Skip to main content
Log in

Alpha-lipoic acid potently inhibits peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation: implications for the neuroprotective effects of alpha-lipoic acid

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alpha-lipoic acid (LA) has recently been reported to afford protection against neurodegenerative disorders in humans and experimental animals. However, the mechanisms underlying LA-mediated neuroprotection remain an enigma. Because peroxynitrite has been extensively implicated in the pathogenesis of various forms of neurodegenerative disorders, this study was undertaken to investigate the effects of LA in peroxynitrite-induced DNA strand breaks, a critical event leading to peroxynitrite-elicited cytotoxicity. Incubation of φX-174 plasmid DNA with the 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, led to the formation of both single- and double-stranded DNA breaks in a concentration- and time-dependent fashion. The presence of LA at 100–1,600 μM was found to significantly inhibit SIN-1-induced DNA strand breaks in a concentration-dependent manner. The consumption of oxygen induced by 250 μM SIN-1 was found to be decreased in the presence of high concentrations of LA (400–1,600 μM), indicating that LA at these concentrations may affect the generation of peroxynitrite from auto-oxidation of SIN-1. It is observed that incubation of the plasmid DNA with authentic peroxynitrite resulted in a significant formation of DNA strand breaks, which could also be dramatically inhibited by the presence of LA (100–1,600 μM). EPR spectroscopy in combination with spin-trapping experiments, using 5,5-dimethylpyrroline-N-oxide (DMPO) as spin trap, resulted in the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite and LA at 50–1,600 μM inhibited the adduct signal. Taken together, these studies demonstrate for the first time that LA can potently inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. In view of the critical involvement of peroxynitrite in the pathogenesis of various neurodegenerative diseases, the inhibition of peroxynitrite-mediated DNA damage by LA may be responsible, at least partially, for its neuroprotective activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMPO:

5,5-dimethylpyrroline-N-oxide

DMPO-OH:

DMPO-hydroxyl adduct

DMPO-OOH:

DMPO-superoxide spin adduct

EPR:

Electron paramagnetic resonance

LA:

Alpha-lipoic acid

PD:

Parkinson’s disease

PBS:

Phosphate-buffer saline

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SIN-1:

3-Morpholinosydnonimine

References

  1. Leenders KL, Oertel WH (2001) Parkinson’s disease: clinical signs and symptoms, neural mechanisms, positron emission tomography, and therapeutic interventions. Neural Plast 8:99–110. doi:10.1155/NP.2001.99

    Article  PubMed  CAS  Google Scholar 

  2. Sandyk R, Bamford CR, Iacono RP (1988) Pain and sensory symptoms in Parkinson’s disease. Int J Neurosci 39:15–25. doi:10.3109/00207458808985688

    Article  PubMed  CAS  Google Scholar 

  3. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    PubMed  CAS  Google Scholar 

  4. Floyd RA (1999) Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355. doi:10.1016/S0891-5849(98)00293-7

    Article  PubMed  CAS  Google Scholar 

  5. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  6. Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972

    Article  PubMed  CAS  Google Scholar 

  7. Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, Beckman JS (1998) Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18:923–931

    PubMed  CAS  Google Scholar 

  8. Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140–141:105–112. doi:10.1016/S0378-4274(02)00507-6

    Article  PubMed  CAS  Google Scholar 

  9. Komjati K, Besson VC, Szabo C (2005) Poly (adp-ribose) polymerase inhibitors as potential therapeutic agents in stroke and neurotrauma. Curr Drug Target CNS Neurol Disord 4:179–194. doi:10.2174/1568007053544138

    Article  CAS  Google Scholar 

  10. Cai L, Klein JB, Kang YJ (2000) Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem 275:38957–38960. doi:10.1074/jbc.C000593200

    Article  PubMed  CAS  Google Scholar 

  11. Klotz LO, Sies H (2003) Defenses against peroxynitrite: seleno compounds and flavonoids. Toxicol Lett 140–141:125–132. doi:10.1016/S0378-4274(02)00511-8

    Article  PubMed  CAS  Google Scholar 

  12. Evans JL, Goldfine ID (2000) Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther 2:401–413. doi:10.1089/15209150050194279

