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Abstract In this article, the multi-step differential
transform method (MsDTM) is applied to give ap-
proximate solutions of nonlinear ordinary differen-
tial equation such as fractional-non-linear oscillatory
and vibration equations. The results indicate that the
method is very effective and sufficient for solving non-
linear differential equations of fractional order.
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1 Introduction

The Rayleigh equation determines a typical non-linear
system with one degree of freedom which admits
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Department of Mathematical Engineering, Gümüşhane
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auto-oscillations. This equation was named after Lord
Rayleigh who investigated equations of this type re-
lated to problems in acoustics [1]. The special case
of the Rayleigh equation for is the Vander Pol equa-
tion [2]. In general, the Duffing equation [3] does not
admit an exact symbolic solution. However, it is re-
solved many approximate methods [4, 5].

The differential transform method (DTM) is a nu-
merical as well as analytical method for solving inte-
gral equations, ordinary, partial differential equations
and differential equation systems. The method pro-
vides the solution in terms of convergent series with
easily computable components. The concept of the dif-
ferential transform was first proposed by Zhou [6] and
its main application concern with both linear and non-
linear initial value problems in electrical circuit analy-
sis. The DTM gives exact values of the nth derivative
of an analytic function at a point in terms of known
and unknown boundary conditions in a fast manner.
This method constructs, for differential equations, an
analytical solution in the form of a polynomial. It is
different from the traditional high order Taylor series
method, which requires symbolic computations of the
necessary derivatives of the data functions. The Taylor
series method is computationally taken long time for
large orders. The DTM is an iterative procedure for
obtaining analytic Taylor series solutions of differen-
tial equations. Different applications of DTM can be
found in [7–29].

However, DTM has some drawbacks. By using the
DTM, we obtain a series solution, actually a truncated
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series solution. This series solution does not exhibit
the real behaviors of the problem but gives a good ap-
proximation to the true solution in a very small region.
To overcome the shortcoming, MsDTM was presented
in [30, 31]. On the other hand, MsDTM has also some
drawbacks. By using the DTM, the interval [0, T ] is
divided into M sub-interval and the series solutions is
obtained in t ∈ [ti , ti+1], i = 0,1, . . . ,M − 1. In some
problems, interval [0, T ] can be required a very small
sub-division of intervals. In this case, both the solution
time lengthens and series solutions are obtained for a
great number of sub-intervals.

The main aim of this paper is to extend the appli-
cation of the multi-step differential transform method
[30, 31] to solve a fractional order non-linear oscillator
and vibration equation.

This paper is organized as follows:
In Sects. 2 and 3, we describe fractional DTM and

multi-step DTM briefly. To show in efficiency of this
method, we give some examples and numerical results
in Sect. 4. The conclusions are then given in the final
Sect. 5.

2 Fractional differential transform method

Consider a general system of fractional differential
equations:

Dmx(t) + f (x)Dα∗ x(t) + h
(
t, x, x′, x′′, . . .

) = 0, (1)

where Dα∗ is the derivative of x of order α in the sense
of Caputo and m − 1 < α ≤ m, subject to the initial
conditions

x(i)(0) = ci, i = 0,1, . . . ,m − 1. (2)

In this paper, we introduce the multi-step fractional
differential transform method used in this paper to ob-
tain approximate analytical solutions for the fractional
differential equations (1). This method has been devel-
oped in [32] as follows:

D
q
x0f (x) = 1

Γ (m − q)

dm

dxm

×
[∫ x

x0

f (t)

(x − t)1+q−m
dt

]
, (3)

for m − 1 ≤ q < m,m ∈ Z+, x > x0. Let us expand
the analytical and continuous function f (x) in terms
of fractional power series as follows:

f (x) =
∞∑

k=0

F(k)(x − x0)
k
α , (4)

where α is the order of fraction and F(k) is the frac-
tional differential transform of f (x).

