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Abstract The main aim of this paper is to contribute

to the construction of Green’s functions for initial

boundary value problems for fourth order partial

differential equations. In this paper, we consider a

transversely vibrating homogeneous semi-infinite

beam with classical boundary conditions such as

pinned, sliding, clamped or with a non-classical

boundary conditions such as dampers. This problem

is of important interest in the context of the foundation

of exact solutions for semi-infinite beams with

boundary damping. The Green’s functions are explic-

itly given by using the method of Laplace transforms.

The analytical results are validated by references and

numerical methods. It is shown how the general

solution for a semi-infinite beam equation with

boundary damping can be constructed by the Green’s

function method, and how damping properties can be

obtained.

Keywords Euler–Bernoulli beam � Green’s

functions � The method of Laplace transforms �
Boundary damper � Semi-infinite domain

1 Introduction

In engineering, many problems describing mechanical

vibrations in elastic structures, such as for instance the

vibrations of power transmission lines [13] and bridge

cables [16], can be mathematically represented by

initial-boundary-value problems for a wave or a beam

equation. Understanding the transverse vibrations of

beams is important to prevent serious failures of the

structures. In order to suppress the undesired vibra-

tions of the mechanical structures different kinds of

dampers such as tuned mass dampers and oil dampers

can be used at the boundary. Analysis of the transver-

sally vibrating beam problems with boundary damping

is still of great interest today, and has been examined

for a long time by many researchers [12, 23, 25]. In

order to obtain a general insight into the over-all

behavior of a solution, having a closed form expres-

sion which represents a solution, can be very conve-

nient. The Green’s function technique is one of the few

approaches to obtain integral representations for the

solution [10].

In many papers and books, the vibrations of elastic

beams have been studied by using the Green’s

function technique. A good overview can be found

in e.g. [8, 9] and [7, 10, 24] for initial-value problems

and for initial-boundary value problems, respectively.

The initial-boundary value problem for a semi-infinite

clamped bar has already been solved to obtain its

Green’s function by using the method of Laplace

tranforms [21]. To our best knowledge, we have not
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found any literature on the explicit construction of a

Green’s function for semi-infinite beam with boundary

damping.

The outline of the present paper is as follows. In

Sect. 2, we establish the governing equations of

motion. The aim of the paper is to give explicit

formula for the Green’s function for the following

semi-infinite pinned, slided, clamped and damped

vibrating beams as listed in Table 1. In Sect. 3, we use

the method of Laplace transforms to construct the

(exact) solution and also derive closed form expres-

sions for the Green’s functions for these problems. In

Sect. 4, three classical boundary conditions are con-

sidered and the Green’s functions for semi-infinite

beams are represented by definite integrals. For pinned

and sliding vibrating beams, it is shown how the exact

solution can be written with respect to even and odd

extensions of the Green’s function. In Sect. 5, we

consider transversally vibrating elastic beams with

non-classical boundary conditions such as dampers.

The analytical results for semi-infinite beams in this

case are compared with numerical results on a

bounded domain [0, L] with L large. The damping

properties are given by the roots of denominator part in

the Laplace approach, or equivalently by the charac-

teristic equation. Numerical and asymptotic approxi-

mations of the roots of a characteristic equation for the

beam-like problem on a finite domain will be calcu-

lated. It will be shown how boundary damping can be

effectively used to suppress the amplitudes of oscil-

lation. In Sect. 6, the concept of local energy storage is

described. Finally some conclusions will be drawn in

Sect. 7.

2 Governing equations of motion

We will consider the transverse vibrations of a one-

dimensional elastic Euler–Bernoulli beam which is

infinitely long in one direction. The equations of

motion can be derived by using Hamilton’s principle

[17]. The function u(x, t) is the vertical deflection of

the beam, where x is the position along the beam, and

t is the time. Let us assume that gravity can be

neglected. The equation describing the vertical dis-

placement of the beam is given by

€uþ a2 u0000 ¼ q

qA
; 0\x\1; t[ 0; ð1Þ

uðx; 0Þ ¼ f ðxÞ; _uðx; 0Þ ¼ gðxÞ; 0� x\1; ð2Þ

where a2 ¼ ðEI=qAÞ[ 0. E is Young’s modulus of

elasticity, I is the moment of inertia of the cross-

section, q is the density, A is the area of the cross-

section, and q is an external load. Here, f(x) represents

the initial deflection and g(x) the initial velocity. Note

that the overdot ð�Þ denotes the derivative with respect

to time and the prime ðÞ0 denotes the derivative with

respect to the spatial variable x.

