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Abstract We report a unique tuneable analogue

trend in particle focusing in the laminar and weak

viscoelastic regime of elasto-inertial flows. We

observe experimentally that particles in circular

cross-section microchannels can be tuned to any

focusing bandwidths that lie between the ‘‘Segre-

Silberberg annulus’’ and the centre of a circular

microcapillary. We use direct numerical simulations

to investigate this phenomenon and to understand how

minute amounts of elasticity affect the focussing of

particles at increasing flow rates. An Immersed

Boundary Method is used to account for the presence

of the particles and a FENE-P model is used to

simulate the presence of polymers in a Non-Newto-

nian fluid. The numerical simulations study the

dynamics and stability of finite size particles and are

further used to analyse the particle behaviour at

Reynolds numbers higher than what is allowed by the

experimental setup. In particular, we are able to report

the entire migration trajectories of the particles as they

reach their final focussing positions and extend our

predictions to other geometries such as the square

cross section. We believe complex effects originate

due to a combination of inertia and elasticity in the
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weakly viscoelastic regime, where neither inertia nor

elasticity are able to mask each other’s effect

completely, leading to a number of intermediate

focusing positions. The present study provides a

fundamental new understanding of particle focusing

in weakly elastic and strongly inertial flows, whose

findings can be exploited for potentially multiple

microfluidics-based biological sorting applications.

Keywords Elasto-inertial � Particle focussing �
Analog tuning � Reynolds number � Weissenberg

number

1 Introduction

We study particle focusing in strongly inertial and

weakly elastic flows, whose importance is defined by

two critical dimensionless numbers: the Reynolds and

Weissenberg numbers. The Reynolds number, quan-

tifying the importance of inertia over viscous effects,

is defined as Re ¼ qUcH=l, where q is the fluid

density, Uc is the centreline flow velocity, H is the

characteristic length across the microfluidic channel

cross-section, and l is the shear viscosity of the fluid.

The Weissenberg number is defined as Wi ¼ kUc=H,

where k is the relaxation time of the polymer

additives. The ratio between these two parameters

gives the elasticity number El ¼ Wi=Re. In Newtonian

fluids, it has been well recognized that in the laminar

flows typical of microfluidic channels (Re[ 1 and

Re\2300) [1], inertia does play a role and particles

tend to migrate to equilibrium positions at distances of

order 0:6 of the channel hydraulic diameter, R, from

the center, closer to channel centerlines, as initially

predicted by Segré and Silberberg [2]. Numerous

studies exploited this effect in microfluidic applica-

tions, frequently referred to as ‘‘inertial focusing’’ of

particles [3–7]. The equilibrium position in inertial

microfluidic flows result from the balance of two

opposing forces: (1) the wall-induced lift force arising

out of the interaction between the particle and the

adjacent wall, which directs the particle away from the

wall and (2) the shear-gradient force, induced by the

velocity profile curvature, pushing the particle away

from the flow channel centreline and towards the wall

[1, 8, 9].

Particle migration and focusing have also been

extensively investigated for viscoelastic fluids in

microfluidic channels [10–13]. It has been observed

that in purely viscoelastic flows, the particles tend to

flow through a narrower focused beam close to the

centreline of the channel [14–17]. The phenomenon of

single line focusing of particles has been observed in a

wide range of microfluidic channel geometries that

include circular, [18–20] and square channels

[15, 16, 21] typically at low Reynolds numbers

(Re\1) elastic flows. The added effect of inertia

coupled with the viscoelastic effect leads to particle

migration to the channel centreline and has been

utilized in numerous applications for selective sepa-

ration of particles based on physical parameters such

as size and shape. As an example, under constant

viscoelasticity but comparatively higher inertia for a

bigger sized particle, the larger particle moves first

towards the channel centreline and can thus be

separated from smaller sized particles in sample.

Various applications have been developed on the

phenomenon of viscoelastic focusing such as micro-

flow cytometry, [22, 23] cell and particle focusing,

[24] as well as droplet [25] and bubble [5] manipu-

lation. A recent review by Stoecklein and Di Carlo

[26] covers the underlying physics as well as an

exhaustive set of applications related to elasto-inertial

microfluidics.

