm, as seen in Fig. 14, the bifurcation 
diagram is gradually simplified, but the critical exci-
tation amplitude for the fold crossing is unchanged. 
In Fig. 14a, the P-1-2-0 motion suddenly disappears 
for P

d
= 18.3  mN, before which there co-exists a 

quasi-periodic motion for P
d
≥ 17.9 mN. The quasi-

periodic response lasts until P
d
= 18.9  mN, where 

it is changed into a P-2-1-0 motion which under-
goes a periodic-doubling bifurcation to be P-4-2-0 
for P

d
∈ [19.3, 19.9] mN. It is then transformed into 

P-3-1-0 at P
d
≥ 20.1 mN, and finally bifurcated into 

quasi-periodic again before the crossing occurs at 
P
d
> 21.5 mN. For H = 1.5 mm in Fig. 14b, there is 

no co-existing attractors near the disappearance of 
P-1-2-0 motion. It directly bifurcates into quasi-peri-
odic at P

d
≥ 18.1 mN, which is then transformed into 

quasi-periodic at P
d
≥ 18.5  mN. This motion lasts 

Fig. 9   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for a 
k
2
= 20 × 10

3 N/m, and b 
k
2
= 40 × 10

3 N/m. Blue 
diamonds and grey regions 
indicate the co-existing 
attractors and the cases of 
fold crossing, respectively

(a)

(b)
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until the fold crossing occurs for P
d
> 21.5 mN. Then 

thickness is further increased to 2 mm, as displayed in 
Fig. 14c, the bifurcation pattern becomes much sim-
pler. The P-1-2-0 motion becomes quasi-periodic for 
P
d
≥ 18.5 mN, which is kept until the capsule crosses 

the fold for P
d
> 21.5 mN.

By contrast, as shown in Fig.  15, increasing the 
frictional coefficient, � , from 0.2 to 0.3, delays the 
fold crossing while simplifies the bifurcation pattern. 
For � = 0.2 in Fig.  15a, the P-1-2-0 motion disap-
pears with a very small driven force, P

d
> 7.9  mN, 

yielding a co-existing quasi-periodic attractor for 
P
d
= 7.9  mN. Then one observes a frequent change 

of the response with respect to the increase of P
d
 , 

including P-2-1-0, P-4-2-0, P-3-1-0 and quasi-
periodic motions. It finally stays at P-1-0-0 for 
P
d
≥ 9.5  mN, which lasts until the fold crossing 

occurs for P
d
> 15 mN. In Fig. 15b, increasing � to 

0.2 yields a similar bifurcation pattern compared with 

Fig.  15a, but it requires a much larger driven force 
to trigger off both of the bifurcation and fold cross-
ing. When � is further increased to 0.3, as seen in 
Fig. 15c, the P-1-2-0 motion lasts until the fold cross-
ing for P

d
> 24 mN, without incurring any bifurca-

tion in the nonlinear response.
Changing the mechanical property of the small 

intestine can result in very complex dynamics of 
the capsule. To illustrate, the bifurcation diagram 
for E = 75  kPa is displayed in Fig.  16a, show-
ing the co-existence of three stable attractors for 
P
d
∈ [19.1, 20.1] mN. If only the attractor marked by 

red dots is tracked, one can find a simple bifurcation 
pattern, switching between the P-1-2-0 and P-2-4-0 
motions via periodic doubling and reverse periodic 
doubling at P

d
= 13.9  mN and 17.9  mN. However, 

there exists another branch of P-2-4-0 motion 
(denoted by blue diamonds) for P

d
∈ [19.1, 20.1] mN 

connecting the P-1-2-0 branch. In addition, there is 

Fig. 10   (Colour online) 
Bifurcation diagrams of the 
minimum relative veloci-
ties plotted as functions 
of the excitation ampli-
tude, for a c = 0.02 Ns/m, 
b c = 0.04 Ns/m, and 
c c = 0.08 Ns/m. Blue 
diamonds and grey regions 
indicate the co-existing 
attractors and the cases of 
fold crossing, respectively

(a)

(b)