In order to avoid fractional initial and boundary
conditions, we define the fractional derivative in the
Caputo sense. The relation between the Riemann-
Liouville operator and Caputo operator is given by

D
q∗x0f (x)

= D
q
x0

[
f (x) −

m−1∑

k=0

1

k! (x − x0)
kf (k)(x0)

]
. (5)

Setting f (x) − ∑m−1
k=0

1
k! (x − x0)

kf (k)(x0) in Eq. (3)
and using Eq. (5), we obtain fractional derivative in the
Caputo sense [32–34] as follows:

D
q∗x0f (x)

= 1

Γ (m − q)

dm

dxm

×
[∫ x

x0

{
f (t) − ∑m−1

k=0
1
k! (t − x0)

kf (k)(x0)

(x − t)1+q−m

}
dt

]

(6)

since the initial conditions are implemented are imple-
mented to the integer order derivatives, the transform
of the initial conditions are defined as follows:

F(k) =
⎧
⎨

⎩
if k

α
∈ Z+, 1

( k
α
)!
[ d

k
α f (x)

dx
k
α

]
x=x0

if k
α

/∈ Z+ 0,

for k = 0,1,2, . . . , (qα − 1) (7)

where, q is the order of fractional differential equa-
tion considered. The following theorems that can be
deduced from Eqs. (4) and (5) are given below, for
proofs and detailed see [34–36].

Theorem 1 If z(t) = x(t)±y(t), then Z(k) = X(k)±
Y(k).

Theorem 2 If z(t) = cy(t), then Z(k) = cY (k).

Theorem 3 If z(t) = x(t)y(t) and u(t) = f (t)g(t)h(t),
then

Z(k) =
k∑

k1=0

X(k1)Y (k − k1)
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and

U(k) =
k∑

k2=0

k2∑

k1=0

F(k1)G(k2 − k1)H(k − k2).

Theorem 4 If z(t) = (t − t0)
n, then Z(k) = δ(k −αp)

where

δ(k) =
{

1 k = 0

0 k �= 0

Theorem 5 If z(t) = D
q
t0
[g(t)] then Z(k) =

Γ (q+1+ k
α
)

Γ (1+ k
α
)

G(k + αq).

According to fractional DTM, by taking differential
transformed both sides of the equations given Eqs. (1)
and (2) is transformed as follows:

Γ (
k+q+mq

q
)

Γ (
k+q
q

)
X(k + mq)

+ F(r)
Γ (

k−r+q+p
q

)

Γ (
k−r+q

q
)

X(k − r + p) + H(k) = 0,

(8)

X(qi) = ci, i = 0,1, . . . ,m − 1 (9)

where, α = p
q

is the order of fractional differential
equation considered. Therefore, according to DTM the
N -term approximations for (1) can be expressed as

x(t) =
N∑

k=1

X(k)tαk. (10)

3 Solutions by MsDTM

Let [0, T ] be the interval over which we want to find
the solution of the initial value problem (1). In actual
applications of the DTM, the approximate solution of
the initial value problem (1)–(2) can be expressed by
the finite series,

x(t) =
N∑

i=0

bit
αi, t ∈ [0, T ]. (11)

Assume that the interval [0, T ] is divided into N

subintervals [tn−1, tn], n = 1,2, . . . ,N of equal step
size h = T/N by using the nodes tn = nh. The main
ideas of the multi-step DTM are as follows [30, 31].
First, we apply the DTM to Eq. (1) over the interval

[0, t1], we will obtain the following approximate solu-
tion,

x1(t) =
N∑

i=0

b1i t
αi , t ∈ [0, t1] (12)

using the initial conditions x
(k)
1 (0) = dk . For n ≥ 2

and at each subinterval [tn−1, tn] we will use the initial
conditions x

(k)
n (tn−1) = x(tn−1) and apply the DTM to

Eq. (1) over the interval [tn−1, tn], where ti in Eq. (12)
is replaced by tn−1. The process is repeated and gen-
erates a sequence of approximate solutions xn(t), n =
1,2, . . . ,N for the solution x(t),

xn(t) =
N∑

i=0

bni(t − tn−1)
αi, t ∈ [tn, tn+1] (13)

In fact, the multi-step DTM assumes the following so-
lution,

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(t), t ∈ [0, t1],
x2(t), t ∈ [t1, t2],
...

xN(t), t ∈ [tN−1, tN ].

(14)

4 Applications

Example 1 (The Duffing equation) The Duffing equa-
tion is a non-linear second-order differential equation
as follows:

dαx

dtα
+ x + εx3 = 0

x(0) = 0, x′(0) = 1.

