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Abstract In this note, we extend the problem treated

in (Lok, Math Modelling Anal 24:617–634 (2019)) to

the case of permeable surface which is shrinking in

mutually orthogonal directions. Both numerical and

asymptotic solutions are obtained for two important

governing parameters, c the shrinking rate and S char-

acterizing the fluid transfer through the boundary. In

this problem, a restriction on S is required for a

solution to exist. This contrasts with the problem in

(Lok, Math Modelling Anal 24:617–634 (2019))

where no restriction on S is needed. Numerical

solutions show that for a fixed value of S, two critical

points cc are observed for S[ 2. Conversely, two

critical points Sc are found for a given value of c when

S[ 2. A discussion on the nonexistence of solution

for S ¼ 2 is given and asymptotic solutions for S large

and ðS� 2Þ small are also presented.

Keywords Non-symmetric flow � Permeable

shrinking surface � Multiple solutions � Numerical

solutions � Asymptotic solutions

1 Introduction

In a previous paper [1] we considered the non-

symmetric flow over a moving surface in an otherwise

quiescent fluid. We assumed that the surface was

stretching in one direction and could be either stretch-

ing or shrinking in a direction mutually perpendicular

to it. Here consider the same set up but now examine

the case not treated in [1] whereby the surface is

shrinking in both directions, in effect completing the

discussion given in [1]. The basic model for this

problem as well as the motivation for studying it is

described fully in [1]. Here we take for the surface

velocity ðuw; vw;wwÞ

uw ¼ �A x; vw ¼ �B y where

A[ 0; B� 0; ww ¼ W0;
ð1Þ

for constants A; B and W0 and put, following [1],

u ¼ A x f 0ðgÞ; v ¼ B y g0ðgÞ;

w ¼ �
�
A f ðgÞ þ BgðgÞ

�
m=A
� �1=2

;

g ¼ z A=m
� �1=2

:

ð2Þ

This gives
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f 000 þ f f 00 � f 0 2 þ c g f 00 ¼ 0; ð3Þ

g000 þ c ðg g00 � g0 2Þ þ f g00 ¼ 0; ð4Þ

where primes denote differentiation with respect to g
and c ¼ B=A, where c� 0. The boundary conditions

are, for this case,

f ð0Þ þ c gð0Þ ¼ S; f 0ð0Þ ¼ �1; g0ð0Þ ¼ �1;

f 0 ! 0; g0 ! 0 as g ! 1;
ð5Þ

where S ¼ � W0ffiffiffiffiffiffi
mA

p .

Following directly from [1] and exploiting the

symmetry inherent in the problem, we can modify

boundary condition (5) to

f ð0Þ ¼ S; gð0Þ ¼ 0: ð6Þ

To see why this is possible we assume that f ð0Þ ¼
a0; gð0Þ ¼ b0 for constants a0; b0. Boundary condition

(5) gives a0 þ c b0 ¼ S. We then put

f ¼ a0 � Sþ ~f ; g ¼ b0 þ ~g, with Eqs. (3, 4) giving

~f 000 þ ~f ~f 00 � ~f 0 2 þ c ~g ~f 00 þ ða0 þ c b0 � SÞ ~f 00 ¼ 0;

ð7Þ

~g000 þ c ð~g ~g00 � ~g0 2Þ þ ~f ~g00 þ ða0 þ c b0 � SÞ~g00 ¼ 0;

ð8Þ

from which we recover Eqs. (3, 4) with
~f ð0Þ ¼ S; ~gð0Þ ¼ 0.

We start by considering the case when c ¼ 0.