In the book of Guenther and Lee [9], and Graff [8],

the solution of the Euler–Bernoulli beam Eq. (1) with

q = 0 on an infinite domain is obtained by using

Fourier transforms, and is given by

Table 1 Boundary

conditions (BCs) for beams

which are infinitely long in

one direction

Type of system Left end condition BCs at x = 0

Classical

Pinned u ¼ 0;EIuxx ¼ 0:

Sliding ux ¼ 0;EIuxxx ¼ 0:

Clamped u ¼ 0; ux ¼ 0:

Non-classical

Damper EIuxx ¼ 0; EIuxxx ¼ �aut:
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uðx; tÞ ¼
Z 1

�1
Kðn� x; tÞf ðnÞ þ Lðn� x; tÞgðnÞ½ � dn;

ð3Þ

where

Kðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pa t

p sin
x2

4at
þ p

4

� �
; ð4Þ

and

Lðx; tÞ ¼ x

2a
S

x2

4at

� �
� C

x2

4at

� �� �
þ 2 tKðx; tÞ: ð5Þ

Here the functions C(z) and S(z) are the Fresnel

integrals defined by

CðzÞ ¼
Z z

0

cosðsÞffiffi
s

p ds; and SðzÞ ¼
Z z

0

sinðsÞffiffi
s

p ds:

ð6Þ

In order to put the Eqs. (1) and (2) in a non-

dimensional form the following dimensionless quan-

tities are used:

uðx; tÞ¼ u�ðx�; t�Þ
L�

; x¼ x�

L�
; t¼ jt�

L�
; j¼ 1

L�

ffiffiffiffiffiffi
EI

qA

s
;

f ðxÞ¼ f �ðx�Þ
L�

;gðxÞ¼ g�ðx�Þ
j

;qðx; tÞ¼ q�ðx�; t�ÞqAj2

L�
;

where L� is the dimensional characteristic quantity for

the length , and by inserting these non-dimensional

quantities into Eqs. (1) and (2), we obtain the follow-

ing initial-boundary value problem:

€uðx; tÞ þ u0000ðx; tÞ ¼ qðx; tÞ; 0\x\1; t[ 0;

ð7Þ

uðx; 0Þ ¼ f ðxÞ; _uðx; 0Þ ¼ gðxÞ; 0� x\1; ð8Þ

and the boundary conditions at x = 0 are given in

Table 1. The asterisks indicating the dimensional

quantities are omitted in Eqs. (7) and (8), and hence-

forth for convenience.

In the coming sections, we will show how the

Green’s functions for semi-infinite beams with bound-

ary conditions given at x = 0, can be obtained in

explicit form.

3 The Laplace transform method

In this section, Green’s functions will be constructed by

using the Laplace transform method in order to obtain

an exact solution for the initial-boundary value problem

Eqs. (7) and (8). Let us assume that the external force

qðx; tÞ ¼ dðx� nÞ � dðtÞ at the point x ¼ n at time

t = 0, d being Dirac’s function, and f ðxÞ ¼ gðxÞ ¼ 0.

The Green’s function Gnðx; tÞ, n[ 0, expresses the

displacements along the semi-infinite beam.

We start by defining the Laplace operator as an

integration with respect to the time variable t. The

Laplace transform gn of Gn with respect to t is defined

as

gnðx; pÞ ¼ LfGnðx; tÞg ¼
Z 1

0

e�ptGnðx; tÞdt; ð9Þ

where gn is the Green’s function of the differential

operator L ¼ ðd4=dx4Þ þ p2 on the interval ð0;1Þ.
The Green’s function gn satisfies the following

properties [14]:

[G1] The Green’s function gn satisfies the fourth

order ordinary differential equation in each of the

two subintervals 0\x\n and n\x\1, that is,

Lgn ¼ 0 except when x ¼ n.

[G2] The Green’s function gn satisfies at x = 0 one

of the homogeneous boundary conditions, as given

in Table 1.

[G3] The Green’s function gn and its first and

second order derivatives exist and are continuous at

x ¼ n.

[G4] The third order derivative of the Green’s

function gn with respect to x has a jump disconti-

nuity which is defined as

lim
�! 0

g000n ðnþ �Þ � g000n ðn� �Þ
h i

¼ 1: ð10Þ

The transverse displacement u(x, t) of the beam can

be represented in terms of the Green’s function as (see

also [22]):

uðx; tÞ ¼
Z 1

0

f ðnÞ _Gnðx; tÞ dnþ
Z 1

0

gðnÞGnðx; tÞ dn

þ
Z t

0

Z 1

0

qðn; sÞGnðx; t � sÞdn ds:

ð11Þ
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In the coming sections, we solve exactly the initial-

boundary value problem for a beam on a semi-infinite

interval for different types of boundary conditions.

4 Classical boundary conditions

4.1 Pinned end, u ¼ uxx ¼ 0

In this section, we consider a semi-infinite beam

equation, when the displacement and the bending

moment are specified at x = 0, i.e.

uð0; tÞ ¼ uxxð0; tÞ ¼ 0, and when the beam has an

infinite extension in the positive x-direction.

