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Abstract The dissipative properties of most struc-

tural materials are usually described by a viscous

damping parameter determining the rate of energy

dissipation. The parameter stem from the traditionally

adopted rheological Kelvin model. However, the

analytical description of the dynamic properties of

modern structural materials, including biological

materials, often poses difficulties, due to the fact that

the stress–strain dependence in these materials is not

linear. Therefore a method of determining of nonlinear

form of dissipative characteristic D x; _xð Þ (is presented.

As it is assumed, mathematical function of the

characteristic consist of nonlinear term g(x) of arbi-

trary form and so called mixed term j(x)v where

j(x) is a function of deformation x and v—velocity of

deformation. The deformation of a viscoelastic ele-

ment which is made of tested material can be

measured as displacement x of a single mass m in

relative to a point of a complex vibratory system. The

proper analysis of the mass m movement allows to

evaluate the form of the functions g(x) and j(x) what is

a fundamental aim of the presented method. Beside of

analytical method description some computer exam-

ples are presented. The method can be useful in

evaluation of modern structural material properties

(e.g. composites).

Keywords Nonlinear damping � Analysis

materials � Nonlinear oscillations � Impact load

1 Introduction

The identification of the mechanical properties of

materials and structures (e.g. ballistic shields) sub-

jected to impact loads is a major technological and

scientific challenge. The difficulties encountered in

such identification generally arise from the following

causes:

– the behaviour of modern materials used for

ballistic shields much differs from the reaction of

the traditional linear models based on Hooke’s

law,

– impact loads are generally random in both their

form and frequency of occurrence, i.e. character-

ized by high unpredictability,

– violently applied loads generate high strain rates,

particularly locally in the immediate neighbour-

hood of the impact,

M. Bocian � M. Kulisiewicz (&)

The Institute of Materials Science and Applied

Mechanics, Wroclaw University of Technology,

Smoluchowskiego 25, 50-370 Wrocław, Poland

e-mail: maciej.kulisiewicz@pwr.wroc.pl

M. Bocian

e-mail: miroslaw.bocian@pwr.wroc.pl

K. Jamroziak

Gen. Tadeusz Kosciuszko Military Academy of Land

Forces, Czajkowskiego 109, 51-150 Wrocław, Poland

e-mail: krzysztof.jamroziak@wso.wroc.pl

123

Meccanica (2014) 49:1955–1965

DOI 10.1007/s11012-014-9931-z



– under an impact load the temperature of the

material rises markedly whereby its mechanical

properties may significantly change locally.

The magnitude of the energy dissipation forces

produced by internal friction cannot be determined by

ordinary quasi-static tension (compression) tests,

consisting in determining the dependence between

loading force P and strain x for constant (usually very

low) rate v0, since the forces practically do not

manifest themselves. In such strength tests the influ-

ence of the dissipation forces can be observed only

when rates v0 are high. Relevant test results for both

metals and modern lightweight engineering materials

based on plastics (laminates, composites, etc.), and

also for biological and medical materials, have been

reported [1–7]. In order to identify a parame-

ter(s) describing the dissipative properties of materials

either rates v0 in ordinary strength tests should be

maximally increased or separate identification meth-

ods should be developed for fast-variable dynamic

loads, using atypical (generally, nonlinear) mathemat-

ical models. Considering that the former approach has

a serious practical limitation (in order to increase the

strain rate from zero at standstill to the high value of v0

at which the strength test is carried out great forces

need to be applied to produce suitably fast accelera-

tions), the present authors adopted the latter approach.

According to the authors’ idea, a simple model, in

which a single element made of the tested material

with unknown mechanical properties acts on single

concentrated mass m (which can move in only one

specified direction), is assumed. Such a case occurs,

for example, when the tested structural member at one

of its ends is fixed to a moving dynamic system while

concentrated mass m is fixed to its other (opposite)

end, as shown in Fig. 1. This movable system can

consist of linear or non-linear dynamic system with

any number of degrees of freedom. The necessary

condition for the application of the method presented

in this paper is that after impact the system should be

vibrate, particularly that the point A of this system

should vibrate.

