Skip to main content
Log in

Adiponectin receptor agonist AdipoRon induces apoptotic cell death and suppresses proliferation in human ovarian cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We tested the hypothesis that stimulation of adiponectin receptors with the synthetic agonist AdipoRon suppresses proliferation and induces apoptotic death in human high grade serous ovarian tumor cell lines and in ex vivo primary tumors, mediated by activation of 5′ AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR). We determined the effect of AdipoRon on high grade serous ovarian tumor cells lines (OVCAR3, OVCAR4, A2780) and ex vivo primary tumor tissue. Western blotting analysis was performed to examine changes in activation of AMPK and mTOR signaling and flow cytometry was utilized to examine changes in cell cycle progression. Immunofluorescence of cleaved caspase-3 positive cells and flow cytometry of annexin V positive cells were used to determine changes in apoptotic response. The CyQUANT proliferation assay was used to assess cell proliferation. AdipoRon treatment increased AMPK phosphorylation (OVCAR3 P = 0.01; A2780 P = 0.02) but did not significantly alter mTOR activity. AdipoRon induced G1 cell cycle arrest in OVCAR3 (+ 12.1%, P = 0.03) and A2780 (+ 12.0%, P = 0.002) cells. OVCAR3 and OVCAR4 cells treated with AdipoRon underwent apoptosis based on cleaved caspase-3 and annexin V staining. AdipoRon treatment resulted in a dose dependent decrease in cell number versus vehicle treatment in OVCAR3 (−61.2%, P < 0.001), OVCAR4 (−79%, P < 0.001), and A2780 (−56.9%, P < 0.001). Ex vivo culture of primary tumors treated with AdipoRon resulted in an increase in apoptosis measured with cleaved caspase-3 immunohistochemistry. AdipoRon induces activation of AMPK and exhibits an anti-tumor effect in ovarian cancer cell lines and primary tumor via a mTOR-independent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. National Cancer Institute Cancer Stat Facts: ovarian cancer

  3. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, Fabbro M, Ledermann JA, Lorusso D, Vergote I, Ben-Baruch NE, Marth C, Madry R, Christensen RD, Berek JS, Dorum A, Tinker AV, du Bois A, Gonzalez-Martin A, Follana P, Benigno B, Rosenberg P, Gilbert L, Rimel BJ, Buscema J, Balser JP, Agarwal S, Matulonis UA, Investigators E-ON (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375:2154–2164. https://doi.org/10.1056/NEJMoa1611310

    Article  CAS  PubMed  Google Scholar 

  4. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  CAS  PubMed  Google Scholar 

  5. Combs TP, Marliss EB (2014) Adiponectin signaling in the liver. Rev Endocr Metab Disord 15:137–147. https://doi.org/10.1007/s11154-013-9280-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moon HS, Chamberland JP, Aronis K, Tseleni-Balafouta S, Mantzoros CS (2011) Direct role of adiponectin and adiponectin receptors in endometrial cancer: in vitro and ex vivo studies in humans. Mol Cancer Ther 10:2234–2243. https://doi.org/10.1158/1535-7163.MCT-11-0545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim AY, Lee YS, Kim KH, Lee JH, Lee HK, Jang SH, Kim SE, Lee GY, Lee JW, Jung SA, Chung HY, Jeong S, Kim JB (2010) Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol 24:1441–1452. https://doi.org/10.1210/me.2009-0498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li G, Cong L, Gasser J, Zhao J, Chen K, Li F (2011) Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7-dependency on the cAMP/protein kinase-A pathway. Nutr Cancer 63:80–88. https://doi.org/10.1080/01635581.2010.516472

    Article  CAS  PubMed  Google Scholar 

  9. Olsen CM, Green AC, Whiteman DC, Sadeghi S, Kolahdooz F, Webb PM (2007) Obesity and the risk of epithelial ovarian cancer: a systematic review and meta-analysis. Eur J Cancer 43:690–709. https://doi.org/10.1016/j.ejca.2006.11.010

    Article  PubMed  Google Scholar 

  10. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638. https://doi.org/10.1056/NEJMoa021423

    Article  PubMed  Google Scholar 

  11. Jin JH, Kim HJ, Kim CY, Kim YH, Ju W, Kim SC (2016) Association of plasma adiponectin and leptin levels with the development and progression of ovarian cancer. Obstet Gynecol Sci 59:279–285. https://doi.org/10.5468/ogs.2016.59.4.279

    Article  PubMed  PubMed Central  Google Scholar 

  12. Otokozawa S, Tanaka R, Akasaka H, Ito E, Asakura S, Ohnishi H, Saito S, Miura T, Saito T, Mori M (2015) Associations of serum isoflavone, adiponectin and insulin levels with risk for epithelial ovarian cancer: results of a case-control study. Asian Pac J Cancer Prev 16:4987–4991

    Article  PubMed  Google Scholar 

  13. Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, Yamaguchi M, Tanabe H, Kimura-Someya T, Shirouzu M, Ogata H, Tokuyama K, Ueki K, Nagano T, Tanaka A, Yokoyama S, Kadowaki T (2013) A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503:493–499. https://doi.org/10.1038/nature12656

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Yu Z, Fang L, Liu F, Jiang K (2017) Expression of adiponectin receptor-1 and prognosis of epithelial ovarian cancer patients. Med Sci Monit 23:1514–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tiwari A, Ocon-Grove OM, Hadley JA, Giles JR, Johnson PA, Ramachandran R (2015) Expression of adiponectin and its receptors is altered in epithelial ovarian tumors and ascites-derived ovarian cancer cell lines. Int J Gynecol Cancer 25:399–406. https://doi.org/10.1097/igc.0000000000000369