A clear observation from all the studies involving

the combined effect of inertia and elasticity, clearly

points towards a bistability scenario, i.e. the particles

either focus at the Segre-Silberberg annulus when

inertia dominates or at the channel centreline when

elastic effects gain an upper hand [27]. In this study,

we explored a weak elasto-inertial regime experimen-

tally, by diluting PBS solution with PEO concentra-

tions ranging from 1ppm till 50ppm (El = 0.001–0.5).

We found that particle focusing in elasto-inertial

microfluidics is tuneable at this regime, and the

particle focusing bandwidth is not restricted to the

bistability scenario, but rather can be engineered to

any analogue value that lies between the centreline

focusing and the Segre-Silberberg annulus positions.

The phenomenon has been reported in the past in spiral

microchannels, where the presence of Dean forces is

exploited for particle manipulation [28]. However, the

same particle focussing behaviour has not been

observed in straight channels (e.g. rectangular and

circular cross-section straight channels) in the weak
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elasto-inertial fluid regime (El * 0.1 or less). This

regime of viscoelasticity is clearly not very well

understood as previous reports on viscoelastic fluids

have focussed on elasticity numbers 1 or higher

[29, 30], which means the elasticity component was

not negligible. Hence, particle tuneability in straight

channels in the weak elasticity regime can lead to new

insights on the focussing mechanisms for elasto-

inertial microfluidics in a straight circular geometry.

We support our hypothesis with both experimental

observations as well as numerical simulations. For the

numerical simulations, an Immersed Boundary

method is used to predict particle velocities and

trajectories [31], whereas the elastic component of the

stress, due to the presence of the polymers in the fluid,

is modelled by the Finite Element Non-Linear Exten-

sibility Peterlin model (FENE-P) [32]. One of the

reasons for choosing the FENE-P model over the

popular Oldroyd-B and Giesekus models [33–35],

which also have been used for studying viscoelastic

flows, is the robustness of the FENE-P model at finite

inertia even for Weissenberg numbers greater than 1.

The three-dimensional fully resolved direct numerical

simulations provide access to viscous and elastic

stresses in the flow, which enable us to explain the

entire dynamics of particle migration, particle stability

and equilibrium for low elasticity flows in a circular

pipe, in the intermediate Reynolds number regime.We

believe our current study addresses a crucial aspect in

the understanding of weakly viscoelastic flows in

elasto-inertial microfluidics, and more importantly

demonstrates the possibility to tune the particle

position in microchannels by to addition of minute

amounts of elasticity.

2 Methods

2.1 Experimental setup

The experiments were carried out in a single-inlet and

single outlet silicon capillary tube with a diameter of

56 lm. A solution containing 10 lm fluorescent par-

ticles is pumped through the silicon capillary tube by a

syringe pump (Nemesys, Centoi Gmbh). The applied

flow rates reach up to 240 ll=min. Fluorescent

polystyrene particles, 10 lm diameter (Fluoro-Max,

Thermo Scientific) at a volume fraction of 0.1% were

suspended in Newtonian and viscoelastic fluids. The

Newtonian fluid comprised of Phosphate Buffer Saline

(PBS 1x) aqueous solution containing 0.1% Tween20.

The viscoelastic fluid is prepared by mixing a range of

different concentrations (from 0:0001 to 0:05wt%) of

Polyethylene Oxide (PEO) (with an average molecular

weight equal to 1� 106 Da) in a Phosphate Buffered

solution (PBS). A homogenization process for up to

2 h follows the preparation of the solution, after which

the experiments were carried out immediately. All the

experiments are done at room temperature, i.e., 25

degree centigrade.

In the present work, a systematic parametric study

is performed by varying the Reynolds and Weis-

senberg numbers. To this end, we need to introduce

several parameters, e.g., the zero shear viscosity (g0),
the infinite shear viscosity (g1), the shear-rate ( _c) and
the relaxation time (k) of the resulting PEO solution,

as well as the channel dimensions and volumetric flow

rates. The Bird–Carreau model [36, 37] is used to

calculate the effective viscosity geff of the PEO

solution at different shear-rates _c, which is given by

geff ¼ g1 þ g0 � g1ð Þ � 1þ k _cð Þ2
h i n�1ð Þ

2

: ð1Þ

In a previous study, Ebagninin et al. [38] reported

that, in dilute regimes of PEO concentrations, the zero

shear viscosity g0 varies as g0 � c2:17 for concentra-

tions c less than 0:1wt%. Also, based on other results

from the same study, it can be deduced that the zero to

infinite viscosity ratio,
g0
g1
, is approximately equal to 2

for PEO concentrations up to 0:1 wt% and
g0
g1

� 3:33

for PEO concentrations between 0:2 and 1 wt%.