In this case, the differential equation of motion of

mass m assumes the form:

m€xþ F ?ð Þ ¼ �ma0; ð1Þ

where x stands for displacement of mass m relative to

point A of the moving system and a0 is the acceleration

of point A. Assuming, similarly as in most papers on

dynamic system identification (e.g. [8–14]), that force

F of material impact on the mass depends on

displacement x and velocityv ¼ _x, the present authors

postulate that the force can be described by the

following function:

F ?ð Þ ¼ F x; _xð Þ ¼ fs xð Þ þ D x; _xð Þ; ð2Þ

where component fs(x) represent any pure elastic

interaction and component D x; _xð Þ—dissipative

interaction.

It is assumed that function D x; _xð Þ can be written in

the form:

D x; _xð Þ ¼ g _xð Þ þ j xð Þ _x; ð3Þ

where g(x) can be any nonlinear function of velocity

while j(x) can be any nonlinear function of displace-

ment x of mass m. Moreover, it is assumed that the

following conditions are satisfied:

fs x ¼ 0ð Þ ¼ 0; j x ¼ 0ð Þ ¼ 0: ð4Þ

A scheme of such a system is shown in Fig. 2.

The model which has been shown schematically in

the Fig. 2 is an extension of the typical linear Kelvin

model. In this assumption the influence of the velocity

v of the deformation x is described by the function

D(x,v) and it is independent of the purely elastic

interactions described by the function fs(x) of any non-

linear form. The adoption of the function D(x,v) in the

Fig. 1 Schematic of tested system
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form (3) has been motivated by the fact that the damping

effect may increase with the increasing deformation of

the material. Because of that, the function j(x) has been

introduced, which specifies how the damping coefficient

changes as the strain level x0 in the tested structural

member increases. Function j(x) defines how the

damping coefficient changes as the strain level x0 in

the tested structural member increases.

For example, considerable deformation of a structural

member made of a composite material one of the

components of which is a liquid (e.g. liquid resin) may

cause the constriction and curving of the small channels

in which this liquid occurs (see Fig. 3), impeding its flow,

which, in turn, may affect the rate of vibration decay.

It is apparent that if x = 0, dissipative function D x; _xð Þ
depends solely on the rate in the way described by

function g _xð Þ since j(x = 0) = 0 (see conditions 4).

The aim of this paper is to present a method of

identifying the dissipative properties of materials if one

uses function D x; _xð Þ in form (3) to describe them. The

proposed method consists in determining unknown

functions g _xð Þ and j(x) on the basis of appropriate

experimental investigations, assuming that function

fs(x), describing purely elastic properties, is known.

2 Description of method

The differential equation of motion for mass m

suspended by means of the tested member from point

A of an arbitrarily complex dynamic system has the

form

maþ F x; _xð Þ ¼ 0: ð5Þ
If one assumes form (2) of function F in which

component D x; _xð Þ has form (3), Eq. (5) becomes

maþ g _xð Þ þ j xð Þ _xþ fs xð Þ ¼ 0; ð6Þ

where x—stands for the displacement of mass m rel-

ative to point A, v—relative velocity and a—repre-

sents its absolute acceleration.

Fig. 2 Schematic of adopted configuration of tested member

Fig. 3 Effect of material deformation level on free vibration decay rate: a system with deformation level x0 = 0, b system with

deformation level x0 0 (material solid, liquid)

Meccanica (2014) 49:1955–1965 1957

123



It should be noted that the Eq. (6) is satisfied for any

dynamic excitations applied to the complex vibratory

system. This don’t have to be impact loads only but

also the continuous vibrating forces and forces in any

other form (e.g. random ones). Figure 4 presents an

exemplary timing diagram which illustrates the vibra-

tions of the mass m in relation to the point A, where:

x—represents the relative displacement, v—relative

velocity and a is the absolute acceleration of the mass

m. In the experiment these quantities can be measured

independently but the speed v(t) can be created by

integrating the displacement x(t) (e.g. by the numerical

method ode45 from the Simulink software).

