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Abstract Graph centralities are commonly used to identify and prioritize disease genes in
transcriptional regulatory networks. Studies on small networks of experimentally validated
protein-protein interactions underpin the general validity of this approach and extensions
of such findings have recently been proposed for networks inferred from gene expression
data. However, it is largely unknown how well gene centralities are preserved between the
underlying biological interactions and the networks inferred from gene expression data.
Specifically, while previous studies have evaluated the performance of inference methods
on synthetic gene expression, it has not been established how the choice of inference method
affects individual centralities in the network. Here, we compare two gene centrality mea-
sures between reference networks and networks inferred from corresponding simulated gene
expression data, using a number of commonly used network inference methods. The results
indicate that the centrality of genes is only moderately conserved for all of the inference
methods used. In conclusion, caution should be exercised when inspecting centralities in
reverse-engineered networks and further work will be required to establish the use of such
networks for prioritizing disease genes.
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1 Introduction

With the increasing amount of ‘omics’ data made available to researchers during the last
decades, biological network analysis has rapidly grown in its importance as one of the
predominant methods of studying the underlying interactions and relationships between bio-
logical entities (Zhu et al. 2007). Current network based studies of topological properties of
the related interactomes place particular interest on methods for clustering, pathway analy-
sis, motif identification and graph based centrality measures on vertex or edge level (Ma and
Gao 2012; Zhang et al. 2010; Aittokallio and Schwikowski 2006). Among these methods,
vertex centrality can be considered the foremost technique in assigning importance to nodes
in a variety of related networks (Zhang et al. 2010; Koschiitzki and Schreiber 2008). Impor-
tantly, it has previously been established that with respect to candidate gene identification,
biological network analysis using centrality enrichment of nodes might in certain situations
prove advantageous compared to a simple meta-analysis of genomic datasets (Langfelder
et al. 2013).

Initial investigations of centralities in protein-protein interaction (PPI) networks of
Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans have
suggested that developmentally and functionally essential proteins, i.e. proteins whose dis-
ruption leads to embryonal lethality, might be associated with high degree, closeness or
betweenness centralities (Jeong et al. 2001; Joy et al. 2005; Hahn and Kern 2005; Estrada
2006a, b). Subsequently, graph centralities have also been investigated for the prediction of
disease or cancer genes in human gene and protein networks (Ozgiir et al. 2008; Jonsson
and Bates 2006; Wachi et al. 2005; Xu and Li 2006; Ortutay and Vihinen 2009; Siddani
et al. 2013; Izudheen and Mathew 2013). It is however not yet fully established whether
such an approach is meaningful. Specifically, if highly central genes are embryonically
lethal or essential for development, then an early event leading to their ablation will lead to
the death of the organism rather than to the development of a disease. In fact, it has been
suggested that essential genes are often located at the center of hubs, while disease genes
are frequently non-essential and found outside of hubcenters (Goh et al. 2007). However,
while such a view is relevant especially for heritable diseases, cancer is considered a genetic
disease brought on by somatic mutations. Thus cancer genes might coincide with essential
genes, without causing embryonic lethality. Accordingly, genes with somatic mutations, as
compared to non-essential disease genes, might still exhibit more central positions in such
networks (Goh et al. 2007), especially when further considering that many cancer genes are
characterized by a gain rather than loss of function, and drive abnormal proliferation and
growth programs that are essential for embryonal development.

Another concern with such early studies relates to the fact that they have mainly been
performed on PPI networks built from databases of validated biological interactions. Since
such data usually contains only a limited number of generic interactions and biological
entities, any related screen might miss important genes or might not be suitable to investigate
the interactome specific for a given disease.