Finally, the flow index n in the Bird-Carreau model is

found by comparing viscosities at two different shear-

rates. The relaxation time k was computed based on a

recent study [39] on weakly viscoelastic flows, which

gave an empirical law:

k msð Þ ¼ 0:045 c ppmð Þ½ �1:14: ð2Þ

2.2 Imaging technique

For imaging the particle flow in the circular capillary,

we used an inverted microscope (Nikon Eclipse TI,

USA) with a CMOS camera (Andoe Zyla,USA) and a

LED lighting system (Lumenor Spectra X LED,USA).

To capture the images and control the microscope

movements, the Micro-Manager Open Source
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Microscopy Software was used, while the image

processing was performed with the MATLAB soft-

ware (R2018a, Mathworks, USA). In particular, we

measured from the images the particle focusing

bandwidth F (see Fig. 1), which is the difference

between the width of the streaks of particles captured

in the images and their diameter, normalized by the

entire cross section of the channel. For example, say a

spherical particle of dimension 0.18 times the diam-

eter of the circular cross section focusses at the

equilibrium position in a channel inertial flow, i.e. at a

focusing position that is 0.3 times the diameter. In this

case the center of this particle will be at 0.2D, and if

viewed from the top the particle streak will appear

across 0.11D to 0.29D. As the equilibrium position of

particle inertial focusing is symmetrical about the

centre in a circular cross section, so there should be a

particle streak with its center at 0.8D as well, that

stretches from 0.71D till 0.89D. Thus, the value of F

(center to center distance) in this case will be 0.8D-

0.18D = 0.62D. F will be 0 when the particle is

focused at the center and have a maximum value of

0:82 if the particle sticks by the wall.

2.3 Numerical setup

We study the motion of rigid neutrally buoyant

spherical particles in a straight pipe with a circular

cross section. The fluid is incompressible and Non-

Newtonian, and its motion is governed by the Navier–

Stokes equations

otui þ ojuiuj ¼ �oipþ
P

Re
ojojui þ

1� P

Re
ojsij þ fi

ð3Þ

oiui ¼ 0; ð4Þ

where ui is the velocity vector field, p denotes the

hydrodynamic pressure, sij the polymer stress tensor, fi
the immersed boundary force to account for the

presence of the suspended particles, P is the ratio of

the solvent viscosity to the total viscosity (function of

the concentration of polymers), and Re is the Reynolds

number as introduced above.

The additional stress tensor sij describes the Non-

Newtonian behavior of the carrier fluid, modeled with

the Finite Element Non Linear Extensibility Peterlin

model (FENE-P) as commonly done in numerical

simulations of polymeric fluids [40].. In the FENE-P

model, sij is written as a function of the configuration

tensor Cij defined as

sij ¼
1

Wi

Cij

1� Ckk

L2

� oij

 !
; ð5Þ

where L is the dumbbell extensibility, oij the

Kroeneker delta and Wi the Weissenberg number.

The configuration tensor is a symmetric second-order

tensor, solution of the following dynamic equation for

its 6 independent components

otCij þ ukokCij ¼ Ckjokui þ Cikokuj � sij: ð6Þ

The previous equation represents a balance

between the advection of the configuration tensor on

the left-hand side, and the stretching and relaxation of

the polymer, represented by the first two terms and the

last one on the right-hand side, respectively.

