
50TH ANNIVERSARY OF MECCANICA

Regenerative chatter in self-interrupted plunge grinding

Yao Yan . Jian Xu . Marian Wiercigroch

Received: 1 August 2016 /Accepted: 8 October 2016 / Published online: 25 October 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper investigates dynamics of

regenerative chatter in self-interrupted plunge grind-

ing with delayed differential equations (DDEs) and

partial differential equations (PDEs). The DDEBIF-

TOOL, a numerical simulation tool and the method of

multiple scales are used to analyse stability and

construct bifurcation diagrams. It was found out that

in majority of cases, chatter is accompanied by a loss

of contact. The loss of contact leaves uncut surface

during the pass of grinding wheels, and thus the

regeneration mechanism does not play a role. In that

case, the delay used to represent the time span between

two successive cuts should be multiple (double, triple,

quadruple or higher). As a consequence, the chatter

with losing contact cannot be accurately described by

the DDEs with a fixed time delay. To address this

problem, the PDEs are introduced to record the

variation of workpiece profile. The PDEs are trans-

formed into the ODEs by a Galerkin projection, and

then the grinding dynamics is studied numerically.

Solutions obtained from the DDEs and the PDEs are in

a good agreement for a continuous grinding but there

is a discrepancy for a self-interrupted cutting.

Keywords Self-interrupted regeneration � Multiple-

delay effect � Plunge grinding � Large-amplitude

chatter � Partial differential equations
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I (m4) Workpiece moment inertia

K (N m�2) Cutting stiffness

Kg (N m�1) Grinding stiffness

kg (N m�1) Wheel stiffness

k1; . . .; kn (–) Coefficients given by Eq. (13)

L (m) Workpiece length

mg (kg) Wheel mass

Ng (rpm) Rotational wheel speed

Nw (rpm) Rotational workpiece speed

P (m) Grinding position

R; ~R (m) Workpiece profile

~r (–) Dimensionless workpiece profile

rg (m) Wheel radius

rw (m) Workpiece radius

S (m) Coordinate along the workpiece

S1; . . .; Sn (–) Modes of the workpiece

Tg (s) Rotating period of the wheel

Tp (s) Period obtained from Eq. (53)

Tw (s) Rotational period of the workpiece

t (s) Time

W (m) Grinding width

Xg (m) Wheel displacement

Xw (m) Workpiece displacement

X1 (m) Function of time given in Eq. (15)

y1; . . .; y4 (–) Dimensionless variables

Greek letters

c (–) Parameter defined in Eq. (19)

d (–) Dirac delta function

dd (–) Relative displacement

h (–) Angular coordinate

jc (–) Dimensionless grinding stiffness

jw (–) Dimensionless workpiece stiffness

k (–) Eigenvalue

l (–) Parameter given in Eq. (3)

m (–) Parameter given in Eq. (3)

ng (–) Dimensionless wheel damping

nw (–) Dimensionless workpiece damping

q (kg m�3) Mass density

s (–) Dimensionless time

sg (–) Dimensionless wheel period

sw (–) Dimensionless workpiece period

/0; . . .;/N (–) Time point defined in Eq. (56)

Xw (rad s�1) Rotational workpiece speed

x (–) Imaginary part of eigenvalue

x1; . . .;xn

(rad s�1)

Natural frequencies

1 Introduction

Chatter-free operation is critical for grinding as it

guarantees a good workpiece surface finish and

prolongs life of a cutting tool. Chatter can be induced

by various mechanism including thermomechanical,

mode-coupling, frictional, or regenerative effects [40].

The regenerative chatter is one of the most common of

dangerous phenomena and belongs to the class of self-

excited vibration [1, 26, 27, 37]. Any fluctuation of

cutting force induces a time-varying displacement of

the cutting tool and consequently a non-constant depth

of cut, which in turns yields a variation of the cutting

force. As a result, chatter vibration is generated, and

thus a wavy workpiece surface is produced.

Traditionally, the regenerative machining dynam-

ics has been investigated by using the regenerative

chatter theory, which is mathematically described by

delayed differential equations (DDEs) [6, 7, 15, 17,

24]. After the regenerative effect was first reported by

Arnold [2], it has been used to study various machin-

ing chatter in turning [36], milling [19], drilling [15]

and grinding [11]. In 2001, Inasaki et al. [10]

published a seminal paper in the Annals of the CIRP,

which reported that the regenerative effect in the

grinding is similar to self-excited vibration in the

turning.

To describe the regenerative effect during grinding,

the DDEs are employed, where the cutting force is

modelled by the instantaneous grinding depth or in

another word the chip thickness [2, 39]. A delay term

represents the previous relative displacement between

the tool and the workpiece in the previous turn, hence

the DDEs can be naturally employed to model the

regenerative dynamics. This idea was first introduced

by Tobias [34], who investigated the regenerative

turning chatter. Later on, the regenerative chatter

theory was extensively adopted to different machining

chatters including milling [19, 20] and grinding

[7, 18].

In regard to the grinding chatter, Thompson in

[29–33] carried out a series of studies on regenerative

effects caused by the surfaces of both the workpiece

and the grinding wheel. Kinematic models and time

domain simulations were used in these investigations

and other works, e.g. [5, 38]. Later on, dynamic

models with time delays were established by Yuan

et al. [44] and Liu and Payre [18] to examine grinding
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stability in a greater depth. Chung and Liu [7] studied

theoretically the grinding chatter with the nonlinearity

in the grinding force. They established that the

nonlinear chatter can be induced by supercritical Hopf

bifurcations [13, 22, 23]. Thereafter, Yan et al. [42]

and Kim et al. [12] successively found Bautin

(degenerated Hopf) bifurcation [13] in plunge and

transverse grinding processes, respectively. That is to

say, the grinding chatter can be triggered by either a

supercritical or subcritical Hopf bifurcation [41].

Moreover, it was shown that the majority of grinding

chatter is induced by the subcritical instability [43].

In comparison with the supercritical chatter, the

subcritical one induces vibration with much larger

amplitude by generating a negative grinding depth,

which means a lost of contact between the grinding

wheel and the workpiece. The vibration amplitude is

limited not by the nonlinearity in the cutting force but

by intermittent contacts, similar to impacts

[28, 37, 41, 43]. For the stable grinding or small-

amplitude chatter, the grinding wheel is in constant

contact with the workpiece and the cutting process is

continuous. For the large-amplitude chatter, however,

the lost of contact between the workpiece and the tool

occurs, and thus the cutting is intermittent or self-

interrupted [25]. Specifically, during one revolution of

the workpiece, some areas of its surface are cut, while

some others are not.