Alternatively, researchers often fall back on centrality based prioritization of genes from
transcriptional regulatory networks (TRNs) reverse-engineered from expression data (Basso
et al. 2005; Jornsten et al. 2011; Emmert-Streib et al. 2014; Cordero et al. 2014; Knaack
et al. 2014), which has become easily accessible for cells and tissues of normal and diseased
conditions and can cover all known genes in the genome. Numerous methods for reverse-
engineering of regulatory networks from expression data have been developed during
the last decade (Margolin et al. 2006; Faith et al. 2007; Meyer et al. 2007; Langfelder and
Horvath 2008; Altay and Emmert-Streib 2010a; De Matos Simoes and Emmert-Streib 2012;
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Huynh-Thu et al. 2010; Yip et al. 2010; Zhang et al. 2012) (For a review of additional infer-
ence methods, we refer also to Marbach et al. 2012, 2010; Altay and Emmert-Streib 2010b;
Liu 2015.) A problem with this approach however is the noise inherent to most expression
datasets and the uncertainty in any network reconstructed from such data with available
inference methods (Margolin and Califano 2007; Chalancon et al. 2012). Accordingly, a lot
of effort has been dedicated to the evaluation of different aspects of inference accuracies
and consistencies between such methods (Altay and Emmert-Streib 2010b; Schaffter et al.
2011; De Matos Simoes et al. 2013; Marbach et al. 2010; Marbach et al. 2012; Liu 2015).

However, it is still largely unexplored, how well the centralities in such inferred networks
agree with the centralities of genes in the true underlying biological network. Consider-
ing that different methods are likely to make different systematic errors in inferring gene
interactions (Schaffter et al. 2011; Marbach et al. 2012), it is reasonable to also expect different
effects on the conservation of centrality values between inferred and true biological networks.

Here we obtain reference biological networks from a database of interactions in
Escherichia coli (Schaffter et al. 2011) and from the Pathway-Commons database (Cerami
et al. 2011), generate simulated gene expression for these networks using a model of
stochastic differential equations, and utilize this data to reconstruct networks using a num-
ber of different inference methods. These benchmark datasets are then employed to estimate
the agreement of degree and betweenness centralities between the reference and inferred
networks for the different inference methods.

2 Generation of Benchmark Datasets

To determine how well centralities are conserved between true networks and networks
inferred from gene expression data, we are here relying on benchmark datasets consisting of
biological reference networks and synthetic expression data simulated from such reference
networks according to Schaffter et al. (2011). Two types of reference networks are used here
as described below.

Ecoli250: A set of 100 networks with 250 nodes each, extracted using the
GeneNetWeaver (GNW) software (Schaffter et al. 2011) from the included ecoli-
regulonDB-6-7 dataset. The entire ecoli database contained 1565 nodes connected by
3758 edges. For each network ten random regulators (nodes with high out-degree cen-
trality) were selected and additional nodes added from the neighborhood using a greedy
search (Schaffter et al. 2011).

PC200: A set of 100 networks with 200 nodes each, extracted from the Pathway-
Commons database. From the 4667832 edges (connecting 19006 nodes) with diverse
interaction types in the Pathway-Commons database, only the subset of 105178 edges
(connecting 13390 genes) of transcriptional regulatory nature, i.e. with an ’controls-
expression-of” interaction type, was chosen as a reference. Each benchmark network was
then generated by selecting a random seed node and adding nodes from the neighborhood
using a greedy search based on degree centralities.

The sizes of these networks was chosen from the range of network sizes investigated
in Schaffter et al. (2011). A potential impact of the chosen network sizes on the following
analyses will further be considered in the discussion below.

Based on the selection of seed nodes, the Ecoli250 networks have a more nodular
structure than the PC200 networks (compare Fig. 1A-B).
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Fig.1 Example of Ecoli250, PC200, and random network structures. Depicted are the network structures
of one example of an Ecoli250 network, (A) and one PC200 network (B), without displaying the direction
of links. (C) A random network with a comparable number of edges was established using the Erdés-Rényi
random graph model G (n, p) (Erdds and Rényi 1959), where n = 200 denotes the number of nodes in the
network and p = 0.025 refers to the probability of placing an edge between any pair of nodes, which was
chosen here to obtain a graph with a number of edges comparable to the PC200 network

However, as compared to random networks (compare Fig. 1C), both sets of networks
exhibit a roughly scale free topology as the distribution of degree centralities in these net-
works can be modeled using a power law of the form P(k) = a - k~* (compare Fig.
2A-B), which is one of the characteristic properties of biological networks (Albert 2005).
In addition, the investigation of betweenness centralities in these networks similarly shows
a distribution with the majority of nodes exhibiting small betwenness and high betwenness
values only observed in a small number of nodes, while in random networks the major-
ity of nodes display a small range of typical betweenness values, i.e. in random networks
nodes generally have very similar betweenness centralities. Thus, in the biological net-
works but not the random networks, there are genes with uncharacteristically high degree
and betwenness values, which allows the use of these measures for centrality based gene
prioritization.