The motion of a neutrally buoyant rigid spherical

particle is dictated by the Newton–Euler equations

[31] given as:

mp dU
p
c

dt
¼
I

oVp

�pI þ l ruþruT
� �� �

� ndS; ð7Þ

Ip
dXp

c

dt
¼
I

oVp

r � �pI þ l ruþruT
� �� �

� n
� �

ð8Þ

where mp and Ip are the mass and moment of inertia of

the particle, and Up
c and Xp

c its center velocity and

rotation vectors. The integrals are performed over the

Fig. 1 Fluid flow setup for the experimental and numerical

simulations in a circular microcapillary (drawn to scale). The

ratio of the particle to pipe diameters is approximately 1 : 5 for

both the experimental and numerical cases. The cross-sectional

view shows the existence of possible multiple particle equilib-

rium states in very dilute pressure driven flows in a circular

microchannel. The top view defines F, the focusing bandwidth
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surface of the particles oVp with unit normal vector n;

r is the vector connecting the particle center to its

surface. The no-slip and no-penetration boundary

conditions on the suspended particle are enforced

through the body force fi found by a direct forcing

Immersed Boundary Method [41, 42].

The boundary conditions on the curved pipe surface

are enforced by a volume penalization method [43],

while periodic boundary conditions are imposed in the

streamwise direction. The numerical domain size is

15D� 5D� 5D, Dbeing the particle diameter, and is

discretized with 480� 164� 164 grid points in the

streamwise and crossflow directions, respectively. The

equations of motion are solved with a fractional-step

method with the low-storage third-order Runge–Kutta

scheme for time integration and the second-order finite

difference scheme for the spatial derivatives. Note

that, the fifth-order Weighted Essentially Non-Oscil-

latory scheme [44] is used for the advection terms in

the evolution equation for the conformation tensor.

This numerical method has been used in the past for

several applications with appropriate modifications,

which include simulating spherical and oblate particle

trajectory in a Newtonian fluid in microchannels [31],

as well as elastic particles [45, 46] and cell membranes

in shear flows [47]. The interested reader is referred to

the work by Izbassarov et al. [48] and Rosti and Brandt

[49] for a detailed description of the numerical

methods used to simulate multiphase flows in various

Non-Newtonian fluids. Finally, we perform box-size

and resolution studies to ensure that our results are not

affected by any numerical artefact in a previous study

[31].

3 Results and discussion

3.1 Experimental analysis

The particle behaviour in circular capillaries is studied

by examining the amount of focusing obtained in a

Newtonian and Non-Newtonian flow, covering a wide

range of flow-rates and ppm concentrations. Past

studies have reported in detail that due to symmetric

cross sectional stresses in a circular geometry, the

particles settle on a symmetric annular radius, both in

Newtonian [2] and viscoelastic flows [23]. As it can be

seen in Fig. 2, we measured the area occupied by the

particles in the channel and found that it corresponds

to 78% of the entire channel. The maximum particle

streak centre to centre distance is denoted by F and is

called the focussing bandwidth, as mentioned earlier.

F is computed as the distance between the particle

streaks, minus the particle diameter, normalised by the

channel size. Since the ratio of the particle to channel

dimension (10 lm and 56 lm, respectively) is 18%,

this implies that the maximum particles centre to

centre distance is F ¼ 60% (78� 18%) for the

Newtonian case. F ¼ 0:6D corresponds well to the

theoretical predictions and to the previous experimen-

tal observations reported in the.

literature for the equilibrium position of a particle

in a Newtonian inertial flow [2].F ¼ 0:6D translates to

an equilibrium position at 0:6R with R ¼ D
2
being the

radius of the channel. Further, we observe that the

focussing bandwidth of a particle shrinks (shrinking

focusing bandwidth) towards the center due to the

Fig. 2 Different particle focusing equilibrium positions for

concentrations of PEO solution ranging from 0 to 500ppm and

for flow rates in the range from 5 till 180 ll=min. a Top view of

capillary for Newtonian case, the particles reach equilibrium

position at 0:6R from the center at F ¼ 0:6D. Scalebar:50 lm b
F ¼ 0:5D, Non-Newtonian fluid at 10 ppm: the behavior is

similar to the one reported for a Newtonian fluid, except that the

particles never reach a 0:6R distance but focus on a narrower

bandwidth (F ¼ 0:5D vs. 0:6D at 180 ll=min). c F ¼ 0:4D,
Non-Newtonian fluid at 50 ppm: the particles move even closer

to the center than for 5 ppm (F ¼ 0:4D vs 0:6D at 180 ll=min).

d F ¼ 0 case for Non-Newtonian fluid at 500 ppm, where

particles achieve centerline focusing at low Reynolds number

(Re\1, Wi ¼ 0:1 at 20 ll=min)). e Cross sectional view of the

four cases a–d
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combined effect of Reynolds and Weissenberg num-

ber. In the Non-Newtonian case with very low PEO

concentration.