When theDDEs are used to describe the regeneration

effect, a time delay is a period between two passes of the

tool through the same grinding position. Assuming a

constant rotational speed of the workpiece, the time

delay is equal to the workpiece period of rotation Tw (s).

For the uncut area, the delay is changed into 2Tw, as

the upper chip surface was generated two revolutions

ago. As the progress of the cutting continues, this

delay can further increase to 3Tw; 4Tw or even higher

[16, 37]. Therefore, an alternative strategy must be

constructed to keep tracking the uncut area in the

workpiece surface and updating the delay accordingly,

otherwise the DDEs approach becomes impractical.

Instead of using the DDEs and updating the delay,

we can construct a function to record the profile of the

workpiece [4], and then employ a partial differential

equation (PDE) to update its profile. Hence, the

original equations govern the displacements of the

workpiece and the wheel, while the newly added PDE

describes the profile of the workpiece [16, 37]. To

solve the PDE, the Galerkin projection is used, and the

original DDEs are expanded and transformed into

ODEs [21, 35].

Using the ideas described above, this paper

attempts to develop a new approach to study the

self-interrupted grinding chatter. To begin with,

Sect. 2 gives a general model of the grinding dynam-

ics. Then, the DDEs are used in Sect. 3 to analyse the

grinding stability using the continuation scheme and

eigenvalue analysis [8, 22]. After that, the grinding

chatter is analysed numerically by DDEBIFTOOL and

the method of multiple scales (MMS) are performed to

construct bifurcation diagrams. In Sect. 4, first the

governing equations are formulated as PDEs. Then an

additional function is introduced to record the work-

piece profile and formulate the grinding depth. Next,

the PDEs are transformed into the ODEs by using the

Galerkin projection procedure. With these ODEs, the

grinding dynamics is investigated by simulations and

finite-difference method. The undertaken analysis

confirms that the ODEs and the DDEs present similar

results for the grinding without lost of contact. When

the wheel loses contact with the workpiece, a

discrepancy increases with time.

2 Dynamical model of plunge grinding

A plunge grinding process is illustrated in Fig. 1,

where a workpiece is clamped and rotated by a chuck

on its left end and is simply-supported by a tailstock on

the right. In order to grind the workpiece, a rotating

grinding wheel is fed into the workpiece. As material

in the workpiece surface is removed during the wheel-

workpiece interactions, a grinding force is generated,

which is exerted on the wheel and the workpiece.

For a stable grinding process, displacements of the

wheel and the workpiece are constant, and therefore

the workpiece profile is round and flat. For an

unstable grinding however, the profile becomes wavy

and the grinding depth fluctuates. Consequently, a

time-varying grinding force is generated, which

promotes the grinding chatter. To theoretically study

the grinding dynamics, the governing equations need

to be developed.

The workpiece shown in Fig. 1 is represented as a

beam of length L (m), radius rw (m), mass density q
(kg m�3), Young’s modulus E (N m�2) and damping

cw (N s m�2). The cross-sectional area and the inertia
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moment of the workpiece are A ¼ pr2w (m2) and I ¼
pr4w=4 (m4) respectively. The grinding wheel is

considered as a damped spring-mass system having

mass mg (kg), damping cg (N s m�1), and stiffness kg

(N m�1). The workpiece rotates with a speed Nw

(rpm), while the rotary speed of the wheel is Ng (rpm).

At the position S ¼ P, the wheel is plunged into the

workpiece with a feed speed f (m s�1) causing the

workpiece to be cut and generating the grinding force

Fg (N).

As the workpiece is modelled as an Euler–Bernoulli

beam and the grinding wheel as a spring-mass system;

their displacements, Xwðt; SÞ (m) and XgðtÞ (m), are

governed by

mg

d2XgðtÞ
dt2

þ cg
dXgðtÞ
dt

þ kgXgðtÞ ¼ Fg;

qA
o2Xwðt; SÞ

ot2
þ cw

oXwðt; SÞ
ot

þ EI
o4Xwðt; SÞ

oS4

¼ �d S� Pð ÞFg;

ð1Þ

where dðS� PÞ is the Dirac delta function, represent-
ing the contact position. The boundary conditions of

the workpiece displacement are

Xwðt; 0Þ ¼
oXwðt; 0Þ

oS
¼ 0

and

Xwðt; LÞ ¼
o2Xwðt; LÞ

oS2
¼ 0:

ð2Þ

The grinding force in Eq. (1), Fg, is proportional to

grinding depth Dg. For a positive Dg, the grinding

force is given by Werner’s model [39]. Fg becomes

zero if Dg is negative, which means the grinding force

disappears when the workpiece and the wheel lose

contact. Simply put, the grinding force Fg is given by

Fg ¼
WKCm rwNw

rgNg

� �2l�1

D1�l
e Dl

g if Dg [ 0;

0 if Dg � 0;

8><
>:

ð3Þ

where W (m) is the contact width, K (N m�2) is the

cutting stiffness, C represents the character of cutting

edge distribution, De ¼ 2rwrg=ðrw þ rgÞ is the equiv-

alent diameter, m 2 ½0; 1� and l 2 ½0:5; 1� are nondi-

mensional exponential parameters, and Dg is the

instantaneous grinding depth [41]. In the following

analysis, the grinding stiffness, Kg ¼ WKCm rw
rg

� �2l�1

(N m�1) will be regarded as one parameter.

3 Analysis of grinding dynamics using DDEs

Based on the regenerative theory, the grinding depth

Dg depends on the feed speed f and the surface

regeneration [29]. When the rotating wheel interacts

with the workpiece, a new workpiece surface is

generated. After the workpiece makes one revolution,

the wheel passes the same position for the second time;

consequently, the instantaneous grinding depth equals

to the radial distance between the old and the new

surfaces.

3.1 Regeneration effect modelled by DDEs

As shown in Fig. 2, the regeneration effect can be

represented by delayed terms [7, 18, 42]. Besides the

feed in one revolution, fTw, the position of the new

surface is influenced by the current workpiece and

wheel displacements, Xwðt;PÞ and XgðtÞ. Meanwhile,

the position of the old surfaces depends on the

previous workpiece and wheel displacements, Xwðt �
Tw;PÞ and Xgðt � TwÞ, where Tw ¼ 60=Nw is the

rotational period of the workpiece. Moreover, if the

wear in the wheel surface is considered, the

Fig. 1 A schematic of the plunge grinding process. A

workpiece has its right end simply supported by a tailstock,

while it another end is clamped and rotated by a chuck.

Meanwhile, a grinding wheel is rotated and plunged into the

workpiece, grinding and regenerating the workpiece surface
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regeneration at time t � Tg must be considered as well,

where Tg ¼ 60=Ng is the rotational period of the

wheel.