Assuming that component fs(x) is known (e.g. it has

been determined through simple static tests under

constant loads), first function g(v) is determined in the

desired range of rates. For this purpose one can select

such time instants ti for which the following is satisfied

(see Fig. 4):

x tið Þ ¼ 0; ð7Þ

for t = ti, taking into account conditions (4), from

Eq. (6) one gets the relation

mai þ g við Þ ¼ 0; ð8Þ

where

ai ¼ a t ¼ tið Þ ; vi ¼ v t ¼ tið Þ : ð9Þ

Relation (8) means that in selected instants ti
inertial force B acting on mass m is counterbalanced

only by component g(v) of dissipative force D. Hence

the following relation is obtained

Bi ¼ g við Þ; ð10Þ

where

Bi ¼ �mai: ð11Þ

Knowing accelerations ai and mass m, one can

calculate Bi for given values of velocity vi. Relation

Fig. 4 Way of determining

data a1, v1

Fig. 5 Way of determining component g(v) of dissipative

characteristic D x; _xð Þ: *points Bi, vi determined experimentally,

function g(v) obtained by approximating relation Bi(v)i
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Bi(vi) is defined by function g(v). Therefore one can

determine function g(v) in a range of experimentally

obtained values vi (see Fig. 5).

Then, already knowing function g(v), one can deter-

mine function j(x). For this purpose, one should select

such time instants tj for which acceleration a is equal to

zero, i.e.

a t ¼ tj

� �
¼ 0: ð12Þ

Subsequently, on the basis of Eq. (6), for t = tj one

gets:

g vj

� �
þ j xj

� �
vj ¼ �fs xj

� �
; ð13Þ

where

vj ¼ v t ¼ tj
� �

; xj ¼ x t � tj
� �

: ð14Þ

Hence from relation (13) one gets

j xj

� �
¼ 1

vj

�fs xj

� �
� g vj

� �� �
: ð15Þ

The numerical values zj on the right side of the

above equation, i.e.

zj ¼
1

vj

�fs xj

� �
� g vj

� �� �
; ð16Þ

can be calculated if the two functions: fs(x) and g(v) are

known. Hence through the approximation of relation

zj(xj) one can determine function j(x) (see Fig. 6).

However, relation (16) may generate large errors if

values vj are close to zero. For this reason, experi-

mental studies were carried for selected cases, by

running simulations.

3 Experimental studies

The method was verified, using the computer simula-

tion technique, for a specific dynamic system with

three degrees of freedom. A schematic of the system is

shown in Fig. 7. The identified system was suspended

from a two-mass dynamic system at point A of mass

m2. The whole system consisted of three masses m1,

m2, m, which could move vertically. Thus the number

of degrees of freedom of the whole system amounted

to N = 3.

The motion of the system was assumed to be

described by the following generalized coordinates:

x1—the displacement of mass m1 relative to an

inertial reference system,

x2—the displacement of mass m2 relative to the

inertial reference system,

x—the displacement of mass m relative to mass m2.

For the above generalized coordinates the differ-

ential equations of system motion are as follows:

m1€x1 þ k1 _x1 þ c1x1 þ c2 x1 � x2ð Þ ¼ p tð Þ; ð17Þ
m2€x2 þ k2 _x2 þ c3x2 þ c2 x2 � x1ð Þ ¼ 0; ð18Þ
maþ g vð Þ þ j xð Þvþ fs xð Þ ¼ 0; ð19Þ

where x, v—relative displacement and relative veloc-

ity however a is the acceleration of mass m relative to

the inertial reference system, i.e.