2 Solution when c ¼ 0

When c ¼ 0, Eq. (3) has a solution in the form

f ðgÞ ¼ cþ 1

c
e�c g for some c[ 0: ð9Þ

The boundary condition on g ¼ 0 then gives

cþ 1

c
¼ S giving c ¼ S�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4

p

2
: ð10Þ

Expression (10) requires that S[ 0 to have c[ 0 and

further that S� 2. Since f 00ð0Þ ¼ c there are for S[ 2

two solutions with

f 00ð0Þ ¼ Sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4

p

2
and

f 00ð0Þ ¼ S�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4

p

2
:

ð11Þ

Expression (9) gives, from Eq. (4),

g0 ¼ 1

ð e1=c2 � 1Þ

�
1 � exp ð e�c g

c2
Þ
�

giving

g00ð0Þ ¼ e1=c2

cð e1=c2 � 1Þ ;

ð12Þ

where c is given in (10).

Previously in [1] there was no restriction on the wall

mass transfer parameter S though the corresponding

solution for c ¼ 0 gave only one solution. Here the

boundary condition on f 0 is changed from f 0ð0Þ ¼ 1 in

[1] to f 0ð0Þ ¼ �1. This change puts a restriction on S,

namely requiring S� 2, to have a solution though it

does provide two possible solutions. For S\0,

Eq. (10) gives c\0 and so solution (9) no longer

holds. We also note in passing that we were unable to

find any numerical solutions for c[ 0 with S\0 With

this in mind we now treat only the case when S[ 0,

i.e. only suction through the surface.

3 Numerical solutions

In Fig. 1 we plot f 00ð0Þ and g00ð0Þ against c for S ¼ 4:0,

obtained from the numerical solution of Eqs. (3, 4, 5,

6). Expressions (11, 12) give respectively 3.73205 and

0.26795 for f 00ð0Þ and 3.86763 and 3.73205 for g00ð0Þ
at c ¼ 0. These two sets of values at c ¼ 0 give rise to

two separate sections for the solution which appear to

remain separate in c[ 0. The section of solution

associated with the larger value of f 00ð0Þ at c ¼ 0 has a

critical point at c ¼ cc ’ 3:3780 limiting its range of

existence to 0� c� cc. On the lower branch of this

section of solutions the values of f 00ð0Þ loop back

towards c ¼ 0 with f 00ð0Þ approaching a finite value,

possibly its original value at c ¼ 0. The values of

g00ð0Þ on the lower branch emerging from the critical

point initially appear to be tending towards a finite

value at c ¼ 0. However, at about c ¼ 1 they diverge

rapidly from this, becoming negative and increasingly

larger in magnitude, appearing to becoming infinite as

c ! 0.
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The section of solution with the smaller value of

f 00ð0Þ at c ¼ 0 has a critical point at cc ’ 2:9748 with

f 00ð0Þ increasing and g00ð0Þ decreasing on its lower

branch. The upper solution branch of this section, as

seen in Fig. 1a, terminates at c ’ 2:12. From the outer

boundary conditions on f 0 and g0, f ! f1 and g ! g1
through exponentially small terms as g ! 1. For g
large Eqs. (3, 4) then become approximately

f 000 þ ðf1 þ c g1Þf 00 ¼ 0; g000 þ ðf1 þ c g1Þg00 ¼ 0;

ð13Þ

requiring a0 � ðf1 þ c g1Þ[ 0. On the upper branch

we find that g1\0 and that the solution terminates as

a0 ! 0 at c ’ 2:12.

In Fig. 2 we plot f 00ð0Þ against S for c ¼ 1:0. For this

value of c, f ¼ Sþ g so that g00ð0Þ ¼ f 00ð0Þ. Again we

see the existence of two critical points at S ¼ Sc;1 ’

(a)

(b)

Fig. 1 Plots of (a) f 00ð0Þ and

(b) g00ð0Þ against c for S ¼
4:0 obtained from the

numerical solution of

Eqs. (3, 4, 5, 6)
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2:6235 and Sc;2 ’ 2:8144 with solutions existing only

in S� Sc;1. Two solution branches emerge from the

larger critical point Sc;2, the upper branch proceeds to

large S with f 00ð0Þ[ 0 and increasing, apparently

linearly. The lower branch also proceeds to large S but

now has f 00ð0Þ\0. The upper branch arising at the

smaller critical value Sc;1 again proceeds to large S,

parallel with the previous upper solution for larger S.