For stable chatter-free grinding, the grinding depth

is constant, Dg ¼ fTw, and this is called nominal

grinding depth [43]. In general, the instantaneous

relative displacement between the workpiece and the

wheel, Xwðt;PÞ and XgðtÞ, keeps varying. This vari-

ation perturbs the grinding depth to be Dg ¼
fTw þ Xwðt;PÞ � XgðtÞ. Moreover, considering the

regeneration effect of the workpiece, one can see that

the instantaneous grinding depth is influenced by the

position of the old workpiece surfaces as well.

Therefore, the grinding depth can be described

as Dg ¼ fTw þ Xwðt;PÞ � XgðtÞ � Xwðt � Tw;PÞ
þXgðt � TwÞ. In addition, when the regeneration

effect of the wheel surface is considered, the grinding

depth is described as

Dg ¼ fTw þ Xwðt;PÞ � XgðtÞ
� Xwðt � Tw;PÞ þ Xgðt � TwÞ
� g Xwðt � Tg;PÞ � Xgðt � TgÞ
� �

;

ð4Þ

where g is a dimensionless parameter related to the

grinding ratio G.

The grinding ratio is given by

G ¼ Vw

Vg

; ð5Þ

where Vw is the volume of workpiece material

removed, and Vg that of the grinding wheel. Due to

the relative wheel-workpiece displacement at the time

t � Tg (½t � Tg; t � Tg þ Dt� for example), the material

removed volume Vw is increased by

DVw ¼W Xwðt � Tg;PÞ � Xgðt � TgÞ
� �

� Nw2prw
60

Dt:
ð6Þ

Simultaneously, the wheel is also being slowly

regenerated with Vg increased by

DVg ¼Wg Xwðt � Tg;PÞ � Xgðt � TgÞ
� �

� Ng2prg
60

Dt:
ð7Þ

Here, g indicates that the decrease of the wheel radius

gðXwðt � Tg;PÞ � Xgðt � TgÞÞ is smaller than that of

the workpiece radius ðXwðt � Tg;PÞ � Xgðt � TgÞÞ.
Combining these equations yields

G ¼ DVw

DVg

¼ 1

g

Nwrw

Ngrg
; ð8Þ

and

g ¼ Nwrw

GNgrg
: ð9Þ

As G � 1 and Ngrg [Nwrw, thus g � 1 and the

grinding depth can be simplified to

Dg ¼fTw þ Xwðt;PÞ � XgðtÞ
� Xwðt � Tw;PÞ þ Xgðt � TwÞ:

ð10Þ

3.2 DDE model

Given the boundary condition described by Eq. (2),

the workpiece displacement can be expanded as [3]

Xwðt; SÞ ¼
Xn
i¼1

XiðtÞ
�
sinhðkiLÞ � sinðkiLÞ
cosðkiLÞ � coshðkiLÞ

� cosðkiSÞ � coshðkiSÞð Þ

þ sinðkiSÞ � sinhðkiSÞð Þ
�
;

ð11Þ

where

k4i ¼
qA
EI

x2
i ði ¼ 1; 2; 3; . . .Þ; ð12Þ

andxi represents the natural frequency of the ith mode

of the workpiece. Moreover, ki is the solution of

Fig. 2 A schematic of regeneration effect between the

workpiece and the wheel surfaces, described by DDEs. The

workpiece surface is successively regenerated by the wheel,

therefore the instantaneous grinding depth depends on the

current and previous wheel-workpiece displacements
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tanhðkiLÞ ¼ tanðkiLÞ: ð13Þ

A numerical solution of Eq. (13) yields

k1 ¼
3:9266

L
; k2 ¼

7:0686

L
; k3 ¼

10:2102

L
; . . . :

ð14Þ

In practical applications, the first mode (i ¼ 1) of

the beam is much often used than the other modes.

Investigations carried out by Fu [9] and Altintas and

Weck [1] show that the grinding chatter only involves

the lowest modes of the workpiece. When the grinding

wheel is located near the centre of the workpiece, the

chatter frequency is dominated by the primary mode of

the workpiece. Therefore, for the sake of simplicity,

our analysis only considers n ¼ 1,

Xwðt; SÞ ¼ X1ðtÞS1ðSÞ ð15Þ

where

S1ðSÞ ¼
sinhðk1LÞ � sinðk1LÞ
cosðk1LÞ � coshðk1LÞ
� cosðk1SÞ � coshðk1SÞð Þ
þ sinðk1SÞ � sinhðk1SÞð Þ:

ð16Þ

Next, by substituting Eqs. (3), (10), and (15) into

Eq. (1), and using Galerkin projection, we obtain

mg

d2XgðtÞ
dt2

þ cg
dXgðtÞ
dt

þ kgXgðtÞ ¼ Kg

� Nw

Ng

� �2l�1

D1�l
e

�
fTw þ X1ðtÞS1ðPÞ

� XgðtÞ � X1ðt � TwÞS1ðPÞ þ Xgðt � TwÞ
�l
;

qA
d2X1ðtÞ
dt2

þ cw
dX1ðtÞ
dt

þ EIk41X1ðtÞ ¼ �Kg

� Nw

Ng

� �2l�1
S1ðPÞR L

0
S1ðSÞ2dS

D1�l
e

�
fTw

þ X1ðtÞS1ðPÞ � XgðtÞ

� X1ðt � TwÞS1ðPÞ þ Xgðt � TwÞ
�l

:

ð17Þ

When the grinding process is stable, the dis-

placements of the workpiece and the wheel are

constant. Mathematically, the corresponding dis-

placements are called equilibria of Eq. (17), which

are given by

Xð0Þ
g ¼Kg

kg

Nw

Ng

� �2l�1

D1�l
e

�
fTw

�l

;

X
ð0Þ
1 ¼� S1ðPÞ

EIk41
R L
0
S1ðSÞ2dS

Kg

Nw

Ng

� �2l�1

� D1�l
e

�
fTw

�l

:

ð18Þ

where X
ð0Þ
g and X

ð0Þ
1 represent the equilibrium of XgðtÞ

and XwðtÞ respectively.
Using Eq. (18), we can nondimensionalize Eq. (17)

by introducing the following nondimensional

parameters

s ¼ t

ffiffiffiffiffiffi
kg

mg

s
; sg ¼ Tg

ffiffiffiffiffiffi
kg

mg

s
; sw ¼ Tw

ffiffiffiffiffiffi
kg

mg

s
;

jw ¼ EIk41mg

qAkg
c ¼ mgS1ðPÞ2

qA
R L
0
S1ðSÞ2dS

;

ng ¼
cg

mg

ffiffiffiffiffiffi
mg

kg

r
; nw ¼ cw

qA

ffiffiffiffiffiffi
mg

kg

r
;

jc ¼
Kg

kg

De

f

ffiffiffiffiffiffi
kg

mg

s !1�l

s2l�1
g :