Different methods have been described for the generation of in-silico gene expression
data from an existing network structure, with the predominant method relying on the use of
coupeled ordinary or stochastic differential equations (Kniipfer et al. 2004; Mendes et al.
2003; Wu et al. 2014; Schaffter et al. 2011). Here, expression data for for each reference
network was then simulated using GNW, which makes use of stochastic differential equa-
tions (SDEs) to model transcriptional and translational processes (Schaffter et al. 2011).
Specifically, the noise-free rate of concentration changes ‘Z—Yt’ for mRNA and proteins are
simulated using an ordinary differential equation (ODE) of the form

¥ _ G(Y,) — D(Y))
dt - t t)s
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Fig. 2 Distribution of degree and betweenness centralities in the Ecoli250 and PC200 networks. (A-
B): Degree centralities in Ecoli250 (A) and PC200 (B) and corresponding random networks. The scatter
plot shows the number of nodes with certain degree values averaged over all biological networks in each
set. The red line indicates a polynomial fit plotted according to the depicted equation in red. The blue dot-
ted line depicts the averaged degree distribution over 100 random G (n, p) networks each, with n = 250
(A) or n = 200 (B) and p is individually set in accordance with the number of links observed in each of
the biological networks. (C-D): Betwenness centralities in Ecoli250 (C) and PC200 (D) and corresponding
random networks. Grey solid lines and blue-dotted lines indicate a LOESS smoothing fit to the betweenness

values observed in the biological and random networks from (A-B), respectively, excluding nodes with zero
betwenness

where G (Y;) describes the contribution through production at time ¢ and D(Y;) describes

the amount of degradation of the product at time ¢. The processes under biological noise are
then simulated using the SDE of the form

dY;
d—t’ = G(Yy) — DY) +a(yG(Y)nG — DX )np),

where a is a constant and ng and np are two independent white-noise signals with zero
mean. In addition to molecular noise GNW also adds a model of instrumental noise intro-
duced in typical microarray experiments (Schaffter et al. 2011). Variable expression is then
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further generated through multifactorial variations in the initial activation of genes in the
model (multifactorial data), through a 50% decrease in a single gene’s initial activation
(knockdown data) and through the complete inactivation of a single gene (knockout data).
In this study we used a white-noise term in the SDEs with standard deviation of 0.05 and
generated 250 and 200 expression samples each of multifactorial, knockdown and knockout
data for each Ecoli250 and PC200 network, respectively. These individual three datasets
were then combined to obtain the final simulated expression dataset for each network.
Inspection of the simulated expression data revealed that it exhibited certain properties
expected for real microarray gene expression datasets. Specifically, the distribution of sim-
ulated gene expression values over all datasets could be modeled by a mixture of three
Gaussian modes (compare Fig. 3A-B). Similar observations with two to three Gaussian
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Fig. 3 Properties of the simulated expression data. (A-B): The histogram in gray shows the distribution
of gene expression values over all 100 datasets simulated from the Ecoli250 networks (A) and the PC200
networks (B). The black dotted, dashed and dash-dotted lines indicate the different Gaussian modes obtained
by modeling the distribution using a Gaussian mixture model. Specifically, the "fit” MATLAB function was
utilized with the “’gauss3” parameter in order to model the distribution of expression data using a mixture of
3 Gaussian modes (MATLAB, 2015). (C-D): Results of a PCA of the expression data simulated for a single
Ecoli250 network (C) and a single PC200 network (D) showing the variance explained for by the individual
principal compentents indentified in the analysis
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modes have previously been documented and utilized for microarray expression of vari-
ous tissues or cell types (Wieczorek et al. 2003; Tuna and Niranjan 2009; Painter et al.
2011), where the individual modes are usually assumed to reflect the populations of lowly,
(intermediary) and highly expressed genes, respectively. The skewed shape of the histogram
itself, in comparison to typical microarray expression, might be due to the fact that expres-
sion was simulated from small networks and was normalized subsequently. Furthermore,
performing a principal component analysis (PCA) on the obtained simulated expression
data revealed that, similar to regular gene expression data sets, two to four of the principal
components provided the major contribution to explaining the observed variance in the data
(compare Fig. 3C-D).