The lower branch terminates at a finite value

S ’ 2:848, as seen in Fig. 2, where ðf1 þ c g1Þ goes

to zero.

We also consider the case when c ¼ 2, with plots of

f 00ð0Þ and g00ð0Þ against S being shown in Fig. 3. In this

case f 00ð0Þ and g00ð0Þ are different as can be seen in the

figure. There are again two critical points, now at

Sc;1 ’ 3:2547 and at Sc;2 ’ 3:4805. Both solution

branches emerging from the smaller critical point Sc;1
continue to large S, both with f 00ð0Þ and g00ð0Þ positive.

The upper solution branch, as seen in Fig. 3a,

emerging from the larger critical point Sc;2 terminates

at finite values of S, S ’ 3:893, where, as noted

previously, ðf1 þ c g1Þ goes to zero. On the lower

solution branch g00ð0Þ[ 0 and appears to be increas-

ing linearly with S. On this branch f 00ð0Þ decreases,

becomes negative at S ’ 4:775 and decreases rapidly

as S is increased further.

We can calculate the critical points cc for a given S

seen in Figs. 1, 2 and 3 numerically using the approach

described in [2, 3], for example. The results are shown

in Fig. 4 with a plot of cc against S. This plot shows

two almost parallel curves giving two critical points

for a given value of S[ 2 or conversely two critical

values Sc of S for a given value of c, as seen in the

figures. On both curves cc increases as S is increased.

This figure shows the region where solutions can exist

in the c� S space and the region where no solutions

are possible as indicated on the figure.

3.1 Solution for S large

Expressions (10, 11) give, for S large and c ¼ 0,

c� S� S�1 þ � � � ; giving

f 00ð0Þ� Sþ � � � g00ð0Þ� S�1 þ � � � ;
ð14Þ

on taking the þ sign for the upper branch solutions, as

seen in Figs. 2 and 3. This leads us to put, on

following [1],

f ¼ Sþ S�1 F; g ¼ S�1 G; Y ¼ S g; ð15Þ

with Eqs. (3, 4) becoming

F000 þ F00 þ S�2ðF F00 � F02 þ cGF00Þ ¼ 0;

G000 þ G00 þ S�2
�
cðGG00 � G02Þ þ F G00� ¼ 0;

ð16Þ

subject to

Fig. 2 Plot of f 00ð0Þ against

S for c ¼ 1:0 obtained from

the numerical solution of

Eqs. (3, 4, 5, 6). For this

value of c, g00ð0Þ ¼ f 00ð0Þ.
Asymptotic expressions (20)

are shown by broken lines
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Fð0Þ ¼ 0; F0ð0Þ ¼ �1; Gð0Þ ¼ 0; G0ð0Þ ¼ �1;

F0;G0 ! 0 as Y ! 1;

ð17Þ

where primes now denote differentiation with respect

to Y.

Equations (16) suggest an expansion of the form

FðY; SÞ ¼ F0ðYÞ þ S�2 F1ðYÞ þ � � � ;
GðY; SÞ ¼ G0ðYÞ þ S�2 G1ðYÞ þ � � � ;

ð18Þ

where we find F0 ¼ G0 ¼ e�Y � 1 and

(a)

(b)

Fig. 3 Plots of (a) f 00ð0Þ and

(b) g00ð0Þ against S for c ¼
2:0 obtained from the

numerical solution of

Eqs. (3, 4, 5, 6). Asymptotic

expressions (20) are shown

by broken lines
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F1 ¼ � 4 þ 3 c
4

� �
þ cþ 2

2

� �
e�Y þ ðcþ 1Þ Y e�Y

þ c
4

e�2Y ;

G1 ¼ � 4 cþ 3

4

� �
þ 2 cþ 1

2

� �
e�Y þ ðcþ 1Þ Y e�Y

þ 1

4
e�2Y ;

ð19Þ

from which it follows that

f 00ð0Þ� S� cþ 2

2
S�1 þ � � � ;

g00ð0Þ� S� 2 cþ 1

2
S�1 � � � as S ! 1:

ð20Þ

Asymptotic expressions (20) hold for the upper

solution branch and are shown in Figs. 2 and 3 by

broken lines giving very good agreement with the

numerically determined values. Here we are con-

cerned only with the upper branch solution as this

solution is more physical realizable and, from previous

studies of related problems, we expect this to be the

temporally stable solution.