ð19Þ

and variables

yðsÞ ¼

y1ðsÞ
y2ðsÞ
y3ðsÞ
y4ðsÞ

0
BBB@

1
CCCA ¼

XgðtÞ � X
ð0Þ
g

f

ffiffiffiffiffiffi
kg

mg

s

X1ðtÞ � X
ð0Þ
1

f

ffiffiffiffiffiffi
kg

mg

s
S1ðPÞ

1

f

dXgðtÞ
dt

1

f

dX1ðtÞ
dt

S1ðPÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

dd ¼y2ðsÞ � y1ðsÞ þ y1ðs� swÞ � y2ðs� swÞ;

dg ¼
Dg

f

ffiffiffiffiffiffi
kg

mg

s
¼ dd þ sw:

ð20Þ

As a result, the nondimensional Eq. (17) is obtained

as

dyðsÞ
ds

¼ AyðsÞ þ Fdde

	 ðA� DÞyðsÞ þ Dyðs� swÞ þ f;

ð21Þ
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where

A ¼

0 0 1 0

0 0 0 1

�1 0 � ng 0

0 � jw 0 � nw

0
BBBB@

1
CCCCA;

D ¼

0 0 0 0

0 0 0 0

s�l
w ljc � s�l

w ljc 0 0

�cs�l
w ljc cs�l

w ljc 0 0

0
BBBB@

1
CCCCA;

Fdde ¼ s1�2l
w jc

0

0

dlg � slw

�cdlg þ cslw

0
BBBBBB@

1
CCCCCCA
;

f ¼ lðl� 1Þ
2slþ1

w

jc

0

0

d2dðsÞ þ s�1
w

l� 2

3
d3dðsÞ

�cd2dðsÞ � cs�1
w

l� 2

3
d3dðsÞ

0
BBBBBBB@

1
CCCCCCCA
:

ð22Þ

3.3 Grinding stability

Equation (21) representing the nondimensional

DDEs, governs the dynamics of the plunge grinding

process, whose equilibria represent the stationary

grinding. Thus, the stability of the equilibrium reflects

the grinding stability. More specifically, when all the

eigenvalues in terms of the equilibrium have negative

real parts, the grinding is stable. On the contrary,

grinding instability arises if the real part of any

eigenvalue becomes positive. In case of a pair of pure

imaginary eigenvalues, a Hopf bifurcation occurs and

thus grinding chatter begins [42]. With increase of the

real parts of the eigenvalues, the chatter amplitude

grows. Simply put, Eq. (21) gives all the information

required in the analysis of the grinding dynamics.

To examine the grinding stability, the eigenvalues

are calculated [18, 42] and the characteristic equation

of Eq. (21) is

det kI� A� Dw expð�kswÞð Þ ¼ 0; ð23Þ

where k is the eigenvalue, and detð�Þ is the determinant

of �. If k ¼ 0 is substituted into Eq. (23), one can

obtain det kI� A� Dw expð�kswÞð Þ ¼ jw. Since

jw [ 0; k ¼ 0 is not an eigenvalue of the grinding

dynamics. Therefore, it can be concluded that the

instability in the grinding can only be induced by pure

imaginary eigenvalues, k ¼ 
ix. Correspondingly,

we have

Re det ixI� A� Dw expð�ixswÞð Þð Þ ¼ 0;

Im det ixI� A� Dw expð�ixswÞð Þð Þ ¼ 0;
ð24Þ

where Reð�Þ and Imð�Þ represent the real and imagi-

nary parts of � respectively.
Equation (24) represents the critical case for the

stable grinding, for which the stability boundary can

be determined by solving it successively in the

parameter space. To this end, the numerical continu-

ation scheme [8, 43] described in ‘‘Appendix 1’’ is

employed. Following the procedure illustrated in

Fig. 14, we obtain the stability boundary of the

grinding process, which is shown in Fig. 3.

In Fig. 3, the chatter-free region is shaded, while

the chatter region is marked as white. In the chatter-

free region, the grinding is linearly stable, whereas in

the chatter region, the stability is lost and the chatter

occurs. Moreover, Fig. 3 shows that the increase of sw
or the decrease of jc benefits the grinding stability.

From Eq. (19) it can be concluded that a small

rotational speed of the workpiece Nw, a large rota-

tional speed of the wheel Ng, and a small grinding

stiffness Kg should be chosen to obtain a

Fig. 3 Typical stability boundary of the plunge grinding

process. The shaded region is the chatter-free, where no

eigenvalue has positive real part. For further analysis of grinding

dynamics, line A (sw ¼ 10 and jc 2 ½1:675; 2:1�) is marked to

indicate the increase of jc
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stable grinding process. Here, the stiffness Kg ¼

WKCm rw
rg

� �2l�1

depends on many parameters and to

realize the smallKg, one should choose a small contact

width W, a small cutting stiffness K (which can be

realized by sharpening the grains of the wheel), a small

characteristic parameter of cutting edge distribution

Cm or a large wheel radius rg. Apparently, both small

Nw and W, decrease the grinding efficiency. Thus, the

best choice to avoid the grinding chatter is a large

wheel speed Ng.

3.4 Chatter predicted by DDEs

With the stability boundary obtained above, one can

study the stable grinding in the chatter-free region and

the grinding chatter in the chatter region. To this end,

we use the method of multiple scales, simulation and

DDEBIFTOOL to investigate the grinding dynamics

near the boundary. Along Line A depicted in Fig. 3, a

corresponding bifurcation diagram is constructed and

shown in Fig. 4. As can be seen, a subcritical Hopf

divides the parameter regions into three areas. The

unconditionally chatter-free presents stable grinding,

while the chatter vibration dominates the chatter

region. In the conditionally chatter region, both

stable and unstable grinding co-exist.

With regards to Points I and II (jc ¼ 1:845), the

time series of the grinding chatter and the stable grind-

ing are plotted in Fig. 5. Point I represents the

stable grinding, while Point II shows the grinding

chatter. As shown in Fig. 5b, the grinding chatter is

accompanied by the effect of losing contact, where the

grinding force drops to zero for a negative grinding

depth dg.

For negative dg, no workpiece material is being

removed by the grinding wheel and the workpiece

profile in this area is unchanged. Mathematically, the

corresponding time-delay is increased from sw to 2sw.
For the next turn, such delay can further grow to

3sw; 4sw and so on. Obviously, such multiple-delay

effects cannot be adequately modelled and analysed

by the DDEs, Eq. (21), therefore, in next section, we

will adopt another model, which uses partial differen-

tial equations (PDEs) to conveniently record the

evolution of the workpiece profile.