(5 ppm) reported in Fig. 2b, we observe that the

particle focussing bandwidth is 0:5F instead of 0:6F

for the same flow rate of 180 ll=min. Thus, the elastic

effects of Non-Newtonian fluids are visible even with

a slight increase in the elasticity of the fluid at high

Reynolds number. This is because with an increasing

Reynolds number, the Weissenberg number also

becomes significantly prominent due to an increasing

shear rate. A similar trend is observed for even larger

elasticity concentrations, where at 50 ppm a more

compressed particle focusing bandwidth (Fig. 2c) is

found at 0:4D for the same flow rate as the Newtonian

case (180 ll=min; 50 ppm). Finally, Fig. 2d shows a

centreline focussing scenario where the Reynolds

number and Weissenberg number are comparable, but

both are very low (\1), which results in the domi-

nance of elastic effects. Similar results on centreline

particle focussing have also been reported in previous

studies related to elasto-inertial fluids [10, 50].

We tested the particle behaviour for various

concentrations of PEO in PBS and for different flow

rates in order to study the dual effects of the Reynolds

and Weissenberg numbers on the particle focusing. It

has previously been reported that in Newtonian fluids

for circular cross sections, the particles achieve a

focused state at a Reynolds number of 25 onwards

[51]. We varied the concentration of PEO from 1 to

50 ppm and the flow rate from 5 to 240 ll=min

(Re = 1–100). In Fig. 3 we report the focusing

bandwidth F as a function of theWeissenberg number,

at four different Reynolds numbers (Re ¼ 25, 50, 75

and 93).

We observe that the focusing bandwidth reduces as

the Weissenberg number increases, i.e. particles tend

to approach the microcapillary center, for all the

Reynolds numbers. On the other hand, at a fixed

Weissenberg number, the particles move away from

the center with increasing Reynolds number for all the

cases considered. While imaging the cross sectional

distribution of the particle is out of the scope of this

work, a previous report has demonstrated the distri-

bution of particles to be symmetric about the channel

cross-section for all Reynolds number [51] in vis-

coelastic fluids.

3.2 Numerical simulations

In order to gain more physical insight on our

experimental observations, we performed three-di-

mensional direct numerical simulations of a rigid

spherical particle in a polymeric flow modelled by the

FENE-P model. This model allows to reach higherWi

in dilute polymer flows than other viscoelastic models

such as the Oldroyd-B [52] and better prediction of

shear viscosity at high shear rates than Giesekus fluids

[53] and Phan–Tien Thanner models [54].

The simulations consider a single particle, in both

the Newtonian and Non-Newtonian case, and are

started from a fully developed single-phase flow

obtained at the selected Re andWi. In our simulations,

a dilute particle suspension is therefore studied, with a

single rigid spherical particle with diameter to channel

size ratio equal to 1:5, similar to the experimental

conditions. Also, in the viscoelastic cases, the dumb-

bell extensibility L is fixed equal to 60 and P to 0:9.

The Reynolds number is varied between 35 and

600, and the Weissenberg number between 0 and 3. In

the Newtonian case, we found that the particle

equilibrium position stabilizes at 0:6R for a Reynolds

number of about 100, as shown in Fig. 4. This is

consistent with the experimental measurements and

the Segre-Silberberg theory which predicts that in an

inertial laminar flow and in the absence of elasticity,

the particles focus at a distance 0:6R from the center of

the channel. From our results we can observe slight

variations of the particle focusing position as Re

increases, with the equilibrium position approaching

more towards the wall at moderate

Fig. 3 Effect of the Reynolds and Weissenberg numbers on the

particle focusing. Particle focusing as a function of Wi at four
differentRe. In all cases, the particle moves closer to the center

as Wi increases
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Re Re ¼ 10� 150ð Þ and then reducing again for

Re[ 150. Note that, the particle focuses at approx-

imately 0:53R at Re ¼ 35, which is in very good

agreement with the theoretical prediction by Asmolov

et al. [55], who reported the same equilibrium position

for a finite size neutrally buoyant particle of the same

size at the same Reynolds number, and also agrees

with the experimental results shown in Fig. 3. In a

Non-Newtonian solution, an inverse Segre-Silberberg

scenario has been proposed in the past to explain

particle migration towards the walls, as well as

channel centreline, at low Re and Wi [14]. This is

due to the distribution of first normal stress difference

which is minimum at the channel centre in case of

circular cross section channels and minimum at the

centre and walls in case of square and rectangular

cross sections[50]. In an elasto-inertial regime with

appreciable elasticity and inertia, the corner positions

disappear and only centerline focusing is observed.