    Article  PubMed  CAS  Google Scholar 

  13. El Midaoui A, de Champlain J (2002) Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid. Hypertension 39:303–307. doi:10.1161/hy0202.104345

    Article  PubMed  CAS  Google Scholar 

  14. Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22:359–378. doi:10.1016/S0891-5849(96)00269-9

    Article  PubMed  CAS  Google Scholar 

  15. Tirosh O, Sen CK, Roy S, Kobayashi MS, Packer L (1999) Neuroprotective effects of alpha-lipoic acid and its positively charged amide analogue. Free Radic Biol Med 26:1418–1426. doi:10.1016/S0891-5849(99)00014-3

    Article  PubMed  CAS  Google Scholar 

  16. Wolz P, Krieglstein J (1996) Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology 35:369–375. doi:10.1016/0028-3908(95)00172-7

    Article  PubMed  CAS  Google Scholar 

  17. Packer L, Roy S, Sen CK (1997) Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 38:79–101. doi:10.1016/S1054-3589(08)60980-1

    Article  PubMed  CAS  Google Scholar 

  18. Biewenga GP, Haenen GR, Bast A (1997) The pharmacology of the antioxidant lipoic acid. Gen Pharmacol 29:315–331. doi:10.1016/S0306-3623(96)00474-0

    PubMed  CAS  Google Scholar 

  19. Moini H, Packer L, Saris NE (2002) Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol 182:84–90. doi:10.1006/taap.2002.9437

    Article  PubMed  CAS  Google Scholar 

  20. Jia Z, Hallur S, Zhu H, Li Y, Misra HP (2008) Potent upregulation of glutathione and NAD(P)H:quinone oxidoreductase 1 by alpha-lipoic acid in human neuroblastoma SH-SY5Y cells—protection against neurotoxicant-elicited cytotoxicity. Neurochem Res 33:790–800. doi:10.1007/s11064-007-9496-5

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Kuppusamy P, Zweier JL, Trush MA (1996) Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Mol Pharmacol 49:404–411

    PubMed  CAS  Google Scholar 

  22. Jia Z, Zhu H, Trush MA, Misra HP, Li Y (2008) Generation of superoxide from reaction of 3H-1,2-dithiole-3-thione with thiols: implications for dithiolethione chemoprotection. Mol Cell Biochem 307:185–191. doi:10.1007/s11010-007-9598-z

    Article  PubMed  CAS  Google Scholar 

  23. Jia Z, Zhu H, Misra BR, Mahaney JE, Li Y, Misra HP (2008) EPR studies on the superoxide-scavenging capacity of the nutraceutical resveratrol. Mol Cell Biochem 313:187–194

    Article  PubMed  CAS  Google Scholar 

  24. Pieper GM, Felix CC, Kalyanaraman B, Turk M, Roza AM (1995) Detection by ESR of DMPO hydroxyl adduct formation from islets of langerhans. Free Radic Biol Med 19:219–225. doi:10.1016/0891-5849(95)00018-S

    Article  PubMed  CAS  Google Scholar 

  25. Li Y, Trush MA (1993) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 14:1303–1311. doi:10.1093/carcin/14.7.1303

    Article  PubMed  CAS  Google Scholar 

  26. Ruan RS (2002) Possible roles of nitric oxide in the physiology and pathophysiology of the mammalian cochlea. Ann N Y Acad Sci 962:260–274

    Article  PubMed  CAS  Google Scholar 

  27. Frejaville C, Karoui H, Tuccio B, Le Moigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J Med Chem 38:258–265. doi:10.1021/jm00002a007

    Article  PubMed  CAS  Google Scholar 

  28. Stolze K, Udilova N, Nohl H (2000) Spin trapping of lipid radicals with DEPMPO-derived spin traps: detection of superoxide, alkyl and alkoxyl radicals in aqueous and lipid phase. Free Radic Biol Med 29:1005–1014. doi:10.1016/S0891-5849(00)00401-9