(15)

We will apply classic DTM and the multi-step DTM
to nonlinear ordinary differential equation (15). Ap-
plying classic DTM for Eq. (15)

Γ (
k+q+p

q
)

Γ (
k+q
q

)
X(k + p) + X(k)

+ ε

k∑

k2=0

k2∑

k1=0

X(k1)X(k2 − k1)X(k − k2) = 0, (16)

X(0) = 0, X(q) = 1,

where Xi(n), for n = 1, . . . ,M , satisfy the following
recurrence relations,
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Fig. 1 Plots of displacement x versus time t for α = 3
2 and different value of ε

Γ (
k+q+p

q
)

Γ (
k+q
q

)
Xi(k + p) + Xi(k)

+ ε

k∑

k2=0

k2∑

k1=0

Xi(k1)Xi(k2 − k1)Xi(k − k2) = 0,

(17)

X0(0) = 0, X0(q) = 1

Xi+1(0) = Xi

(
t∗

)
, Xi+1(q) = Xi

(
t∗

)

t ∈ [ti , ti+1], t∗ = ti , i = 0, . . . ,M − 1

By applying the multi-step DTM to Eq. (15) is ob-
tained Eq. (18) as following:

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑N
k=0 X0(k)tkα, t ∈ [t0, t1]

∑N
k=0 X1(k)tkα, t ∈ [t1, t2]

...
∑N

k=0 XM(k)tkα, t ∈ [tM−1, tM ]

(18)

The solutions of Eq. (15) corresponding to ε =
0.1,0.5,1,3 and α = 3

2 , respectively, are shown in
Fig. 1. The results show that in the interval 0 < ε ≤ 3
the frequency increases with increases ε.

The solutions of Eq. (15) corresponding to ε =
0.1,0.5,1,3 and α = 5

3 , respectively, are shown in
Fig. 2. The results show that in the interval 0 < ε ≤ 3
the frequency increases with increases ε. The results
obtained from in Figs. 1 and 2 show that in the in-
terval 1 < α < 2 the frequency decreases with in-
creases.

Table 1 shows the approximate solutions for
Eq. (15) obtained for different values of a using Ms-
DTM with the Runge Kutta method. From the numer-
ical results in Table 1, it is clear that the approximate
solutions are in high agreement with the RKM solu-
tions, when α = 2.

Example 2 (The Vander Pol equation) Consider the
following Vander Pol equation.

d2x

dt2
+ μ

(
x2 − 1

)dαx

dtα
+ x = a sin(wt),

y(0) = 0, y′(0) = 0.

(19)
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Fig. 2 Plots of displacement x versus time t for α = 5
3 and different value of ε

Table 1 Approximate solutions for Duffing equation (15), when ε = 0.1, obtained using multi-step DTM and RK4 method

t Multi-step DTM RK4

x(t)α=2 dx/dtα=2 x(t)α=2 dx/dtα=2

0 0 1 0 1

1 0.8376372563 0.5232020151 0.8376388747 0.5232076636

2 0.8554467235 −0.4913510782 0.8554611051 −0.4913336268

3 0.0350962937 −0.9993840456 0.0351219580 −0.9993829956

4 −0.8187234745 −0.5542727657 −0.8187105403 −0.5543002990

5 −0.8721250801 0.4587619764 −0.8721505150 0.4587203097

6 −0.0701493098 0.9975361877 −0.0702005699 0.9975322880

7 0.7987332983 0.5845233024 0.7987042607 0.5845715230

8 0.8876471393 −0.4254787133 0.8876819044 −0.4254118927

9 0.1051158328 −0.9944573509 0.1051925110 −0.9944487987

10 −0.7776961948 −0.6139158410 −0.7776495628 −0.6139834720
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Fig. 3 Plots of displacement x versus time t for α = 1
2 and different value of μ

Taking classic-DTM of both sides Eq. (19), we obtain
the following recurrence relation:

Γ (
k+q+rq

q
)

Γ (
k+q
q

)
X(k + rq) − μ

Γ (
k+q+p

q
)

Γ (
k+q
q

)
X(k + p)

+ μ

k∑

k2=0

k2∑

k1=0

Γ (
k−k2+q+p

q
)

Γ (
k−k2+q

q
)

(20)

× X(k1)X(k2 − k1)X(k − k2 + p) + X(k)