a ¼ €x2 þ €x: ð20Þ

Fig. 6 Way of determining function j(x) of characteristic

D x; _xð Þ: * points xj, zj determined experimentally, function

j(x) obtained by approximating relation zj(xj)

Fig. 7 Schematic of system used in simulation studies
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The studies were carried out for the system with the

following numerical values of the constant parameters

(Table 1):

Functions fs(x), j(x) were assumed to be linear and

have the following forms:

Table 1 Values of parameters used in simulation numerical

m1 = 16 kg m2 = 40 kg m = 15 kg

c1 = 2000 N/m c2 = 3500 N/m c3 = 1700 N/m

k1 = 68 kg/s k2 = 95 kg/s

Fig. 8 Example of pulse

load applied to mass m1

Fig. 9 Sample system

responses to pulse loads

(g(v) = 80arctg(v)):

a displacement, b velocity,

c acceleration
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fs xð Þ ¼ 900x; ð21Þ
j xð Þ ¼ 760x: ð22Þ

Function g(v) was assumed to have both the linear

form

g vð Þ ¼ 80v; ð23Þ

and the two following nonlinear forms:

g vð Þ ¼ 80v3; ð24Þ
g vð Þ ¼ 80arctg vð Þ: ð25Þ

The aim of the studies of the modelled system was

to experimentally determine the shape of the adopted

functions g(v) and j(x). Impact loads in the form of

single pulses applied to mass m1 were used in the

experiment. The pulses had a half-sinusoidal shape

(see Fig. 8) with a randomly prescribed amplitude.

The duration of each applied pulse was constant and

amounted to T = 0.001 s. Sample waveforms of

system responses x, v, a are shown in Fig. 9.

Selecting the values of vi, ai from the diagrams, as

shown in Sect. 2, dependences Bi(vi) (see Figs. 10, 11,

12) were obtained and presented as points in the

diagrams of assumed functions g(v). As one can see,

Fig. 10 Dependence Bi(vi) for assumed function g(v) = 80v

Fig. 11 Dependence Bi(vi) for assumed function g(v) = 80v3

Fig. 12 Dependence Bi(vi) for assumed function g(v) =

80varctg(v)

Fig. 13 Dependence zj(xj) for assumed function j(x) =

760x and g(v) = 80v

Fig. 14 Dependence zj(xj) for assumed function j(x) =

760x and g(v) = 80v3
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the points practically coincide with the graphs of

functions g(v) in the forms (23), (24), (25).

Similar results were obtained in the second stage of

verification in which function j(x) was determined. In

this case, zj values for the selected values of xj, vj were

calculated from formula (16). The zj(xj) dependence

points are shown together with the prescribed linear

function j(x) in form (22) in the diagrams below. As

one can see, the points ideally coincide with the graph

of function j(x) (see Figs. 13, 14, 15).

Additionally this method was used to identify

damping pads in the suspension system, which is

shown in Fig. 16. These pads was made of a specially
Fig. 15 Dependence zj(xj) for assumed function j(x) = 760x

and g(v) = 80varctg(v)

Fig. 16 View of test bed of research: a distribution washers, b top view of the test object

Fig. 17 Experimental

determination component

g(v) of dissipative

characteristic for tested

object
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magnetorheological elastomer (their properties can be

varied by controlling the intensity of the magnetic

field).

This material is produced at the Institute of

Materials Science and Applied Mechanics of the

Wroclaw Technical University. It is built on the basis

of three components: T’efabloc TO222 30A manu-

factured by CTS Cousin–Tessie (matrix), iron powder

ASC300 manufactured by Höganäs AB (ferromag-

netic refill) and paraffin oil (supplement which softens

the matrix) [15].