κ

Fig. 4 Bifurcation diagrams with parameter value selected on

Line A marked in Fig. 3. It presents the relationship between

dg ¼ sw þ dðsÞ and jc. A subcritical Hopf bifurcation is

generated near the stability boundary, which yields large-

amplitude chatter. Stable chatter shows up only after the contact

is lost (dg\0). The subcritical instability divides the parameter

region into three regions. In the conditionally chatter-free

region, the grinding dynamics can be either stable or unstable.

To illustrate, Points I and II are marked for further simulation

(a)

(b)

Fig. 5 Time series of the nondimensional grinding depth dg,

which corresponds to Points I and IImarked in Fig. 4. a, b depict
the stable grinding and the chatter vibration respectively
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4 Analysis of grinding dynamics using PDEs

In the previous section, the regenerative grinding

chatter was investigated by using the DDEs with fixed

delays. If the workpiece profile is divided into several

regions, then the corresponding time delays in differ-

ent regions should be updated separately. As an

example, Fig. 6 uses 16 regions and s1; . . .; s16 to track
the multiple-delay effects of the workpiece regener-

ation. For an accurate simulation of the grinding

dynamics, more regions and time delays are required,

and then the analysis with the DDEs becomes a

kinematic relationship similar to those studied by

Thompson [29–33], Weck [38], and Li and Shin [14].

A similar investigation on a turning process was

carried out by Liu et al. [16], who divided the

workpiece profile into 600 segments for the simulation

of the chatter with multiple-delay effects.

As the effect of losing contact cannot be fully

captured by the DDEs with fixed delays, this section

alternatively uses a PDE to describe the transforma-

tion of the workpiece profile. The profile is updated as

soon as the grinding is started. Therefore, the regen-

eration effect on the workpiece is calculated, and thus

the instantaneous grinding depth and the grinding

force are computed.

4.1 Regeneration effect described by PDEs

A schematic of the regeneration caused by the work-

piece is shown in Fig. 7, where sections of the

workpiece and the grinding wheel are mapped onto a

fixed plane. On the plane, the radius of the workpiece

is recorded by Rðt; hÞ, where hðtÞ 2 ½0; 2p� is a

coordinate fixed on the plane. Given the rotation

direction of the workpiece, it is known that the

workpiece enters the grinding area at hðtÞ ¼ 2p, and
then exits it at hðtÞ ¼ 0. For hðtÞ 2 ð0; 2pÞ, by

contrast, no cutting occurs.

At hðtÞ ¼ 2p, the workpiece surface is cut and its

radius is decreased from Rðt; 2pÞ to R(t, 0). Consid-

ering the feed and the instantaneous positions of the

workpiece and the wheel, we can obtain the after-

cutting radius:

Rðt; 0Þ ¼ Rwð0Þ � ft � Xwðt;PÞ þ XgðtÞ; ð25Þ

where Rwð0Þ is the initial radius of the workpiece.
After this cutting pass, next one will not occur until

h is increased from 0 to 2p. Given the rotational speed

of the workpiece, Xw ¼ 2pNw

60
, the angle can be written

as hðtÞ ¼ Xwt. Therefore, the uncut surface has the

relationship:

Rðt; hÞ ¼ Rðt � Dt; h� DhÞ
¼ Rðt � Dt; h� XwDtÞ; h 2 ð0; 2p�;

ð26Þ

where Dt and Dh ¼ XwDt represent the increase of

t and h respectively.

From Fig. 7, it is seen that the penetration of the

wheel into the workpiece is the difference between

Rðt; 2pÞ and R(t, 0). Namely, the workpiece radius is

decreased from Rðt; 2pÞ to R(t, 0) by the cut of the

wheel, with the grinding depth

Dg ¼ Rðt; 2pÞ � Rðt; 0Þ: ð27Þ

Fig. 6 A schematic of multiple-delay effects along the

circumference of the workpiece, which is due to the chatter

accompanied with a loss of wheel-workpiece contact. In each

regions of the workpiece profile, the time delays could be

different and should be updated separately

Fig. 7 A schematic of the regeneration effect caused by

the workpiece, where the workpiece radius is monitored by

Rðt; hÞ instead of time delays
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Given Eq. (26), the grinding depth, Eq. (27), can also

be written as

Dg ¼ Rðt; 2pÞ � Rðt; 0Þ
¼ Rðt � Dt; 2p� XwDtÞ � Rðt; 0Þ
¼ Rðt � Tw; 0Þ � Rðt; 0Þ
¼ fTw þ Xwðt;PÞ � XgðtÞ
� Xwðt � Tw;PÞ þ Xgðt � TwÞ:

ð28Þ

Obviously, Eq. (28) gives the same grinding depth as

that presented in Eq. (10). This ensures that the

regeneration effects in these different forms (DDEs

or PDEs) are identical.

When a loss of contact occurs, Dg � 0, the work-

piece-wheel interactions are on hold and therefore the

workpiece radius at h ¼ 0 is unchanged. In this case,

we have Rðt; 0Þ ¼ Rðt; 2pÞ. In combination with

Eq. (25), the after-cutting workpiece radius (h ¼ 0)

can be written as

Rðt;0Þ ¼
Rwð0Þ� ft�Xwðt;PÞþXgðtÞ; if Dg[0;

Rðt;2pÞ; if Dg�0;

	

ð29Þ

or

Rðt;0Þ ¼min Rwð0Þ� ft�Xwðt;PÞþXgðtÞ;Rðt;2pÞ
� �

:

ð30Þ

In the uncut zone (h 2 ð0; 2p�), it is obtained from

Eq. (26) that

oRðt; hÞ
ot

¼ lim
Dt!0

Rðt þ Dt; hÞ � Rðt; hÞ
Dt

¼ Xw lim
Dt!0

Rðt þ Dt; hÞ � Rðt þ Dt; hþ DhÞ
Dh

¼ �Xw

oRðt; hÞ
oh

:

ð31Þ

Next, introducing ~Rðt; hÞ ¼ Rðt; hÞ þ ft � f
Xw
h�

Rwð0Þ into Eqs. (31) and (30) yields the governing

equation of the workpiece profile

o~Rðt; hÞ
ot

þ Xw

o~Rðt; hÞ
oh

¼ 0; h 2 ð0; 2p�; ð32Þ

and its boundary condition

~Rðt; 0Þ ¼ min �Xwðt;PÞ þ XgðtÞ; ~Rðt; 2pÞ þ fTw
� �

:

ð33Þ

Correspondingly, the grinding depth is

Dg ¼ ~Rðt; 2pÞ � ~Rðt; 0Þ þ fTw

¼ max fTw þ ~Rðt; 2pÞ þ Xwðt;PÞ � XgðtÞ; 0
� �

:

ð34Þ

Now, all the governing equations of the grinding

dynamics are obtained, where Eqs. (32) and (33)

determine the workpiece profile, while Eqs. (1), (3)

and (34) govern the evolution of the workpiece and the

wheel displacements.