By using the requirements [G1]–[G4], gn is

uniquely determined, and we obtain

gn ¼
1

8b3
e�bjx�nj cosbðx � nÞ þ sinbjx � nj½ �
n

þ e�bðxþnÞ �cosbðx þ nÞ � sinbðx þ nÞ½ �
o
;

ð12Þ

where b2 ¼ p=2. In order to invert the Laplace

transform, we use the formula (see [3], page 93)

L�1
ffiffiffiffiffi
p2

p� ��1

/
ffiffiffiffiffi
p2

p� �� �
¼
Z t

0

L�1f/ðsÞg ds;

ð13Þ

and (see [19], page 279)

L�1 p�1=2e�
ffiffiffiffi
pz

p
cosð ffiffiffiffiffi

pz
p Þ

h i
¼ 1ffiffiffiffiffi

pt
p cos

z

2t

� �
; ð14Þ

L�1 p�1=2e�
ffiffiffiffi
pz

p
sinð ffiffiffiffiffi

pz
p Þ

h i
¼ 1ffiffiffiffiffi

pt
p sin

z

2t

� �
; ð15Þ

where z ¼ jx�njffiffi
2

p . The Green’s function yields

Gnðx; tÞ ¼ �
Z t

0

Kðn� x; sÞ � Kðnþ x; sÞ½ �ds; ð16Þ

where the kernel function is defined by

Kðx; sÞ ¼ 1ffiffiffiffiffiffiffiffi
4ps

p sin
x2

4s
þ p

4

� �
: ð17Þ

When we assume for Eqs. (7) and (8) that the external

loading is absent (q = 0), and that the initial

displacement f(x) and the initial velocity g(x) are

nonzero, one can find the solution of the pinned end

semi-infinite beam in the form of Eq. (3) as

uðx; tÞ ¼
Z 1

0

½Kðn� x; tÞ � Kðnþ x; tÞ�f ðnÞ½

þ ½Lðn� x; tÞ � Lðnþ x; tÞ�gðnÞ� dn;

ð18Þ

where K and L are given by Eqs. (4) and (5).

It should be observed that Eq. (18) could have been

obtained by using Eq. (3) and the boundary conditions

u ¼ uxx ¼ 0 at x = 0. From which it simply follows

that f and g should be extended as odd functions in

their argument, and then by simplifying the so-

obtained integral, one obtains Eq. (18).

On the other hand, when we consider that the

external loading is nonzero, for example,

q ¼ dðx� nÞ � dðtÞ, and the initial disturbances are

zero (f ¼ g ¼ 0), the solution of pinned end semi-

infinite beam can be written in a non-dimensional

form. By substituting the following dimensionless

quantities in Eq. (16)

v ¼ x

n
; s ¼ t

n2
; r ¼ t

s
; gðv; sÞ ¼ Gn

n
: ð19Þ

We obtain

gðv; sÞ ¼ �
ffiffiffiffiffiffi
s

4p

r Z 1

1

sin
rðv � 1Þ2

4s
þ p

4

 !"

� sin
rðv þ 1Þ2

4s
þ p

4

 !#
dr

r3=2
:

ð20Þ

Figure 1 shows the shape of the semi-infinite one-sided

pinned beam during its oscillation. It can be observed

how the amplitude of the impulse at x ¼ n is increasing

and how the deflection curves start to develop rapidly

from the boundary at x = 0 as new time variable s is

increasing, where s is given by Eq. (19).

4.2 Sliding end, ux ¼ uxxx ¼ 0

In this section, we consider a semi-infinite beam

equation for x[ 0, when the bending slope and the

shear force are specified at x = 0, i.e.

uxð0; tÞ ¼ uxxxð0; tÞ ¼ 0. The same method which is

used in Sect. 4.1 to obtain the Green’s function can
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also be applied for the sliding end semi-infinite beam.

The Green’s function is given by

Gnðx; tÞ ¼
Z t

0

Kðn� x; sÞ þ Kðnþ x; sÞ½ �ds; ð21Þ

and the transverse displacement u(x, t) of the beam

without an external loading is given by

uðx; tÞ ¼
Z 1

0

½Kðn� x; tÞ þ Kðnþ x; tÞ�f ðnÞ½

þ ½Lðn� x; tÞ þ Lðnþ x; tÞ�gðnÞ� dn:
ð22Þ

Equation (22) also could have been obtained by using

Eq. (3) and the boundary conditions ux ¼ uxxx ¼ 0 at

x = 0. It follows that f and g should be extended as

even functions in their argument, and then by simpli-

fying the so-obtained integral, we obtain Eq. (22).

By using the same dimensionless quantities as in

Sect. 4.1, the non-dimensional form of the solution for

the sliding end semi-infinite beam is given by:

gðv; sÞ ¼ �
ffiffiffiffiffiffi
s

4p

r Z 1

1

sin
rðv � 1Þ2

4s
þ p

4

 !"

þ sin
rðv þ 1Þ2

4s
þ p

4

 !#
dr

r3=2
:

ð23Þ

Similarly, Fig. 2 demonstrates the shape of the semi-

infinite one-sided sliding beam during its oscillation. It

can be seen how the amplitude of the impulse at x ¼ n
is increasing and how the deflection curve is devel-

oping from the boundary at x = 0 as the new time

variable s is increasing.

4.3 Clamped end, u ¼ ux ¼ 0

In this section, we consider a semi-infinite beam

equation for x[ 0, when the deflection and the slope

are specified at x = 0, i.e. uð0; tÞ ¼ uxð0; tÞ ¼ 0. The

non-dimensional form for the Green’s function of the

semi-infinite vibrating beam is now given by

gðv; sÞ ¼ �
ffiffiffiffiffiffi
s

4p

r Z 1

1

sin
rðv � 1Þ2

4s
þ p

4

 !"