(c)
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a third isolated branch (marked by orange circles) 
for P

d
∈ [17.3, 20.3]  mN, which alternates among 

quasi-periodic, P-1-1-0, P-2-2-0, P-2-4-0, and P-3-
2-0 responses. Time series and phases portraits of the 
typical responses, including the co-existing attractors, 
are plotted in the additional windows of Fig. 16. Yel-
low regions in the time series indicate the interaction 
between the capsule head and the fold, showing that 
a small excitation amplitude, P

d
< 22.1  mN, cannot 

drive the capsule to climb up the fold.
Either increasing or decreasing the stiffness of the 

small intestine, as seen in Fig.  17, can simplify the 

bifurcation pattern. A softer tissue, E = 25 kPa in 
Fig. 17a, yields a pattern similar to some of the previ-
ous bifurcation diagrams, such as the one in Fig. 13c. 
By contrast, a stiffer tissue, E = 100 kPa in Fig. 17b, 
results in a new pattern, which has one extra region 
of bi-stability for P

d
∈ [20.1, 20.3] mN. Moreover, it 

can be seen from Figs.  16 and 17b that a large tis-
sue stiffness changes the capsule response back to the 
P-1-2-0 motion before the fold crossing, which is not 
observed in any other cases.

As displayed in Fig.  18, the critical excita-
tion amplitude increases from 17 to 24.1  mN when 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11   (Colour online) Bifurcation diagrams of the minimum 
relative velocities plotted as functions of the excitation ampli-
tude, for a g

1
= 0.1 mm, b g

1
= 0.3 mm, and c g

1
= 0.5 mm, 

with the phase portraits for P
d
= 20 mN displayed in d–f. Blue 

diamonds and grey regions indicate the co-existing attractors 
and the cases of fold crossing, respectively
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the fold height grows from 1 to 2.5  mm. Thus, a 
higher fold requires a larger driving force to climb 
over. For a shorter fold in Fig.  18a, the P-1-2-0 
lasts without any qualitative change. In case that 
h = 1.5 mm, as seen in Fig. 18b, the P-1-2-0 motion 
disappears at P

d
> 18.1  mN, with quasi-periodic 

and P-2-1-0 motions co-existing for P
d
= 17.9 

and 18.1  mN, respectively. It is then successively 
bifurcated into P-5-3-0, P-4-2-0, and P-3-1-0 for 
P
d
∈ [18.5, 18.9]  mN, P

d
∈ [19.1, 20.3]  mN and 

P
d
∈ [20.7, 21.1]  mN, respectively, followed by a 

quasi-periodic motion occurs at P
d
= 21.3 mN, right 

before the fold crossing. For h = 2.5 mm in Fig. 18c, 
one can observe a reverse periodic doubling from 
P-2-2-0 to P-1-1-0 at P

d
= 21.1  mN, after the dis-

appearance of P-1-2-0 motion for P
d
> 19.1  mN. 

Finally, the fold crossing is also realised by a quasi-
periodic response.

With respect to the increase of the fold width, w, 
from 1 to 3 mm, as seen in Fig.  19, the bifurcation 
pattern is complicated, while the critical excitation 
amplitude for the crossing is slightly reduced from 
21.7 to 21.1 mN. For w = 1 mm in Fig. 19a, the P-1-
2-0 motion disappears for P

d
> 18.1  mN, where a 

quasi-periodic response co-exists. Thereafter, there 
is only a P-2-1-0 motion lasting until the capsule 
crosses the fold for P

d
> 21.7  mN. Once increasing 

the fold width, the bifurcation after the disappearance 

of the P-1-2-0 motion becomes much more complex. 
To illustrate, the P-2-1-0 response in Fig. 19c bifur-
cates into a P-3-1-0 motion for P

d
> 18.5 mN, which 

is then transformed into quasi-periodic again for 
P
d
> 20.3  mN. This quasi-periodic response is then 

kept until the fold crossing for P
d
> 21.1 mN.

4 � Conclusions

A vibro-impact capsule moving on the small intestine 
substrate with a circular fold has been mathematically 
modelled in this paper, and its dynamic response has 
been studied by bifurcation analysis. Influences of 
various parameters, such as the amplitude, period 
and duty cycle of the external driving force, the mass, 
stiffness, damping and geometries of the capsule, the 
mechanical properties and geometries of the tissue 
and the circular fold, on the capsule dynamics have 
been studied. A general trend of dynamics of the cap-
sule system has been found. It shows that the capsule 
always performs a period-1 motion when the exci-
tation amplitude is small, while the crossing of the 
circular fold requires a strong excitation, especially 
when the duty cycle is too small. In addition, it has 
also been found that the secondary spring of the cap-
sule has no influence on the capsule dynamics, since 

Fig. 12   (Colour online) 
Bifurcation diagrams of the 
minimum relative veloci-
ties plotted as functions of 
the excitation amplitude, 
for a L = 10 mm, and b 
L = 20 mm. Blue diamonds 
and grey regions indicate 
the co-existing attractors 
and the cases of fold cross-
ing, respectively

(a)

(b)
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the right gap is too large and the inner mass cannot 
contact with the right constraint.