4.2 Model simplification

Before analysing the grinding dynamics, Eqs. (1),

(34), (32) and (33) are to be simplified. Repeating the

procedure used in Sect. 3.2, one can obtain the

corresponding nondimensional equations:

dyðsÞ
ds

¼ AyðsÞ þ Fpde; ð35Þ

o~rðs; hÞ
os

þ 2p
sw

o~rðs; hÞ
oh

¼ 0; ð36Þ

~rðs; 0Þ ¼ min �y2ðsÞ þ y1ðsÞ; ~rðs; 2pÞ þ swð Þ: ð37Þ

and

dg ¼ max sw þ ~rðs; 2pÞ þ y2ðsÞ � y1ðsÞ; 0ð Þ; ð38Þ

where

Fpde ¼

0

0

s1�2l
w jcdlg � s1�2l

w jcslw

�cs1�2l
w jcdlg þ cs1�2l

w jcslw

0
BBBBB@

1
CCCCCA
;

~rðs; hÞ ¼
~Rðs; hÞ

f

ffiffiffiffiffiffi
kg

mg

s
:

ð39Þ

As a counterpart of Eq. (21), Eq. (35) governs the

grinding dynamics as well, that is, the delay terms
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(y1ðs� swÞ � y2ðs� swÞ) in Fdde is substituted by

~rðs; 2pÞ in Fpde, where ~rðs; hÞ is described by Eq. (36).
As Eq. (36) is a PDE, Galerkin projection can be

used to map ~rðs; hÞ onto its shape functions. Since

Eq. (36) is very similar to that used by Wahi and

Chatterjee [37], we can use the same shape functions:

~rðs; hÞ ¼ a0ðsÞ 1� h
2p

� �
þ a1ðsÞ

h
2p

þ
XM�1

j¼1

ajþ1ðsÞ sin
jh
2

� �
:

ð40Þ

From Eq. (40), it is obtained that ~rðs; 0Þ ¼ a0ðsÞ and
~rðs; 2pÞ ¼ a1ðsÞ. Thus Eq. (37) can be written as

a0ðsÞ ¼ min �y2ðsÞ þ y1ðsÞ; a1ðsÞ þ swð Þ: ð41Þ

Moreover, one can use

da0ðsÞ
ds

¼

dy1ðsÞ
ds

� dy2ðsÞ
ds

; if y1ðsÞ � y2ðsÞ\a1ðsÞ þ sw;

da1ðsÞ
ds

; if y1ðsÞ � y2ðsÞ� a1ðsÞ þ sw:

8>><
>>:

ð42Þ

Substituting Eq. (40) into Eq. (36) yields

da0ðsÞ
ds

1� h
2p

� �
þ da1ðsÞ

ds
h
2p

þ
XM�1

j¼1

dajþ1ðsÞ
ds

sin
jh
2

� �
� 1

sw
a0ðsÞ

þ 1

sw
a1ðsÞ þ

2p
sw

XM�1

j¼1

j

2
cos

jh
2

� �
ajþ1ðsÞ ¼ 0:

ð43Þ

Then, applying the Galerkin projection andmaking the

left hand side of Eq. (43) be orthogonal to the shaped

functions given by Eq. (40), one has

Z 2p

0

�
da0ðsÞ
ds

1� h
2p

� �
þ da1ðsÞ

ds
h
2p

þ
XM�1

j¼1

dajþ1ðsÞ
ds

sin
jh
2

� �
� 1

sw
a0ðsÞ þ

1

sw
a1ðsÞ

þ 2p
sw

XM�1

j¼1

j

2
cos

jh
2

� �
ajþ1ðsÞ

�
� h
2p

dh ¼ 0;

ð44Þ

andZ 2p

0

�
da0ðsÞ
ds

1� h
2p

� �
þ da1ðsÞ

ds
h
2p

þ
XM�1

j¼1

dajþ1ðsÞ
ds

sin
jh
2

� �
� 1

sw
a0ðsÞ þ

1

sw
a1ðsÞ

þ 2p
sw

XM�1

j¼1

j

2
cos

jh
2

� �
ajþ1ðsÞ

�
sin

kh
2

� �
dh ¼ 0;

ð45Þ

where k ¼ 1; 2; 3; . . .;M � 1. Therefore, the grinding

dynamics is governed by the ordinary differential

equations (ODEs): Eqs. (35), (44) and (45).

Substituting a0ðsÞ and da0ðsÞ
ds

in these equations by

using Eqs. (41) and (42), and letting

aðsÞ ¼ ðy1ðsÞ; . . .; y4ðsÞ; a1ðsÞ; . . .; aMðsÞÞT; ð46Þ

one can combine Eqs. (35), (44) and (45) to obtain

daðsÞ
ds

¼ B�1CaðsÞ þ B�1F; ð47Þ

where

B ¼
I4�4 04�M

ðB3ÞM�4 ðB4ÞM�M

� �
ðMþ4Þ�ðMþ4Þ

;

C ¼
ðC1Þ4�4 04�M

ðC3ÞM�4 ðC4ÞM�M

� �
ðMþ4Þ�ðMþ4Þ

;

F ¼

0

0

Hs1�2l
w jcdlg � s1�2l

w jcslw
�Hcs1�2l

w jcdlg þ cs1�2l
w jcslw

ð1� HÞ
R 2p
0

h
2p

dh

ð1� HÞ
R 2p
0

sin
1h
2

� �
dh

..

.

ð1� HÞ
R 2p
0

sin
ðM � 1Þh

2

� �
dh

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ðMþ4Þ�1

;

ð48Þ

where I is an identity matrix, 0 a zero matrix, and H a

Heaviside function defined as

H ¼
1; if y1ðsÞ � y2ðsÞ\a1ðsÞ þ sw (cuting);

0; if y1ðsÞ � y2ðsÞ� a1ðsÞ þ sw (lost of contact):

	

ð49Þ
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To represent the elements in Eq. (48), one introduces

some coefficients as

ðc0Þ0 ¼
Z 2p

0

1� h
2p

� �
h
2p

dh;

ðc0Þi ¼
Z 2p

0

1� h
2p

� �
sin

ih
2

� �
dh;

ðc1Þ0 ¼
Z 2p

0

h
2p

� �2

dh;

ðc1Þi ¼
Z 2p

0

h
2p

sin
ih
2

� �
dh;

ðcsÞi ¼
Z 2p

0

sin
ih
2

� �2

dh;

ðccÞ0j ¼� p
sw

Z 2p

0

j
h
2p

cos
jh
2

� �
dh;

ðccÞij ¼� p
sw

Z 2p

0

j sin
ih
2

� �
cos

jh
2

� �
dh;

ð50Þ

where i; j ¼ 1; 2; . . .;M � 1. Then these sub-matrices

can be written as

ðB3ÞM�4 ¼

Hðc0Þ0 � Hðc0Þ0 0 0

..