� sin
rðv þ 1Þ2

4s
þ p

4

 !

�
ffiffiffi
2

p
e�rv=2scos

rðv2 � 1Þ
4s

� ��
dr

r3=2
:

ð24Þ

Figure 3 depicts the fading-out waves for the elastic

beam which is clamped at the boundary. For the

simple cases (i.e., for the pinned, sliding and clamped

Fig. 1 The Green’s function g(v, s) for a pinned end semi-

infinite beam with the initial values gðv; 0Þ ¼ 0; gsðv; 0Þ ¼ 0,

and the external force qðv; sÞ ¼ dðv� 1Þ � dðsÞ

Fig. 2 The Green’s function g(v, s) for a sliding end semi-

infinite beam with the initial values gðv; 0Þ ¼ 0; gsðv; 0Þ ¼ 0,

and the external force qðv; sÞ ¼ dðv� 1Þ � dðsÞ
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cases), we compared our results with some of the

available, analytical results in the literature [20, 21].

Our results agreed completely with those results.

5 Non-classical boundary condition

5.1 Damper end, uxx ¼ 0, uxxx ¼ �~kut

In this section, we consider a semi-infinite beam

equation for x[ 0, when the bending moment is zero

and the shear force is proportional to the velocity

(damper) at x = 0, i.e. EIuxx ¼ 0; EIuxxx ¼ �aut.

After applying the dimensionless quantities ~k ¼
aL�=

ffiffiffiffiffiffiffiffiffiffiffi
EIqA

p
to the damper boundary conditions, it

follows that uxx ¼ 0 ; uxxx ¼ �~kut. We obtain the

Green’s function for the semi-infinite beam in a

similar way as shown in the previous cases. By using

the requirements [G1]–[G4], gn is uniquely deter-

mined, and we obtain

gn ¼
1

8b3
e�bjx�nj½cosbðx � nÞ þ sinbjx � nj�
n

þ e�bðxþnÞ½�cosbðx þ nÞ � sinbðx þ nÞ�

þ 4b3e�bðxþnÞ

2b3 þ ~kp
½cosbðx � nÞ þ cosbðx þ nÞ�

	
;

ð25Þ

where b2 ¼ p=2. In order to invert the Laplace

transform, we use the formula (see [3], page 93)

L�1 p�1/ðpÞ

 �

¼
Z t

0

L�1f/ðsÞg ds: ð26Þ

Here

/ðpÞ ¼ p�1=2

2
ffiffiffi
2

p e�
ffiffiffiffi
pg

p
½cosð ffiffiffiffiffi

pg
p Þ þ sinð ffiffiffiffiffi

pg
p Þ�

� p�1=2

2
ffiffiffi
2

p e�
ffiffiffiffi
pl

p
½cosð ffiffiffiffiffiffi

pl
p Þ þ sinð ffiffiffiffiffiffi

pl
p Þ�

þ p�1=2

2
ffiffiffi
2

p e�
ffiffiffiffi
pl

p 2p3=2

p3=2 þ
ffiffiffi
2

p
~kp

½cosð ffiffiffiffiffi
pg

p Þ þ cosð ffiffiffiffiffiffi
pl

p Þ�;

ð27Þ

where g ¼ ðxþnÞffiffi
2

p and l ¼ jx�njffiffi
2

p . In Eq. (27), we use

Eqs. (14) and (15) for the first two terms, and the

following convolution theorem for the last term (see

[3], page 92)

L�1 /1ðpÞ/2ðpÞ½ � ¼ f1ðtÞ � f2ðtÞ

¼
Z t

0

f1ðrÞf2ðt � rÞdr; ð28Þ

where

/1ðpÞ ¼
p�1=2

2
ffiffiffi
2

p ½cosð ffiffiffiffiffi
pg

p Þ þ cosð ffiffiffiffiffiffi
pl

p Þ�; ð29Þ

/2ðpÞ ¼ e�
ffiffiffiffi
pl

p 2p3=2

p3=2 þ
ffiffiffi
2

p
~kp

: ð30Þ

For the inverse Laplace transform of Eq. (29), we use

the following formula (see [2], page 106)

L�1 p�1=2cosð ffiffiffiffiffi
pg

p Þ
h i

¼ 1ffiffiffiffiffi
pt

p sin
g
4t

þ p
4

� �
; ð31Þ

and for the inverse Laplace transform of Eq. (30), we

use the following formulas (see [1], pages 245–246)

Fig. 3 The Green’s function g(v, s) for a fixed (clamped) end

semi-infinite beam with the initial values gðv; 0Þ ¼
0; gsðv; 0Þ ¼ 0, and the external force qðv; sÞ ¼ dðv� 1Þ � dðsÞ
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L�1 e�
ffiffiffiffi
pl

p
 �
¼

ffiffiffi
l

p

2
ffiffiffi
p

p t�3=2e�l=4t;ReðlÞ[ 0; ð32Þ

L�1 e�l
ffiffi
p

p

ffiffiffi
p

p þ ~k
ffiffiffi
2

p
" #

¼ e�l2=4tffiffiffiffiffi
pt

p

� ~k
ffiffiffi
2

p
el

~k
ffiffi
2

p
þ2~k2terfc

l

2
ffiffi
t

p þ ~k
ffiffiffiffi
2t

p� �
;

ð33Þ

where the error function is defined as

erfcðxÞ ¼ 2ffiffiffi
p

p
Z 1

x

e�t2 dt: ð34Þ

Then, the Green’s function is given by

Gnðx; tÞ¼�
Z t

0

1

2
ffiffiffiffiffi
ps

p sin
ðx�nÞ2

4s
þp

4

 !"