    Article  PubMed  Google Scholar 

  16. Korch C, Spillman MA, Jackson TA, Jacobsen BM, Murphy SK, Lessey BA, Jordan VC, Bradford AP (2012) DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol Oncol 127:241–248. https://doi.org/10.1016/j.ygyno.2012.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193

    Article  CAS  PubMed  Google Scholar 

  18. McCarty KS Jr, Szabo E, Flowers JL, Cox EB, Leight GS, Miller L, Konrath J, Soper JT, Budwit DA, Creasman WT et al (1986) Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res 46:4244s–4248s

    PubMed  Google Scholar 

  19. Li W, Saud SM, Young MR, Chen G, Hua B (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6:7365–7378. https://doi.org/10.18632/oncotarget.3629

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kwon HK, Bae GU, Yoon JW, Kim YK, Lee HY, Lee HW, Han JW (2002) Constitutive activation of p70S6 k in cancer cells. Arch Pharm Res 25:685–690

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann M, Gogola J, Ptak A (2018) Adiponectin reverses the proliferative effects of estradiol and IGF-1 in human epithelial ovarian cancer cells by downregulating the expression of their receptors. Horm Cancer 9:166–174. https://doi.org/10.1007/s12672-018-0331-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. National Cancer Institute The Cancer Genome Atlas

  23. Domcke S, Sinha R, Levine DA, Sander C, Schultz N (2013) Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 4:2126. https://doi.org/10.1038/ncomms3126

    Article  CAS  PubMed  Google Scholar 

  24. Yung MM, Ngan HY, Chan DW (2016) Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim Biophys Sin 48:301–317. https://doi.org/10.1093/abbs/gmv128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D (2009) LKB1 is required for adiponectin-mediated modulation of AMPK-S6 K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28:2621–2633. https://doi.org/10.1038/onc.2009.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheaib B, Auguste A, Leary A (2015) The PI3 K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin J Cancer 34:4–16. https://doi.org/10.5732/cjc.014.10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Ji J, Yan XH (2012) Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr 52:373–381. https://doi.org/10.1080/10408398.2010.500245

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Shi L, Liu Y, Li P, Jiang G, Gao X, Zhang Y, Jiang C, Zhu W, Han H, Ju F (2018) Activation of PPARgamma mediates icaritin-induced cell cycle arrest and apoptosis in glioblastoma multiforme. Biomed Pharmacother 100:358–366. https://doi.org/10.1016/j.biopha.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  29. Zhuang Y, Miskimins WK (2008) Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 3:18. https://doi.org/10.1186/1750-2187-3-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295. https://doi.org/10.1038/nm788

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Song P, Zhang W, Liu J, Dai X, Liu Z, Lu Q, Ouyang C, Xie Z, Zhao Z, Zhuo X, Viollet B, Foretz M, Wu J, Yuan Z, Zou MH (2015) Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 21:373–382. https://doi.org/10.1038/nm.3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T, Okazaki Y, Ohsugi M, Takamoto I, Yamashita S, Asahara H, Akira S, Kasuga M, Kadowaki T (2011) Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab 13:401–412. https://doi.org/10.1016/j.cmet.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  33. Habeeb BS, Kitayama J, Nagawa H (2011) Adiponectin supports cell survival in glucose deprivation through enhancement of autophagic response in colorectal cancer cells. Cancer Sci 102:999–1006. https://doi.org/10.1111/j.1349-7006.2011.01902.x

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT, Wang Y (2008) Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis 29:2195–2202. https://doi.org/10.1093/carcin/bgn194

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, Wu D, Cooper GJ, Xu A (2006) Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res 66:11462–11470. https://doi.org/10.1158/0008-5472.Can-06-1969

    Article  CAS  PubMed  Google Scholar 

  36. Motoshima H, Wu X, Sinha MK, Hardy VE, Rosato EL, Barbot DJ, Rosato FE, Goldstein BJ (2002) Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 87:5662–5667. https://doi.org/10.1210/jc.2002-020635

    Article  CAS  PubMed  Google Scholar 

  37. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503. https://doi.org/10.1038/nm.2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Messaggio F, Mendonsa AM, Castellanos J, Nagathihalli NS, Gorden L, Merchant NB, VanSaun MN (2017) Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget 8:85378–85391. https://doi.org/10.18632/oncotarget.19905

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by University of Colorado Department of Obstetrics and Gynecology Academic Enrichment Fund grant. The authors appreciate the contribution to this research made by E. Erin Smith, HTL(ASCP)CM QIHC, Allison Quador, HTL(ASCP)CM, and Jessica Arnold, HTL(ASCP)CM of the University of Colorado Denver Tissue Biobanking and Histology Shared Resource. This resource is supported in part by the Cancer Center Support Grant (P30CA046934). Flow cytometry was performed by the University of Colorado Cancer Center Flow Cytometry Shared Resource (supported by NCI Cancer Center Support Grant P30CA046934). We would also like to acknowledge that imaging was made possible by the University of Colorado Advanced Light Microscopy Core, supported in part by NIH/NCRR CCTSI grant UL1 RR025780. Contents are the authors’ sole responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin A. Ramzan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramzan, A.A., Bitler, B.G., Hicks, D. et al. Adiponectin receptor agonist AdipoRon induces apoptotic cell death and suppresses proliferation in human ovarian cancer cells. Mol Cell Biochem 461, 37–46 (2019). https://doi.org/10.1007/s11010-019-03586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03586-9

Keywords

Navigation