. ..
. ..

. ..
.

Hðc0ÞM�1 � Hðc0ÞM�1 0 0

0
BB@

1
CCA;

ðB4ÞM�M

¼

ðc1Þ0 þ ð1� HÞðc0Þ0 ðc1Þ1 � � � � � � ðc1ÞM�1

..

.
ðcsÞ1 0 � � � 0

..

.
0 . .

. . .
. ..

.

..

. ..
. . .

. . .
.

0

ðc1ÞM�1 þ ð1� HÞðc0ÞM�1 0 � � � 0 ðcsÞM�1

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ð51Þ

and

ðC1Þ4�4 ¼

00

00

�10

0� jw

0
BBBBB@

1
CCCCCA
;

ðC3ÞM�4 ¼
H0 � H0 0 0

..

. ..
. ..

. ..
.

HM�1 � HM�1 0 0

0
BB@

1
CCA

ðC4ÞM�M

¼

�H0 ðccÞ01 � � � ðccÞ0ðM�1Þ

..

. ..
. . .

. ..
.

�HM�1 ðccÞðM�1Þ1 � � � ðccÞðM�1ÞðM�1Þ

0
BB@

1
CCA:

ð52Þ

where Hi (i ¼ 0; 1; 2; . . .;M � 1) is given by

Hi ¼ H
sw

ðc0Þi þ ðc1Þi
� �

. After all the coefficients of

Eq. (47) are obtained from Eqs. (48), (51) and (52), a

numerical simulation is carried out to investigate the

grinding dynamics.

4.3 Grinding dynamics

As expressed in Eq. (40), ~rðs; hÞ is approximated by

the shape functions and a larger M can reduce the

approximation error. In [37], Wahi and Chatterjee

obtained the convergence of the Galerkin approxima-

tion for M[ 25. In this analysis, several values of

M were tested and no apparent improvement of the

approximation accuracy can be observed when

M[ 50. Thus,M ¼ 100 was selected in the following

simulations. In accordance with Point I marked in

Fig. 4 and the time series plotted in Fig. 5a, the

grinding dynamics described by the PDEs is obtained

and shown in Fig. 8. As seen, the time series from

PDEs is marked by dots, which are in a good

(a)

(b)

Fig. 8 a Time series of the stable grinding with respect to Point

I in Fig. 4. Solutions of the DDEs and the PDEs are plotted in

solid and dots respectively. To illustrate the similarity of the two

solutions, b part of the solutions is replotted in a magnified

window
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agreement with the results obtained from DDEs (solid

line).

In contrast, the discrepancy between the DDEs and

the PDEs can be significant when the contact is lost.

To illustrate, the time series with respect to Point II are

plotted in Fig. 9, where the grinding chatter given by

both the DDEs and the PDEs are depicted. Moreover,

two regions of Fig. 9a are blown up to show more

details. Figure 9b shows the onset of losing contact,

where the DDEs and the PDEs still show the same

behaviour. In Fig. 9c, slightly different results are

observed. Comparing these two predictions, the chat-

ter computed by the DDEs has slightly larger ampli-

tude and lower frequency than that from the ODEs.

It is seen that the chatter obtained by the DDEs has a

larger amplitude than that of the PDEs. This because

the current grinding depth is overestimated by the

DDEs when the cutting is absent. This is represented in

Fig. 10. It is assumed that a loss of wheel-workpiece

contact occurred at s� sw, which introduced a neg-

ative grinding depth, dgðs� swÞ\0, and a free fly of

the wheel leaving an uncut surface on the workpiece.

Then, the time delay should be doubled and the real

current grinding depth should be dreal ¼ 2sw þ y2ðsÞ�
y1ðsÞ þ y1ðs� 2swÞ � y2ðs� 2swÞ. However, as seen
in Fig. 10, the DDEs overestimates the current grind-

ing depth to be dg ¼ dreal þ dover ¼ dreal � dg
ðs� swÞ[ dreal. Therefore, the DDEs predicts a larger

depth and thus a larger grinding force. Since the

regenerative grinding force is the source of the chatter,

one can understand that the chatter amplitude is

overestimated by the DDEs.

A further comparison between the results obtained

from the DDEs and the PDEs is given in bifurcation

diagrams depicted in Fig. 11, which were constructed

from numerical simulations of the stable grinding

processes. Thefilled circles stand for the stable solutions

Fig. 9 a Time series of the chatter motion with respect to Point

II in Fig. 4. Solid lines represent the solutions from the DDEs,

while dots stand for the solutions of the PDEs. More details are

replotted in the zoomed views, where b shows the occurrence of

lost of contact, and c illustrates the two solutions separate from

each other when the grinding is influenced by losing contact

Fig. 10 A schematic showing a mechanism of overestimating

grinding depth by the DDEs when a loss of contact occurs. An

overestimated grinding depth dover (the green part) is added to

the real grinding depth dreal (the grey part)

κ

Fig. 11 Bifurcation diagrams obtained by using the DDEs and

the PDEs. The solutions of the DDEs are marked by circles,

where the filled ones stand for the stable solutions and the

unfilled ones are unstable. Rectangles represent the solutions of

the PDEs, where the filled are stable and the unfilled are unstable
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of the DDEs, and the filled rectangles represent the

stable solutions of the PDEs. The unfilled circles

represent the unstable periodical solutions of the DDEs,

which is obtained by DDEBIFTOOL [8]. By contrast,

the unstable periodic solutions of the PDEs are marked

by unfilled rectangles, which are obtained by finite-

difference method [22]. A detailed description of the

finite-difference method is given in ‘‘Appendix 2’’.

To illustrate behaviour of the unstable periodic

solution obtained by the finite-differencemethod, phase

portrait with respect to Point III marked in Fig. 11 is

plotted in Fig. 12. The unfilled circles represent the

periodic solution of the DDEs obtained by DDEBIF-

TOOL. The orbit calculated by the finite-difference

method is marked with the unfilled rectangles. As seen,

the two results are consistent with each other.