However, we observe that under appreciable inertia

and weak elasticity, the elastic effects no longer exert

complete dominance on inertia..

Instead, multiple equilibrium positions exist that

depends on competitive domination of inertia and

elasticity of the carrier fluid.

The simulation results (Fig. 4) are in good agree-

ment with our experimental measurements (Fig. 3).

The particles move away from the center until a

critical Reynolds number of about 200 for the

Newtonian cases as well as for Wi ¼ 1, with a

resulting particle focusing position close to 0:6R.

With increasing Weissenberg numbers (Wi = 0, 1, 2,

3), the particles move closer to the center at all

Reynolds number which matches with the experimen-

tal observations in Fig. 3. While at Wi ¼ 0 and 1

inertial effects dominate over elasticity and the

particle settles close to 0:6R, above Wi ¼ 2 elasticity

effects start dominating displacing the particle con-

sistently closer to the center as Re Increases (see the

Supplementary movies S1 and S2). Note that, for each

Wi there is a critical Reynolds number ReM where the

particle has a maximum distance from the center, i.e.,

the. particle is closer to the walls, and that ReM is

smaller for higher Weissenberg numbers. This is not

so visible till Re ¼ 100 which is our experimental

observation range, but the trend is clearly seen in the

simulation results. Beyond this critical Reynolds

number ReM , the particles start moving closer to the

center with increasing effect of inertia, and the

probable cause of this discrepancy beyond the critical

Reynolds number ðReMÞ can be due to dominance of

particle size effect as well as the curvature of the pipe

[56].

Figure 5 shows the first normal stress difference as

a function of the Weissenberg number, and also the

interaction of the particle and the polymeric compo-

nent of the fluid to generate a distorted and non-

symmetric field. A stretching similar to that of a rubber

band is observed due to the first normal stress

difference around the particle, which causes the

particle to move closer to the center in an oscillatory

fashion with increasing elastic effects. The first normal

stress difference increases with the Weissenberg

number, i.e., with the fluid elasticity, thus inducing

larger particle displacements. Next, we study the

entire particles trajectory, from their initial position

(0:3R) to their final equilibrium positions, for a fixed

Reynolds number Re300 and different Wi (Fig. 6a).

Fig. 4 Results of the numerical simulations showing the

particle equilibrium position as a function of Re for four

Weissenberg numbers, Wi (0, 1, 2 and 3)

Fig. 5 First normal stress difference in the polymeric fluid flow

for Re300 and a Wi ¼ 1, b Wi ¼ 2, c Wi ¼ 3. The presence of

the particle generates a distortion of the first normal stress

difference field which is responsible for pushing the particle

towards the center of the channel. The amplitude of the first

normal stress difference increases with Wi
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For all the Weissenberg numbers, the particles right

upon introduction have a short transient motion

towards the center of the channel. The short transient

motion can be attributed to the stress build-up around

the particle right upon introduction in a fully devel-

oped baseflow, as well as to inertial effects.

Interestingly, while the particle moves smoothly in

the Newtonian fluid, in the polymeric flow, the final

equilibrium position is reached through oscillations

which slightly increase in amplitude with Wi and Re,

and are in the order of R=10. Note that, the particle in

the Non-Newtonian fluid oscillates also when its final

equilibrium position is reached (Fig. 6a, Wi = 1,2,3).

This is due to the distorted first normal stress

difference that builds up around the particle leading

to an oscillatory stretching around the particle as

shown in Fig. 5c, see also [57]. The final equilibrium

position of the particle is also shown to be independent

of its initial condition for both the Newtonian and the

Non-Newtonian fluid, as shown in Fig. 6b, where the

results obtained from two different initial conditions

for the particle are compared (0:3R and 0:7R).