Our studies indicated that some parameters, such 
as the stiffness of the secondary and the tertiary 
springs, and the capsule length, can hardly influence 
the capsule response and the critical excitation ampli-
tude required for fold crossing. For the fold crossing, 
it was found that increasing the inner mass, capsule 
mass, frictional coefficient, or the fold height can 
significantly delay the occurrence of crossing, while 

the other parameters, such as the damping, stiffness 
of the primary spring, capsule radius, intestine thick-
ness and Young’s modulus, and the fold width, have 
very limited influence on the required force for fold 
crossing. In general, it was found that the capsule has 
a large probability to perform the P-1-0-0 and the 
quasi-periodic motions right before the fold crossing.

For the bifurcation pattern, the P-1-2-0 response is 
very typical when the driving force is small, except 
for some special cases, such as a light inner mass or 

Fig. 13   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for a 
R = 4 mm, b R = 5 mm, 
c R = 6 mm, and d 
R = 7 mm. Blue diamonds 
and grey regions indicate 
the co-existing attractors 
and the cases of fold cross-
ing, respectively

(a)

(b)

(c)

(d)
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a large stiffness of the primary spring, which may 
lead to a P-1-3-0 response. Decreasing the inner 
mass or the capsule mass, or increasing the fric-
tional coefficient can reduce the bifurcation of the 
nonlinear capsule, so keeps the P-1-2-0 motion until 
the fold crossing occurs. On the contrary, increasing 
the Young’s modulus of the tissue yields very com-
plex bifurcations, including the co-existence of three 

stable attractors. Moreover, we found a very unique 
phenomenon due to the large Young’s modulus that, 
the response of the capsule can be changed back to 
the P-1-2-0 motion before the fold crossing, even if 
it undergoes many complex bifurcations with respect 
to the increase of the driving force, which was not 
observed in any other cases.

Fig. 14   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for a 
H = 1 mm, b H = 1.5 mm, 
and c H = 2 mm. Blue 
diamonds and grey regions 
indicate the coexisting 
attractors and the cases of 
fold crossing, respectively

(a)

(b)

(c)
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Fig. 15   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for 
a � = 0.1 , b � = 0.2 , and 
c � = 0.3 . Blue diamonds 
and grey regions indicate 
the coexisting attractors and 
the cases of fold crossing, 
respectively

(a)

(b)

(c)
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Fig. 16   (Colour online) a Bifurcation diagram of the minimum relative velocities plotted as a function of the excitation amplitude 
for E = 75 kPa. Blue diamonds and orange circles represent the co-existing attractors, and grey regions indicate the cases of fold 
crossing. Additional windows demonstrate the trajectories on the phase plane ( xr , vr ) and the time histories of inner mass and cap-
sule’s displacements (denoted by blue and red lines, respectively) obtained for b P

d
= 10 mN, c, f 17.7 mN, d, g 18.7 mN, e, h 

19.9 mN, and i 20.3 mN. j Time series for Pd = 23 mN, where the regions enclosed by the dashed lines AB and CD denote the head-
fold and tail-fold contacts, respectively. The locations of the left impact surface are shown by vertical dashed lines, and Poincaré sec-
tions on the phase plane are marked by red dots, blue diamonds, and orange circles

◂

Fig. 17   (Colour online) 
Bifurcation diagrams of the 
minimum relative veloci-
ties plotted as functions 
of the excitation ampli-
tude, for a E = 25 kPa, 
and b E = 100 kPa. Blue 
diamonds and grey regions 
indicate the co-existing 
attractors and the cases of 
fold crossing, respectively

(a)

(b)
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Fig. 18   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for a 
h = 1 mm, b h = 1.5 mm, 
and c h = 2.5 mm. Blue 
diamonds and grey regions 
indicate the co-existing 
attractors and the cases of 
fold crossing, respectively

(a)

(b)

(c)
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Fig. 19   (Colour online) 
Bifurcation diagrams of the 
minimum relative velocities 
plotted as functions of the 
excitation amplitude, for a 
w = 1 mm, b w = 1.5 mm, 
and c w = 3 mm. Blue 
diamonds and grey regions 
indicate the co-existing 
attractors and the cases of 
fold crossing, respectively

(a)

(b)

(c)
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