= a
∑∞

i=0(−1)iw2i+1δ(k−(2i+1)q)

(2i+1)! ,

X(0) = 0, X(q) = 0

where A(k) is the fractional differential transform of
sin(wt) that can be obtained using Eq. (4) [34] as

A(K) =
∞∑

i=0

(−1)iw2i+1δ(k − (2i + 1)q)

(2i + 1)! ,

According to the multi-step DTM, the series solution
for Vander Pol equation (19) is given by,

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑N
k=0 X0(k)tkα, t ∈ [t0, t1]

∑N
k=0 X1(k)tkα, t ∈ [t1, t2]

...
∑N

k=0 XM(k)tkα, t ∈ [tM−1, tM ]

(21)

where Xi(n), for n = 1, . . . ,M , satisfy the following
recurrence relations,

Γ (
k+q+rq

q
)

Γ (
k+q
q

)
Xi(k + rq) − μ

Γ (
k+q+p

q
)

Γ (
k+q
q

)
Xi(k + p)

+ μ

k∑

k2=0

k2∑

k1=0

Γ (
k−k2+q+p

q
)

Γ (
k−k2+q

q
)

Xi(k1)Xi(k2 − k1)

× Xi(k − k2 + p) + Xi(k)

= a
∑∞

i=0(−1)iw2i+1δ(k − (2i + 1)q)

(2i + 1)! ,

X0(0) = 0, X0(q) = 0

Xi+1(0) = Xi

(
t∗

)
, Xi+1(q) = Xi

(
t∗

)

t ∈ [ti , ti+1], t∗ = ti , i = 0, . . . ,M − 1

(22)

Figure 3 shows the approximate solutions for α =
1
2 , a = 1.31, w = 0.5 and μ = 0.1,0.5,1,2. The so-
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Fig. 4 Plots of displacement x versus time t for α = 2
3 and different value of μ

Table 2 Approximate solutions for Vander Pol equation (19), when μ = 0.1, obtained using multi-step DTM and RK4 method

t Multi-step DTM RK4

x(t)α=1 dx/dtα=1 x(t)α=1 dx/dtα=1

0 0 2 0 2

1 1.719751383 1.063295856 1.719749695 1.0633132977

2 1.783892507 −0.865320790 1.783923664 −0.8652903894

3 0.284103929 −1.952361546 0.284154303 −1.9523496436

4 −1.548253041 −1.327237126 −1.548211594 −1.3272875319

5 −1.891558725 0.626883710 −1.891597949 0.6268028836

6 −0.558832003 1.869650073 −0.558928085 1.8696156737

7 1.341006145 1.557825117 1.340916063 1.5578950364

8 1.963551148 −0.369392450 1.963585131 −0.3692566155

9 0.819518662 −1.757242588 0.819653884 −1.7571769092

10 −1.103543561 −1.745624504 −1.103398523 −1.7456984223

lutions of Eq. (19) corresponding to μ = 0.1,0.5,1,2
and α = 2

3 , respectively, are shown in Fig. 4. The re-
sults indicate that in the interval 0 < μ ≤ 2 the fre-
quency increases with increases μ. The results ob-
tained from in Figs. 3 and 4 show that in the in-

terval 0 < α < 1 the frequency decreases with in-
creases.

Table 2 shows the approximate solutions for
Eq. (19) obtained for different values of a using Ms-
DTM with the Runge Kutta Method. From the numer-
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ical results in Table 2, it is clear that the approximate
solutions are in high agreement with the RKM solu-
tions, when α = 1.

Example 3 (Fractional Rayleigh differential equation)
Consider the following fractional Rayleigh differential
equation.

d2x

dt2
= −x − ϕ

(
1 − 1

3

(
dαx

dtα

)2)
dx

dt
, (23)

x(0) = 1, x′(0) = 0.

Taking classic-DTM of both sides Eq. (23), we obtain
the following recurrence relation:

Γ (
k+q+rq

q
)

Γ (
k+q
q

)
X(k + rq)

= −X(k) − ϕ(k + 1)X(k + 1)

+ ϕ

3

k∑

k2=0

k2∑

k1=0

Γ (
k2−k1+q+p

q
)

Γ (
k2−k1+q

q
)

Γ (
k−k2+q+p

q
)

Γ (
k−k2+q

q
)

× X(k1)X(k2 − k1 + p)X(k − k2 + p),

X(0) = 1, X(q) = 0.