4.4 Workpiece profile

When the PDEs are used for the chatter analysis, the

workpiece profile is recorded by ~rðs; hÞ. Therefore,
unlike the DDEs, the workpiece profile can be

reconstructed by using Eq. (40). With regards to the

time series depicted in Figs. 8 and 9, the profiles are

plotted in Fig. 13.

Figure 13a illustrates the workpiece profile when

the grinding is stable, where at the beginning, the

profile ~rðs; hÞ fluctuates with respect to h (h 2 ½0; 2pÞ).
With the increase of time s however, ~rðs; hÞ become

linear and consequently the wavy workpiece profile

becomes flat. By contrast, the grinding chatter presents

a wavy profile in Fig. 13.

It should be remarked here that the workpiece

profile is a by-product of the chatter analysis, which is

a straightforward result of Eq. (40) and no extra effort

is required. If the DDEs were employed, an illustration

of the workpiece profile is possible as well, but more

efforts should be put into the simulation and the result

is indirect. A similar problem was investigated by Liu

et al. [16] in a study of a turning chatter. Besides the

DDEs, they also introduced a PDE, Uðh; tÞ, to record

Fig. 12 Phase portraits of the unstable periodic solutions

obtained by using the DDEs (unfilled circles) and the PDEs

(unfilled rectangles)

(
)

τ
θ

τ
θ

(
)

τ
θ

τ
θ

(a)

(b)

Fig. 13 Workpiece profiles of the stable and the unstable grind-

ing, which varies with respect to time s. a The workpiece profile
is gradually flatted, which corresponds with the stable grinding

illustrated in Fig. 8. b The chatter, which is seen in Fig. 9, leaves
wavy profile in the workpiece surface
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the workpiece profile. Then, the profile was divided

into 600 segments and the surfaces in each segments

were updated separately according to the condition of

contact. This approach can predict the profile, but

extra efforts are required since both the DDEs and the

PDEs are employed and the profile and the delays in

each segments should be updated simultaneously

during the simulation.

5 Conclusions

In this paper for the first time, the self-interrupted

grinding chatter for which a loss of contact between

the workpiece and the grinding wheel occurs, was

investigated by using the DDEs and the PDEs.

Eigenvalues and continuation calculations were used

to investigate the grinding stability. Thereafter, bifur-

cation analysis based on the MMS, DDEBIFTOOL,

the numerical simulations and the finite-difference

method were performed to predict the grinding chatter

in the unstable regions.

Near the stability boundary, bifurcation analysis has

been performed by using the MMS, DDEBIFTOOL

and the numerical simulations. It has been found that

the grinding chatter is mainly generated by subcritical

Hopf bifurcation, which presents large-amplitude

chatter. As a result, the grinding chatter is accompanied

with the effect of losing contact. Correspondingly, the

time delay used in the DDEs is transformed from sw to

2sw; 3sw, or even larger. A such multiple delay effect

cannot be accurately described by the DDEs.

To analyse the grinding chatter with the multiple-

delay effect, the PDEs have been introduced to

monitor the workpiece profile. Simulations and

finite-difference method have been used to obtain the

stable and the unstable solutions of the PDEs respec-

tively. The time histories, the bifurcation diagrams and

the phase portraits obtained from the DDEs and the

PDEs have been compared. It has been seen that the

DDEs and the PDEs give the same results when the

wheel grinds being in contact with the workpiece.

When the wheel loses contact with the workpiece,

their discrepancy increases with respect to time due to

the multiple-delay effect. More specifically, the

grinding chatter obtained from the PDEs has smaller

amplitude than that from the DDEs.

It has been proven that the regeneration effect in the

grinding can be accurately captured by both theDDEs or

the PDEs when the wheel grinds the workpiece

continuously. The DDEs is very useful for the analysis

of the grinding dynamics when the wheel-workpiece

interactions are on hold, either in the case of the

stable grinding or the chatter with small fluctuation.

When the large-amplitude chatter occurs, the grinding is

self-interrupted and then the DDEs with fixed delays are

impractical. In contrast, the PDEs are not affected by the

multiple-delay effect and can be an effective alternative

for the analysis of the self-interrupted grinding chatter.
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Appendix 1: Continuation scheme

The critical parameter values for stable grinding are

determined by solving Eq. (24). For this transcenden-

tal equation, numerical methods including the New-

ton–Raphson iteration and continuation schemes are

employed [8]. Details of this method are given in

Fig. 14. In each step, the initial guess for Newton–

Raphson iteration is given by two known solutions,

which guarantees the convergence of this scheme.

Thereafter, the stability boundary, which divides the

chatter and chatter-free regions, is obtained as shown

in Fig. 3.

Appendix 2: Finite-difference method

This appendix describes the finite-difference method,

which is used to find the unstable periodic solution of

Eq. (47). To begin with, Eq. (47) is rewritten as
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daðsÞ
ds

¼ B�1CaðsÞ þ B�1F ¼ GðaðsÞÞ: ð53Þ

Next, we introduce a time transformation s ¼ Tp/,
where Tp is the period of the solution. As a result,

Eq. (53) becomes

dað/Þ
d/

¼ TpGðað/ÞÞ: ð54Þ

For the periodic solution, the time transformation

gives

að0Þ ¼ að1Þ: ð55Þ

Then, the time span / 2 ½0; 1� is divided uniformly

by introducing time steps

/0 ¼ 0;/1 ¼ h;/2 ¼ 2h; . . .;/N ¼ Nh ¼ 1: ð56Þ

At each time point /i ¼ ih (i ¼ 0; 1; . . .;N), the

derivative
dað/iÞ
d/

is computed by using a central-

difference method. Meanwhile, the trapezoidal rule

is used to approximate Gð/Þ. Therefore, one obtains

að/iþ1Þ � að/iÞ ¼
1

2
hTp
�
Gðað/iþ1ÞÞ þGðað/iÞÞ

�
;

ð57Þ

where i ¼ 0; 1; 2. . .;N.
Given that að/Þ has M þ 4 elements, ðM þ 4ÞN

equations can be obtained from Eq. (57). Meanwhile,

as að/0Þ ¼ að/NÞ, the number of unknowns is reduced

to ðM þ 4ÞN þ 1. The unknowns are

að/0Þ; að/1Þ; að/2Þ; . . .; að/N�1Þ; andTp: ð58Þ

Moreover, as the periodic solution is invariant to the

phase shift, we can fixed one unknown to remove the

arbitrary of the phase. Therefore, ðM þ 4ÞN unknowns

can be solved from ðM þ 4ÞN equations.

Specifically, to obtain the unstable solutions of

PDEs shown in Fig. 11, we choose N ¼ 300 and

y1ð/0Þ ¼ 0:01: ð59Þ
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