�sin
ðxþnÞ2

4s
þp

4

 !#
ds�

Z t

0

Z s

0

:

sin
ðx�nÞ2

8ðs� rÞ þ
p
4

 !"
þsin

ðxþnÞ2

8ðs� rÞ þ
p
4

 !#

e�ðxþnÞ2=8r ðxþn�4~krÞ
4pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðs� rÞ

p
"

þ 2~k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs� rÞ

p e
~kðxþnÞþ2~k2r

erfc
ðxþnþ4~krÞ

2
ffiffiffiffiffi
2r

p
 !#

drds:

ð35Þ

When we assume that the external loading is nonzero,

for example, qðx; tÞ¼ dðx�nÞ�dðtÞ, and the initial

disturbances are zero (uðx;0Þ¼ f ðxÞ¼
0; utðx;0Þ¼ gðxÞ¼ 0), the solution for the semi-in-

finite beam with damping boundary can be written in a

non-dimensional form by substituting the following

dimensionless quantities in Eq. (35):

v ¼ x

n
; s ¼ t

n2
; ~s ¼ s

n2
; r ¼ t

s
;u ¼ s

r
; ~k ¼ k

n
;

gðv; sÞ ¼ Gn

n
;

we obtain

gðv; sÞ ¼ �
Z 1

1

ffiffi
s

p

2
ffiffiffiffiffiffiffiffi
pr3

p sin
ðv � 1Þ2r

4s
þ p

4

 !"

� sin
ðv þ 1Þ2r

4s
þ p

4

 !#
dr�

Z 1

1

Z 1

1

sin
ruðv � 1Þ2

8sðu� 1Þ þ p
4

 !"

þ sin
ruðv þ 1Þ2

8sðu� 1Þ þ p
4

 !#

e�ruðvþ1Þ2=8s ruðv þ 1Þ � 4ks

4pr2u
ffiffiffiffiffiffiffiffiffiffiffiffi
u� 1

p
� ��

þ k2
ffiffiffiffiffiffiffi
2s3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr5u3ðu� 1Þ

p ekðvþ1Þþ2k2s
ru

erfc
ruðvþ 1Þ þ 4ks

2
ffiffiffiffiffiffiffiffiffiffiffi
2sru

p
� ��

dudr:

ð36Þ

Figure 4 shows the shape for the semi-infinite beam

with boundary damping during its oscillation. It is

observed how the vibration is suppressed due to using

a damper (k ¼ 1) at the boundary x = 0.

Fig. 4 The Green’s function g(v, s) for a semi-infinite beam

with boundary damping (k ¼ 1) for the initial values

gðv; 0Þ ¼ 0; gsðv; 0Þ ¼ 0, and the external force

qðv; sÞ ¼ dðv� 1Þ � dðsÞ
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Figure 5 depicts the Green’s function of the semi-

infinite beam for varying boundary damping param-

eters k at s = 0.8. As can be seen, the damping

boundary condition starts to behave like free and

pinned boundary condition when we take k ! 0 and

k ! 1, respectively.

For the damping case, we compare our solution in

the next section with a long bounded beam by applying

the Laplace transform method for a certain value of k.

5.2 Damper-clamped ends, uxxxð0; tÞ ¼ �~kutð0; tÞ,
uxxð0; tÞ ¼ uðL; tÞ ¼ uxðL; tÞ ¼ 0

In this section, we compare our semi-infinite results

with results for a bounded domain [0, L] with L large.

We can formulate the dimensionless initial boundary

value problem describing the transverse vibrations of a

damped horizontal beam which is attached to a damper

at x = 0 as follows:

€uðx; tÞ þ u0000ðx; tÞ ¼ qðx; tÞ; 0\x\L; t[ 0; ð37Þ

uðx; 0Þ ¼ f ðxÞ; _uðx; 0Þ ¼ gðxÞ; 0� x\L; ð38Þ

and boundary conditions,

u000ð0; tÞ ¼ � k _uð0; tÞ; u00ð0; tÞ ¼ 0; t	 0;

uðL; tÞ ¼0; u0ðL; tÞ ¼ 0; t	 0:
ð39Þ

We will also solve this problem by using the Laplace

transform method which reduces the partial differen-

tial equation Eq. (37) to a non-homogeneous linear

ordinary differential equation, which can be solved by

using standard techniques [5, 11]. When we apply the

Laplace transform method, which was defined in

Eq. (9), to Eqs. (37)–(39), we obtain the following

boundary value problem

PDE : U0000ðx; pÞ þ p2Uðx; pÞ ¼ Qðx; pÞ; ð40Þ

BCs : U000ð0; pÞ ¼ �k½pUð0; pÞ � f ð0Þ�;
U00ð0; tÞ ¼ 0; UðL; pÞ ¼ 0; U0ðL; pÞ ¼ 0;

ð41Þ

where U(x, p) and Q(x, p) are the Laplace transforms

of u(x, t) and q(x, t), and p is the transform variable.