This analysis, as in [1], requires c 	 S2 and when c
is large, of OðS2Þ, we put c ¼ S2 l. Equations (3 – 5)

become at leading order, on applying the transforma-

tion (15),

F000 þ F00 þ lGF00 ¼ 0; G000 þ G00 þ lðGG00 � G02Þ ¼ 0;

ð21Þ

still subject to boundary conditions (17). Equation (21)

has the solution

G ¼ �b�1ð1 � e�b YÞ for some b[ 0 to be found.

Applying this solution in (21) gives

b2 � bþ l ¼ 0 giving b ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4l

p

2
and

G00ð0Þ ¼ b:

ð22Þ

Expression (22) requires l� 1=4 giving a critical

value of lc ¼ 1=4 and hence

cc �
S2

4
� � � as S ! 1: ð23Þ

In table 1 we compare the values of cc calculated

numerically with those given by expression (23) for

representative values of S. We see that there is

reasonable agreement between the two sets of results.

Further examination of these results by considering

the differences between the numerical and asymptotic

values shows this difference changes only slightly as S

is increased, from approximately 0.62 for S ¼ 4 to

approximately 0.58 for S ¼ 13. This suggests that the

correction to (23) is of O(1), as is also apparent from

the asymptotic form of the Eq. (16).

We can then solve equation for F to obtain

Fig. 4 Critical values: plots

of cc against S. Asymptotic

expression (34) for ðS� 2Þ
small is shown by a broken

line
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F0 ¼ 1 � exp ðl e�bY=b2Þ
el=b

2 � 1
giving

F00ð0Þ ¼ l el=b
2

bð el=b
2 � 1Þ ;

ð24Þ

where b is given by (22). From expression (22), b ! 1

and b� l as l ! 0 so that F00ð0Þ ! 1 for both cases

and G00ð0Þ ! 1 and G00ð0Þ� l.

3.2 Singularity at S ¼ 2

Our numerical integrations of Eqs. (3, 4, 6) indicate

that there are no solutions in c[ 0 when S ¼ 2. To

investigate this we look for a solution to these

equations for small c, assuming for the present that

c[ 0. An expansion in powers of c is suggested by the

equations. However, we find that we cannot solve the

equations at OðcÞ since these have a complimentary

function that satisfies homogeneous boundary condi-

tions. To get over this difficulty we modify our

expansion to

f ðg; cÞ ¼ f0ðgÞ þ c1=2 f1ðgÞ þ c f2ðgÞ þ � � � ;
gðg; cÞ ¼ g0ðgÞ þ c1=2 g1ðgÞ þ c g2ðgÞ þ � � � :

ð25Þ

At leading order we have, from (9 – 12), for S ¼ 2

f0 ¼ 1 þ e�g;

g00 ¼ 1

e� 1

�
1 � ee

�g

�
:

ð26Þ

The equations at Oðc1=2Þ are homogeneous and have

the solution

f1 ¼ A1

�
ðgþ 2Þ f 00 þ f0

�
;

g1 ¼ A1ðg g00 � g0Þ;
ð27Þ

satisfying f1ð0Þ ¼ f 01ð0Þ ¼ g1ð0Þ ¼ g01ð0Þ ¼ 0 and the

outer boundary condition for some constant A1.