    Article  PubMed  CAS  Google Scholar 

  29. Zang LY, Misra HP (1992) EPR kinetic studies of superoxide radicals generated during the autooxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium, a bioactivated intermediate of parkinsonian-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Biol Chem 267:23601–23608

    PubMed  CAS  Google Scholar 

  30. Ebadi M, Sharma SK (2003) Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid Redox Signal 5:319–335. doi:10.1089/152308603322110896

    Article  PubMed  CAS  Google Scholar 

  31. Torreilles F, Salman-Tabcheh S, Guerin M, Torreilles J (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev 30:153–163. doi:10.1016/S0165-0173(99)00014-4

    Article  PubMed  CAS  Google Scholar 

  32. Virag L, Szabo E, Gergely P, Szabo C (2003) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140–141:113–124. doi:10.1016/S0378-4274(02)00508-8

    Article  PubMed  CAS  Google Scholar 

  33. Cao Z, Li Y (2004) Potent inhibition of peroxynitrite-induced DNA strand breakage by ethanol: possible implications for ethanol-mediated cardiovascular protection. Pharmacol Res 50:13–19. doi:10.1016/j.phrs.2003.12.010

    Article  PubMed  CAS  Google Scholar 

  34. Teichert J, Kern J, Tritschler HJ, Ulrich H, Preiss R (1998) Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. Int J Clin Pharmacol Ther 36:625–628

    PubMed  CAS  Google Scholar 

  35. Dicter N, Madar Z, Tirosh O (2002) Alpha-lipoic acid inhibits glycogen synthesis in rat soleus muscle via its oxidative activity and the uncoupling of mitochondria. J Nutr 132:3001–3006

    PubMed  CAS  Google Scholar 

  36. Bian ZY, Guo XQ, Zhao YB, Du JO (2005) Probing the hydroxyl radical-mediated reactivity of peroxynitrite by a spin-labeling fluorophore. Anal Sci 21:553–559. doi:10.2116/analsci.21.553

    Article  PubMed  CAS  Google Scholar 

  37. Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250. doi:10.1016/0891-5849(95)00017-R

    Article  PubMed  CAS  Google Scholar 

  38. Matsugo S, Yan LJ, Han D, Trischler HJ, Packer L (1995) Elucidation of antioxidant activity of alpha-lipoic acid toward hydroxyl radical. Biochem Biophys Res Commun 208:161–167. doi:10.1006/bbrc.1995.1318

    Article  PubMed  CAS  Google Scholar 

  39. Szabo C (1998) Role of nitric oxide in endotoxic shock. An overview of recent advances. Ann N Y Acad Sci 851:422–425. doi:10.1111/j.1749-6632.1998.tb09019.x

    Article  PubMed  CAS  Google Scholar 

  40. Trujillo M, Radi R (2002) Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys 397:91–98. doi:10.1006/abbi.2001.2619

    Article  PubMed  CAS  Google Scholar 

  41. Augusto O, Gatti RM, Radi R (1994) Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates. Arch Biochem Biophys 310:118–125. doi:10.1006/abbi.1994.1147

    Article  PubMed  CAS  Google Scholar 

  42. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA (2004) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med 21:114–121. doi:10.1111/j.1464-5491.2004.01109.x

    Article  PubMed  CAS  Google Scholar 

  43. Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, Radi R (2005) Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic Biol Med 39:279–288. doi:10.1016/j.freeradbiomed.2005.03.014

    Article  PubMed  CAS  Google Scholar 

  44. Rezk BM, Haenen GR, van der Vijgh WJ, Bast A (2004) Lipoic acid protects efficiently only against a specific form of peroxynitrite-induced damage. J Biol Chem 279:9693–9697. doi:10.1074/jbc.M312289200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant HL71190 (Y.L.), and a grant from Harvey Peters Research Foundation (H.P.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Li or Hara P. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Zhu, H., Vitto, M.J. et al. Alpha-lipoic acid potently inhibits peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation: implications for the neuroprotective effects of alpha-lipoic acid. Mol Cell Biochem 323, 131–138 (2009). https://doi.org/10.1007/s11010-008-9971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9971-6

Keywords

Navigation