Here, Qðx; pÞ ¼ dðx� nÞ þ p uðx; 0Þ þ _uðx; 0Þ. We

assume that the initial conditions are zero, that is

uðx; 0Þ ¼ f ðxÞ ¼ 0 and _uðx; 0Þ ¼ gðxÞ ¼ 0.

The general solution of the homogeneous equation,

that is, Eq. (40) with Qðx; pÞ ¼ 0, is given by

Uðx; bÞ ¼C1ðbÞ cosðbxÞ þ C2ðbÞ sinðbxÞ
þ C3ðbÞ coshðbxÞ þ C4ðbÞ sinhðbxÞ;

ð42Þ

where CjðbÞ are arbitrary functions for j ¼ 1. . .4. For

simplicity, we consider p2 ¼ �b4, so that p ¼ 
ib2.

We consider only the case p ¼ ib2 for further calcu-

lations, because the case p ¼ �ib2 will also lead to the

same p.

The particular solution of the non-homogeneous

equation Eq. (40) can be defined by using the method

of variation of parameters. We rewrite the general

solution as follows:

Fig. 5 The Green’s function g(v, s) for a semi-infinite beam

with different boundary damping parameters for the initial

values gðv; 0Þ ¼ 0; gsðv; 0Þ ¼ 0, and the external force qðv; sÞ ¼
dðv� 1Þ � dðsÞ at s = 0.8
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Uðx; bÞ ¼K1ðbÞ cosðbxÞ þ K2ðbÞ sinðbxÞ
þ K3ðbÞ coshðbxÞ þ K4ðbÞ sinhðbxÞ

þ 1

2b3

Z x

0

Qðs; bÞ½sinðbðs� xÞÞ

� sinhðbðs� xÞÞ�ds;

ð43Þ

where Qðs; bÞ ¼ dðs� nÞ. KjðbÞ for j ¼ 1. . .4 can be

determined from the boundary conditions and the

solution of Eqs. (40) and (41) is given by

Uðx; bÞ ¼
Z L

0

Qðs; bÞH1ðs; b : xÞds

þ
Z x

0

Qðs; bÞH2ðs; b : xÞds;

ð44Þ

where

H1ðs; b : xÞ :¼ 1

4b3hkLðbÞ
½H1ðxÞ� 1ðs; bÞ

þ H2ðxÞ� 2ðs; bÞ þH3ðxÞ� 3ðs; bÞ�;
ð45Þ

H1ðxÞ :¼ cosðbxÞ þ coshðbxÞ; ð46Þ

� 1ðs; bÞ :¼½sinðbðL� sÞÞ � sinhðbðL� sÞÞ�
b½cosðbLÞ þ coshðbLÞ�
� ½cosðbðL� sÞÞ � coshðbðL� sÞÞ�
b½sinðbLÞ þ sinhðbLÞ�;

ð47Þ

H2ðxÞ :¼ sinðbxÞ; ð48Þ

� 2ðs;bÞ :¼½sinðbðL� sÞÞ� sinhðbðL� sÞÞ�
½2kicoshðbLÞþbðsinðbLÞ� sinhðbLÞÞ�
� ½cosðbðL� sÞÞ� coshðbðL� sÞÞ�
½2kisinhðbLÞ�bðcosðbLÞþ coshðbLÞÞ�;

ð49Þ

H3ðxÞ :¼ sinhðbxÞ; ð50Þ

� 3ðs; bÞ :¼½sinðbðL� sÞÞ � sinhðbðL� sÞÞ�
½2ki cosðbLÞ � bðsinðbLÞ � sinhðbLÞÞ�
� ½cosðbðL� sÞÞ � coshðbðL� sÞÞ�
½2ki sinðbLÞ þ bðcosðbLÞ þ coshðbLÞÞ�;

ð51Þ

hkLðbÞ :¼ b½1þ cosðbLÞcoshðbLÞ�
þ ki½coshðbLÞsinðbLÞ� sinhðbLÞcosðbLÞ�;

ð52Þ

H2ðs; b : xÞ :¼ 1

2b3
½sinðbðs� xÞÞ � sinhðbðs� xÞÞ�;

ð53Þ

In order to obtain the solution of Eqs. (37)–(39), the

inverse Laplace transform of U(x, p) will be applied

by using Cauchy’s residue theorem, that is,

uðx; tÞ ¼ 1

2pi

Z cþi1

c�i1
eptUðx; pÞdp;