Four of such pads supported the horizontal alumi-

num plate weighing 15 kg (see Fig. 16a). The tested

system has been placed on a thick steel plate which

hanged by the ropes of the heavy grate that severed as

a pedestal for dynamic tests of various light mechan-

ical systems. The whole structure which was very

complex, formed a kind of unspecified complex

vibratory system. It should be emphasized that the

properties and motion type of this system do not

influence the results of identification equations of the

presented methods. Force carried out in a horizontal

Fig. 18 Experimental

determination component

j(x) of dissipative

characteristic for tested

object

Fig. 19 The examples of

the time charts which are

necessary to identify the

tested system
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direction with a hammer modal HP. The results for

identification of the object type are shown in Figs. 17

and 18. The functions g(v) and j(x) have been

obtained by nonlinear regression method application.

The presented results suggests that the dissipative

force D has in this case (in such range of velocity and

displacement) the form:

D ¼ k1vþ k3v3 þ j0x2v; ð26Þ

where: k1 = 5.05 9 103 Ns/m, k3 = –21.8 9 103

Ns3/m3, j0 = 7.7 9 109 Ns/m3.

Figure 19 presents an example of the recorded time

charts of the tested system used to designate the values

which are necessary for identification.

4 Conclusions

The presented method of identification was derived

from the Eq. (6). The purpose of this method is to

determine the shape of the dissipative function D(x,v)

in the adopted form (3). The differential Eq. (6)

describes the dynamic behavior of the concentrated

mass m in relation to the moving system—particularly

in relation to the point A. This is a ordinary second-

order equation which solution depends on the initial

conditions. It may be noted that its solution may also

depend on the boundary conditions and the shape

effects of the complex vibratory system. It has been

included in the component ma because a ¼ aA þ €x and

aA is the absolute acceleration of the point A of the

complex system which can be both a discrete system

and continuous system or even the discrete–continu-

ous system. However, the identification results

obtained by this method do not depend on the

properties of the complex system (like the weight) as

long as the point A of this system has oscillating

movement. Although the total mass of the complex

vibratory system has a significant influence on the

scope and quality of the vibrations of the point A and

the entire system it does not affect the results of the

identification of the subsystem made of the tested

material. If the mass of the complex vibratory system

will increase this will require the use of higher

excitation forces—vibrations of the point A (and

consequently the changes of velocity and relative

displacements) should be within the range for identi-

fication of the material.

The system shown in the Fig. 7 has been pre-

verified based on the presented method. The complex

vibratory system was, in this case, the linear dual-mass

system while the nonlinear elements include the

component D of the tested system. It can be seen that

the results of the identification (see Figs. 10, 11, 12,

13, 14, 15) come out almost perfectly. The results

obtained for the real system (see Figs. 17, 18 and the

function (26)) seem acceptable. It can be noted that the

obtained function g(v) presented in the graph (Fig. 17)

doesn’t describe very accurately the experimental

dependence Bi(vi) in the range near zero and specif-

ically—in the range from v = –0.04 to ?0.04. Pres-

ently it is not known whether this is due to the

experiment errors or some important feature of the

system. Therefore, it seems that the study should be

repeated in this range of vibrations.

Summing up, result of the previous research

conducted by the authors suggest that:

– the method can be applied to any dynamic

excitations including shock loads,

– the method allows to determine the energy dissi-

pation in the process of piercing ballistic in a much

more precise than for traditionally used Kelvin

dynamical model,

– the computer simulation research has shown that

developed method works properly from a theoret-

ical point of view,

– experimental verification of this method on some

real dynamic systems should be continued.

Finally it can be add that similar method to discover

the dissipative function D in case when point A is

motionless have been described in a separate work of

authors [16]. In such case the shock load can be

applied directly on the mass m. As it can be noticed, in

such case the Eq. (6) describes vibrations of the

system with one degree of freedom and the measure-

ment of the values of ai and vi have to be conducted in

a free vibration conditions.

Correct and accurate assessment of the dissipative

properties of the materials allow to determine the

motion of the complex systems which components

are made of such materials. When these properties

are significantly non-linear, designing such systems

can be made with regard to the evaluation of their

stability and the phenomena of bifurcation and

chaos [17–25].
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