(24)

According to the multi-step DTM, the series solution
for Rayleigh equation (23) is given by,

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑N
k=0 X0(k)tkα, t ∈ [t0, t1]

∑N
k=0 X1(k)tkα, t ∈ [t1, t2]

...
∑N

k=0 XM(k)tkα, t ∈ [tM−1, tM ]

(25)

where Xi(n), for n = 1, . . . ,M , satisfy the following
recurrence relations,

Γ (
k+q+rq

q
)

Γ (
k+q
q

)
Xi(k + rq)

= −Xi(k) − ϕ(k + 1)Xi(k + 1)

+ ϕ

3

k∑

k2=0

k2∑

k1=0

Γ (
k2−k1+q+p

q
)

Γ (
k2−k1+q

q
)

Γ (
k−k2+q+p

q
)

Γ (
k−k2+q

q
) (26)

× Xi(k1)Xi(k2 − k1 + p)Xi(k − k2 + p)

X0(0) = 1, X0(q) = 1

Xi+1(0) = Xi

(
t∗

)
, Xi+1(q) = Xi

(
t∗

)

t ∈ [ti , ti+1], t∗ = ti , i = 0, . . . ,M − 1

Figure 5 shows the approximate solutions for α = 1
2

and ϕ = 0.1,0.5,1,2. The solutions of Eq. (23) corre-
sponding to ϕ = 0.1,0.5,1,2 and α = 1

4 , respectively,
are shown in Fig. 6. The results indicate that in the
interval 0 < ϕ ≤ 2 the frequency decreases with in-
creases ϕ. The results obtained from in Figs. 5 and 6
show that in the interval 0 < α < 1 the frequency de-
creases with increases.

Table 3 shows the approximate solutions for Eq. (23)
obtained for different values of a using MsDTM with
the Runge Kutta Method. From the numerical results
in Table 3, it is clear that the approximate solutions
are in high agreement with the RKM solutions, when
α = 1.

Example 4 (Vibration differential equation) Consider
the following vibration equation with fractional damp-
ing, with one degree of freedom [37]:

D2x(t) + c

m
Dαx(t) + k

m
x(t) = f0 sin(wet),

x(0) = 1

4
, x′(0) = 0,

(27)

where D = d
dt

is the differential operator. Another
common form of Eq. (27) is

D2x(t) + 2μw2−α
n Dαx(t) + w2

nx(t) = f0 sin(wet),

(28)

with

2μw2−α
n = c

m
, α = p

q
,

r = 2 and w2
n = k

m
.

Taking classic-DTM of both sides Eq. (28), we obtain
the following recurrence relation:

Γ (
k+q+rq

q
)

Γ (
k+q
q

)
X(k + rq)

+ 2μw
2− p

q
n

Γ (
k+q+p

q
)

Γ (
k+q
q

)
X(k + p) + w2

nX(k)

(29)

= f0
∑∞

i=0(−1)iw2i+1
e δ(k − (2i + 1)q)

(2i + 1)!
X(0) = 1

4
, X(q) = 0.

According to the multi-step DTM, the series solution
for vibration equation (28) is given by,
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Fig. 5 Plots of displacement x versus time t for α = 1
2 and different value of ϕ

Fig. 6 Plots of displacement x versus time t for α = 1
2 and different value of ϕ
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Fig. 7 (a1), (b1), (c1), (d1), (e1) and (f1) solution curves for problems (a), (b), (c), (d), (e) and (f) in Table 4, respectively

Table 3 Approximate solutions for Rayleigh differential equation (23), when ϕ = 0.1, obtained using multi-step DTM and RK4
method

t Multi-step DTM RK4

x(t)α=1 dx/dtα=1 x(t)α=1 dx/dtα=1

0 1 0 1 0

1 0.5538341229 −0.8058457634 0.55384016928 −0.80583630162

2 −0.3487458062 −0.8461489739 −0.34873346751 −0.84614942123

3 −0.8757300446 −0.1273330986 −0.87572902070 −0.12735434293

4 −0.5875864331 0.6429247994 −0.58760876750 0.64290438106

5 0.1954146215 0.7892767357 0.19538390707 0.78928372686

6 0.7447805008 0.2231761103 0.74477340850 0.22321331192

7 0.5919632131 −0.4911777525 0.59199456555 −0.49114528277

8 −0.0685995951 −0.7156967960 −0.06855381787 −0.71570417824

9 −0.6148398107 −0.2894220838 −0.61482358172 −0.28946966851

10 −0.5730327815 0.3550901319 −0.57306687530 0.35504606729

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑N
k=0 X0(k)tkα, t ∈ [t0, t1]