At OðcÞ we then have

f 0002 þ f0 f
00
2 � 2 f 00 f

0
2 þ f 000 f1 ¼ �g0 f

00
0 � A2

1

�
ð
�
gþ 2Þf 00 þ f0

�

�
ðgþ 2Þf 0000 þ 3f 000 Þ

�
�
ðgþ 2Þf 000 þ 2f 00

�2�
;

ð28Þ

g0002 þ f0 g
00
2 þ f2 g

00
0

¼ �A2
1

�
ðg g0000 þ g001Þðgðg00 þ f 00Þ � g0 þ f0Þ � g2 g00 20 Þ

�
;

ð29Þ

subject to

f2ð0Þ ¼ f 02ð0Þ ¼ g2ð0Þ ¼ g02ð0Þ ¼ 0;

f 02; g
0
2 ! 0 as g ! 1:

ð30Þ

We construct a solution to Eq. (28) in the form

f2 ¼ fa þ A2
1 fb; ð31Þ

where fa satisfies Eq. (28) with the terms in A2
1 put to

zero and fb with the first term on the right-hand side

omitted and with A2
1 ¼ 1. In both cases, because of the

complementary function (27), we can put

f 00a ð0Þ ¼ f 00b ð0Þ ¼ 0. An examination of Eq. (28) shows

that f 0i ! Ci; ði ¼ a; bÞ, where Ci is a constant.

Numerical integrations give Ca ¼ 0:214097,

Cb ¼ 0:367879. Hence to satisfy the outer boundary

condition we require Ca þ A2
1 Cb ¼ 0. This leads to

having A2
1\0 and a contradiction. At this point we

note that, without the term in A2
1, we would be unable

to satisfy the outer boundary conditions.

To resolve this difficulty we now assume that c\0

and expand in ð�cÞ1=2
. The problems at leading order

and at Oðð�cÞ1=2Þ are the same. At Oð�cÞ it leads to a

change of sign for the first term on the right-hand side

of Eq. (28) and a consequent change in sign for Ca.

The outer boundary condition now gives A2
1 ¼

�Ca=Cb and then A1 ’ �0:76283. Hence

f 00ð0Þ� 1 � 0:76283 ð�cÞ1=2 þ � � � ;
g00ð0Þ� 1:58198ð1 � 0:76283 ð�cÞ1=2 þ � � �Þ

as c ! 0; ðc\0Þ:
ð32Þ

Table 1 A comparison between the numerically determined

values of cc on the upper curve in Fig. 4 and the asymptotic

expression (23)

S Numerical cc Asymptotic (23)

4.0 3.3800 4.0000

5.0 5.6457 6.2500

6.0 8.4032 9.0000

7.0 11.6574 12.2500

8.0 15.4100 16.0000

9.0 19.6617 20.2500

10.0 24.4130 25.0000

11.0 29.6639 30.2500

12.0 35.4145 36.0000

13.0 41.6651 42.2500
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Expression (32) shows the singular nature of the

solution and the critical values as c ! 0 when S ¼ 2. It

also explains why we were unable to find any

numerical solutions in c[ 0 for S ¼ 2. The solution

at Oðc�1Þ is not fully defined at this stage as any

multiple of the complementary function (27) can be

added to (31).

3.3 ðS� 2Þ small

To discuss the case when ðS� 2Þ is small we again

assume that c[ 0 and we modify the above analysis to

the case when ðS� 2Þ is small by writing S ¼ 2 þ k c,

(k[ 0Þ. This results in looking for a solution to (28) in

the form

(a)

(b)

Fig. 5 Plots of (a) f 00ð0Þ and (b) g00ð0Þ against c for S ¼ 2:05; 2:1; 2:15; 2:2; 2:4; 2:5; 2:8 (from left to right) obtained from the

numerical solution of Eqs. (3, 4, 5, 6)
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f2 ¼ fa þ A2
1 fb þ k fc; ð33Þ

where fc satisfies Eq. (28) with the right-hand side put

to zero and with fcð0Þ ¼ 1. As before, f 0c ! Cc as g !
1 where Cc ¼ �0:367879. Satisfying the outer

boundary condition gives Ca þ A2
1 Cb þ kCc ¼ 0,

giving A1 ¼ �ðk� 0:58198Þ1=2
. This gives a critical

value at k ¼ 0:58198 from which it follows that

cc � 1:7183 ðS� 2Þ þ � � � for ðS� 2Þ 	 1;