¼
X
n

ResðeptUðx; pÞ; p ¼ pnÞ;
ð54Þ

for c[ 0. Here ResðeptUðx; pÞ; p ¼ pnÞ is the residue

of eptUðx; pÞ at the isolated singularity at p ¼ pn. The

poles of U(x, p) are determined by the roots of the

following characteristic equation

hkLðbÞ :¼ 0; ð55Þ

which is a ’’transcendental equation’’ defined in

Eq. (52). The zeros of hkLðbÞ for k ¼ 0, which reduces

the problem to the clamped-free beam, have been

considered in [15]. By using Rouché’s theorem, it can

be shown that the number of roots of hkLðbÞ :¼ 0

(k[ 0) is equal to the same number of roots of hLðbÞ :
¼ 0 (k ¼ 0). For the proof of Rouché’s theorem, the

reader is refered to Ref. [4]. Equation (55) has

infinitely many roots [18]. By using the relation

p ¼ ib2, we can determine the roots of p, which are

defined in complex conjugate pairs, such that

pn ¼ pren 
 ipimn , where n 2 N and pren ; p
im
n 2 R. So,

the damping rate and oscillation rate are given by pren :

¼ �2bren b
im
n and pimn :¼ ðbren Þ

2 � ðbimn Þ2
, respectively.

In order to construct asymptotic approximations of

the roots of hkLðbÞ, we first multiply Eq. (55) by L, and

define ~b ¼ bL and ~k ¼ kL. Hence, we obtain

h~kð~bÞ � ~b½1 þ cosð~bÞ coshð~bÞ�
þ ~ki½coshð~bÞ sinð~bÞ � sinhð~bÞ cosð~bÞ� ¼ 0:

ð56Þ

Next, multiplying h~kð~bÞ by ð2Þ=ð~b e
~bÞ, the charac-

teristic equation yields
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cosð~bÞ ¼ Oðj~bj�2Þ

þ i
~k
~b

cosð~bÞ � sinð~bÞ
h i

þOðj~bj�3Þ
 !

;

ð57Þ

or

cosð~bÞ ¼ Oðj~bj�1Þ; ð58Þ

which is valid in a small neighbourhood of k ¼ ðn� 1
2
Þ

for all n[ 0. After applying Rouché’s theorem (see

[6]), the following asymptotic solutions for bn and pn
are obtained

bn ¼ 
 1

L
kpþOðjnj�2Þ þ i

kL
kp

þOðjnj�2Þ
� �� �

;

ð59Þ

pn ¼
�2k
L

þOðjnj�1Þ

þ i
ðkpÞ4 � ðkLÞ2

ðkLpÞ2
þOðjnj�1Þ

 !
; ð60Þ

which are valid and represent the asymptotic approx-

imations of the damping rates of the eigenvalues for

sufficiently large n 2 N.

The first twenty roots bnum;n and pnum;n, which are

computed numerically by using Maple, and the first

twenty asymptotic approximations of the roots of the

Eq. (55) are listed in Table 2. For higher modes, it is

found that the asymptotic and numerical approxima-

tions of the damping rates are very close to each other,

and the numerical damping rates, which are the real

part of pnum;n, converges to -0.2.

The characteristic equation Eq. (55) has three

unique real-valued roots; p = 0 is one of these roots.

Note that p = 0 is not a pole of U(x, p). That is why,

the only contribution to the inverse Laplace transform

is the first integral of Eq. (44). The implicit solution of

the problem Eqs. (37)–(39) is given by

uðx; tÞ ¼ ep�1tHðx; p�1Þ þ ep0tHðx; p0Þ

þ
XN
n¼1

epre
n t Hðx; pnÞ þ Hðx; pnÞ
h i

cos pim
n t

� 
�

þ i Hðx; pnÞ � Hðx; pnÞ
h i

sin pimn t
� 
�

;

ð61Þ

where Hðx; pnÞ is the complex conjugate of Hðx; pnÞ,
and Hðx; pnÞ is given by

Hðx; pnÞ :¼
Rðx; pnÞ

opðXðpnÞÞjp¼pn

; ð62Þ

where

Rðx; pnÞ :¼ ½H1ðxÞ� 1ðs; bnÞ þH2ðxÞ� 2ðs; bnÞ
þ H3ðxÞ� 3ðs; bnÞ�;

ð63Þ

opðXðpnÞÞjp¼pn
¼ oXðbnÞ

obn

obn
opn

� �
; ð64Þ

XðbnÞ :¼ 4b3
n hkLðbnÞ: ð65Þ

By using the relation pn ¼ ib2
n, bn :¼ bren þ ibimn is

defined by

bren ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pimn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpren Þ