Finally, we also performed preliminary numerical

simulations at fixed finite Reynolds and Weissenberg

numbers, Re300 andWi ¼ 2, in a channel with square

cross section, in order to compare the results with

those in a circular pipe. In the square channel, different

equilibrium positions are reached when the particle is

initialized at two different azimuthal positions (verti-

cal axis and diagonal), even if they are at the same

distance from the center. This is due to the loss of

periodicity in the azimuthal direction induced by the

presence of the four corners.

In Newtonian fluids, particles tend to settle in one of

the four positions that are at right angle from the

centre, i.e., along the horizontal and vertical lines

passing through the centre, even at non-zero and finite

Reynolds numbers.

On the other hand, it has been previously shown

that in viscoelastic fluids with no inertia, particles tend

to focus in the centre of the channel and also in one of

the four corners [50]. The differences between the two

geometries can be explained by considering the first

normal stress difference, reported in Fig. 7a and

Fig. 7b. While in the circular cross section (Fig. 7a)

case, the first normal stress difference is uniform in the

azimuthal direction, this is not the case in the square

cross section (Fig. 7b) case, where it shows a strongly

non uniform distribution. In particular, it is maximum

at the wall in the intersection with the horizontal and

vertical lines passing through the center, while it is

minimum in the channel center and in the four corners.

Figure 7c shows a comparison of the final equilibrium

positions in the cases of square and circular cross

sections in presence of both finite inertia and elasticity.

In both the geometries and for all the initial positions

considered, the particle first moves towards the center

of the channel and then towards the walls, eventually

reaching the equilibrium positions.

The initial motion towards the center can be

explained due to stress build-up around the particle

upon introduction as well as the effect of inertia, as in

the circular capillary.

Note, in the square duct (Fig. 7c) two different

equilibrium positions are found: one on the horizontal

and vertical lines at right angle from the center,

similarly to Newtonian fluids, and the other one on the

main diagonals, similar to viscoelastic fluids. The

latter case is really interesting as in a similar case for a

Fig. 6 a Particle trajectories at Re300 for differentWeissenberg

numbers. The particles progressively focus closer to the centre

as Wi increases. b Particles introduced from different starting

positions converge to the same final equilibrium position for

both the Newtonian (Wi ¼ 0) and Non-Newtonian fluid

(Wi ¼ 1); the two different starting position are 0.3 Rand0:7R
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Newtonian fluid it was earlier observed that the

particle first reaches an equilibrium manifold and then

undergoes slow lateral migration to the vertical or

horizontal axis [9, 31]. However, due to the finite

inertia considered in our simulations, the particle does

not reach the corner, but settles at a certain distance

from it, and the symmetrical first normal stress

difference about the diagonal axis prevents the slow

migration of the particle along the equilibrium man-

ifold [31]. This result is similar to what observed in the

case of deformable capsules in a Newtonian fluid [52].

The interested reader is referred to the work by Trofa

et al. [58] and Lashgari et al. [31] for further analysis

on the different migration dynamics of particles in

square channels.

4 Conclusions

We have reported results of a combined experimental

and numerical effort to characterize the dynamics of

very dilute suspensions of particles in a circular micro-

capillary for both Newtonian and Non-Newtonian

fluids. In particular, we study the phenomenon of

particle elasto-inertial focusing in presence of moder-

ate inertia and weak fluid elasticity and found a

general tendency of the particle to assume multiple

equilibrium positions based on competitive effects of

inertia and elasticity. The results demonstrate for the

first time, the possibility of analog tuning of the

particle focusing positions in elasto-inertial flows.

By introducing in the carrier fluid a small amount of

viscoelasticity of the order of a few ppm of PEO

solution, it is possible to tune the position of the

particle at any desired position in the microcapillary

that lies between F ¼ 0:6R and F ¼ 0.

The experimental evidence is supported by well-

resolved three-dimensional numerical simulations,

where the FENE-P model is used to account for the

viscoelastic behavior of the flow. From the numerical

simulations, we show the entire particle migration

process and extend the predictions to moderate

viscoelastic regimes where the inertial effect is

predominant (Re[ 100Þ. We believe the possibility

of particle tuning in weakly elasto-inertial regimes

will greatly aid in a better fundamental understanding

of elasto-inertial focusing in microfluidic channels in a

new perspective.
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