∑N
k=0 X1(k)tkα, t ∈ [t1, t2]

...
∑N

k=0 XM(k)tkα, t ∈ [tM−1, tM ]

(30)

where Xi(n), for n = 1 . . .M , satisfy the following re-

currence relations,

Γ (
k+q+rq

q
)

Γ (
k+q
q

)
Xi(k + rq)

+ 2μw
2− p

q
n

Γ (
k+q+p

q
)

Γ (
k+q
q

)
Xi(k + p) + w2

nXi(k)

= f0
∑∞

i=0(−1)iw2i+1
e δ(k − (2i + 1)q)

(2i + 1)!
X0(0) = 1

4
, X0(q) = 0,

(31)
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Table 4 Numerical parameters of the examples [37]

Parameters (a) (b) (c) (d) (e) (f)

m 1 1 1 1 1 1

α 1
2

1
2

1
2

1
2

1
5

1
5

wn 10 10 10 10 10 10

μ 0.5 0.5 0.05 0.05 0.05 0.05

f0 1 1 1 1 1 1

we 4π – 4π – 4π 4π

x(0) 1
4

1
4

1
4

1
4

1
4

1
4

x′(0) 0 0 0 0 0 0

Table 5 Approximate solutions for vibration differential equation (27), when c = 1,m = 1, k = 100, f = 1,wθ = 0, obtained using
multi-step DTM and RK4 method

t Multi-step DTM RK4

x(t)α=1 dx/dtα=1 x(t)α=1 dx/dtα=1

0.0 2.500e−01 0.000e+00 2.500e−01 0.000e+00

0.5 4.470e−02 1.873e+00 4.470e−02 1.873e+00

1.0 −1.323e−01 8.100e−01 −1.323e−01 8.099e−01

1.5 −8.433e−02 −7.856e−01 −8.433e−02 −7.856e−01

2.0 4.377e−02 −8.311e−01 4.378e−02 −8.310e−01

2.5 7.008e−02 1.170e−01 7.008e−02 1.171e−01

3.0 3.769e−03 5.547e−01 3.756e−03 5.547e−01

3.5 −4.088e−02 1.690e−01 −4.088e−02 1.689e−01

4.0 −1.997e−02 −2.633e−01 −1.996e−02 −2.634e−01

4.5 1.615e−02 −2.165e−01 1.616e−02 −2.163e−01

5.0 1.910e−02 6.606e−02 1.910e−02 6.620e−02

Xi+1(0) = Xi

(
t∗

)
, Xi+1(q) = Xi

(
t∗

)

t ∈ [ti , ti+1], t∗ = ti , i = 0, . . . ,M − 1

The results in Fig. 7 compatible with those obtained
in [37] using the Adomian decomposition method.

For the solution of Eq. (28), the parameter values of
Table 4 were used. Table 5 shows the approximate so-
lutions for Eq. (27) obtained for different values of a
using MsDTM with the Runge Kutta Method. From
the numerical results in Table 5, it is clear that the
approximate solutions are in high agreement with the
RKM solutions, when α = 1.

5 Conclusions

In this work, we carefully applied the multi-step DTM,
a reliable modification of the DTM that improves the

convergence of the series solution. The method pro-

vides immediate and visible symbolic terms of an-

alytic solutions, as well as numerical solutions for

wide classes of linear and nonlinear fractional differ-

ential equations. The validity of the proposed method

has been successful by applying it for Duffing, The

Vander Pol, Rayleigh and vibration equations. The

method was used in a direct way without using lin-

earization, perturbation or restrictive assumptions. It

provides the solutions in terms of convergent series

with easily computable components and the results

have shown remarkable performance. Therefore, the

proposed method is very efficient and accurate method

that can be used to provide analytical solutions for

nonlinear fractional-order differential equations.
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