2 þ ðpimn Þ2
qr

ffiffiffi
2

p ; ð66Þ

Table 2 Numerical approximations of the solutions bn and pn
of the characteristic equation Eq. (55) for the case L ¼ 10 and

k ¼ 1

n bnum;n pnum;n ðn� 1
2
Þ p
L

-1 0.03887 ? 0.03887i -0.00302 ? 0i –

0 1.00000 ? 1.00000i -2.00000 ? 0i –

1 – – 0.15708

2 0.39535 ? 0.01861i -0.01471 ? 0.15596i 0.47124

3 0.71834 ? 0.03367i -0.04837 ? 0.51488i 0.78540

4 1.04526 ? 0.04286i -0.08960 ? 1.09073i 1.09956

5 1.37292 ? 0.04574i -0.12560 ? 1.88282i 1.41372

6 1.69789 ? 0.04416i -0.14996 ? 2.88088i 1.72788

7 2.01967 ? 0.04084i -0.16497 ? 4.07740i 2.04204

8 2.33906 ? 0.03727i -0.17435 ? 5.46981i 2.35619

9 2.65687 ? 0.03395i -0.18040 ? 7.05781i 2.67035

10 2.97365 ? 0.03104i -0.18460 ? 8.84163i 2.98451

11 3.28974 ? 0.02850i -0.18752 ? 10.82158i 3.39867

12 3.60537 ? 0.02631i -0.18971 ? 12.99800i 3.61283

13 3.92066 ? 0.02440i -0.19133 ? 15.37098i 3.92699

14 4.23571 ? 0.02274i -0.19264 ? 17.94072i 4.24115

15 4.55059 ? 0.02127i -0.19358 ? 20.70742i 4.55531

16 4.86533 ? 0.01998i -0.19442 ? 23.67104i 4.86947

17 5.17997 ? 0.01883i -0.19508 ? 26.83173i 5.18363

18 5.49453 ? 0.01780i -0.19561 ? 30.18954i 5.49779

19 5.80903 ? 0.01688i -0.19611 ? 33.74454i 5.81195

20 6.12348 ? 0.01605i -0.19656 ? 37.49675i 6.12611
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and

bimn ¼ �pren
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pimn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpren Þ

2 þ ðpimn Þ2
qr : ð67Þ

The numerical approximations of the roots which are

listed in Table 2 can be substituted into Eq. (61) to

obtain explicit approximations of the problem

Eqs. (37)–(39). Figure 6 shows the comparison of

Fig. 6 The comparison of the numerical and exact solutions of a

damper-clamped ended finite beam (L = 10) and a damper

ended semi-infinite beam with k ¼ 1 for the zero initial values

and the external force qðx; tÞ ¼ dðx� 1Þ � dðtÞ at times t = 0.4

and t = 0.8. a The first ten oscillation modes as approximation

of the solution of u(x, t) for a damper-clamped ended finite

beam, b the first forty oscillation modes as approximation of the

solution of u(x, t) for a damper-clamped ended finite beam, c the

Green’s function g(v, s) for a one-sided damper ended semi-

infinite beam
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the numerical and exact solutions of a damper-

clamped ended finite beam (L = 10) and a damper

ended semi-infinite beam with k ¼ 1 for the zero

initial values and the external force qðx; tÞ ¼ dðx�
1Þ � dðtÞ at times t = 0.4 and t = 0.8. It can be seen

that the numerical results in Fig. 6a, b are similar to

the analytical (exact) results in Fig. 6c when the

number of modes become sufficiently large.

6 The energy in the damped case

In this section, we derive the energy of the transver-

sally free vibrating homogeneous semi-infinite beam

(q = 0)

€uðx; tÞ þ u0000ðx; tÞ ¼ 0; 0\x\1; t[ 0; ð68Þ

subject to the boundary conditions uxxð0; tÞ ¼ 0, and

uxxxð0; tÞ ¼ �~kutð0; tÞ. By multiplying Eq. (68) with

_u, we obtain the following expression

1

2
ð _u2 þ u002Þ

� 	
t

þf _uu000 þ _u0u00gx ¼ 0; ð69Þ

By integrating Eq. (69) with respect to x from x = 0 to

x ¼ 1 and with respect to t from t = 0 to t = t,

respectively, we obtain the total mechanical energy

E(t) in the interval ð0;1Þ. This energy E(t) is the sum

of the kinetic and the potential energy of the beam, that

is,

EðtÞ ¼ 1

2

Z 1

0

ð _u2 þ u00 2Þdx: ð70Þ

The time derivative of the energy E(t) is given by

_EðtÞ ¼ �~k _u2ð0; tÞ; ð71Þ

where ~k is the boundary damping parameter. And so, it

follows from Eq. (71) that :

EðtÞ ¼ Eð0Þ � ~k
Z t

0

us
2ð0; sÞds: ð72Þ

When the damping parameter ~k[ 0, it follows from

Eq. (72) that energy of the system is dissipated. If
~k ¼ 0, then EðtÞ ¼ Eð0Þ, which represents conserva-

tion of energy.

7 Conclusion

In this paper, an initial-boundary value problem for a

beam equation on a semi-infinite interval has been

studied. We applied the method of Laplace transforms

to obtain the Green’s function for a transversally

vibrating homogeneous semi-infinite beam, and

examined the solution for various boundary condi-

tions. In order to validate our analytical results,

explicit numerical approximations of the damping and

oscillating rates were constructed by using the

Laplace transform method to finite domain. It has

been shown that the numerical results approach the

exact results for sufficiently large domain length and

for sufficiently many number of modes. The total

mechanical energy and its time-rate of change can

also be derived.

This paper provides an understanding of how the

Green’s function for a semi-infinite beam can be

calculated analytically for (non)-classical boundary

conditions. The method as given in this paper can be

used for other boundary conditions as well.
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