ð34Þ

or, alternatively

(a)

(b)

Fig. 6 Plots of (a) f 00ð0Þ and (b) g00ð0Þ against c for S ¼ 2:825, full line, and S ¼ 2:85, broken line, obtained from the numerical solution

of Eqs. (3, 4, 5, 6)

123

Meccanica (2021) 56:1727–1737 1735



Sc � 2 þ 0:5820 cþ � � � as c ! 0: ð35Þ

Expression (34) is plotted in Fig. 4 by a broken line and

gives a good representation how the upper curve seen

in Fig. 4 behaves for ðS� 2Þ small. From (33) we have

f 00ð0Þ� 1 �
�
ðS� 2Þ � 0:58198 c

�1=2 þ � � � as c ! 0:

ð36Þ

The above analysis indicates that for small c there is

only one critical point whereas in Figs. 1, 2 and 3 we

can see that there are two distinct critical points. We

examine this further in Fig. 5 where plot f 00ð0Þ and

g00ð0Þ against c for a range of S starting with S ¼ 2:05

on the left, with the smallest critical point, and

increasing to S ¼ 2:8 on the right, with the largest

critical point. For this range of S we see that there is

just one critical point with, from (36), f 00c ð0Þ� 1 for the

smaller values of c. When S ¼ 2:8 we can see that a

second critical point is just starting to emerge.

This becomes clearer in Fig. 6 where we plot f 00ð0Þ
and g00ð0Þ for S ¼ 2:825, full line and S ¼ 2:85, broken

line. The upper branch solutions start with the values

of f 00ð0Þ and g00ð0Þ given by upper solution in (11, 12)

both decreasing to the critical point at cc � 1:308 and

cc � 1:347 respectively after which f 00ð0Þ loops back

towards c ¼ 0, increasing as it approaches the axis.

The values of g00ð0Þ on this branch decrease as c is

reduced from the critical point. The lower branches

start with the values of f 00ð0Þ and g00ð0Þ given by lower

solution in (11, 12) with f 00ð0Þ increasing and g00ð0Þ
decreasing as c is increased. There are further critical

points appearing on these branches. These additional

critical points lead to a loop in the values of g00ð0Þ for

S ¼ 2:85 with the solutions terminating as f1 þ c g1
goes to zero. It appears that the two critical points seen

for the larger values of c in Figs. 2 and 3 emerge from

the lower branch solutions.

4 Conclusions

We have considered the non-symmetric flow over a

permeable surface which is shrinking in one direction

as well as in the direction perpendicular to it. The

problem is reduced to similarity form and involves two

dimensionless parameters, c the shrinking rate and S

the suction rate. We started by considering the case

c ¼ 0, noting that the case of shrinking puts a

restriction on S to the existence of solutions. Numer-

ical solutions are obtained for representative values of

S and c, Figs. 1-3. We saw the existence of two critical

points cc of c dependent on S, and also the existence of

two critical points Sc of S dependent on c. The plot of

critical values cc in Fig. 4 shows two almost parallel

curves, increasing as the values of S are increased.

An asymptotic solution for large S is derived for the

upper solution branch with expressions for f 00ð0Þ and

g00ð0Þ being in (20) requiring that c 	 S2. On putting

c ¼ S2 l we find that expression (22) shows the

existence of a critical point at lc ¼ 0:25, with two

solution branches emerging from this critical point.

Investigation on the nonexistence of solution when S =

2 shows that a singularity happens as c ! 0. Results

for the case of ðS� 2Þ small show much more

interesting behaviour. From Figs. 5 and 6, it is found

that only one critical point exists for small c but when

gradually increasing the values of S, second critical

point starts to emerge which lead to double-region

structure that can be seen in Figs. 1-3.
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