3 Inference of Transcriptional Networks

From the simulated expression data, TRNs were inferred using ARACNE (Algorithm for the
Reconstruction of Accurate Cellular Networks; Margolin et al. 2006), CLR (Context Like-
lihood of Relatedness; Faith et al. 2007) and MRNET (Minimum Redundancy NETwork;
Meyer et al. 2007), all three of which are based on mutual information and are implemented
in the R/Bioconductor package MINET (Meyer et al. 2008), as well as the correlation based
WGCNA (Weighted Gene Co-expression Network Analysis; Langfelder and Horvath 2008)
method. Importantly, since we were interested in centralities rather than the exact predic-
tion of individual links, all links in the inferred and reference networks were considered to
be undirected once the networks had been inferred.

4 Estimating the Accuracy of Inferred Networks

The agreement between reference and case networks with respect to existence or absence of
individual links can be estimated using a number of different metrics (Schaffter et al. 2011;
Marbach et al. 2012; Marbach et al. 2010; Liu et al. 2014). For comparability with previ-
ously published results, network accuracies were here estimated using the area under the
Receiver-Operator-Characteristic (ROC) curve (auROC) and the area under the Precision-
Recall (PR) curve (auPR) as documented in Schaffter et al. (2011). ROC curves and PR
curves were obtained by first sorting the network links predicted by the inference methods
based on descending absolute strength. Subsequently, false-/true-positive rates and preci-
sion/recall values were sampled at certain intervals by including increasing numbers of
highly scored links (compare Fig. 4). The sampled curves where then linearly interpolated
including also the additional start and end points (0,0) and (1,1) for ROC curves, as well
as (0,1) and (1,Pryax) for the PR curves (compare Fig. 4), where Prpa.x = m is
the maximal achievable precision, when including all links, with / denoting the number of
(undirected) links and N denoting the number of nodes in the reference network.

However, one concern with this approach was the difference in total number of pre-
dicted links observed for the individual methods, which led to substantial differences in
the obtainable recall or true-positive rates (compare Fig. SA-B). Due to this discrepancy
in the number of predicted links between different methods and subsequent issues of com-
parability between methods and also in establishing networks with sufficient interactions
for centrality evaluations, we restrained fom including more conservative methods, such as
the C3NET algorithm (Altay and Emmert-Streib 2010a), which in our hands provided in
most cases fewer links than ARACNE. Instead, to remove potential bias based on different
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Fig. 4 Sampling of ROC and PR curves. ROC curve (A) and PR curve (B) for one WGCNA inferred
Ecoli250 network including sampled true-positive and false-positive rates or recall and precision values,
respectively, and the interpolations over the sampled data points

amounts of missing data between the used methods, we decided to (1) decrease the default
threshold below which links in vertex-triplets are removed in ARACNE by 0.05 (Margolin
et al. 2006; Meyer et al. 2008) and (2) sample all networks only up to the smallest maximum
recall value obtained among all inferred networks (compare Fig. 5C-D).

The method specific auROC and auPR values where then calculated for all networks in
the Ecoli250 and PC200 sets using the trapz function in MATLAB (2015). Both approaches
discussed above were employed, i.e. either using all available interactions obtained by the
inference methods with default parameters as illustrated in Fig. 4A-B or using the interac-
tions filtered based on the maximum recall value as outlined in Fig. 5C-D. The results are
depicted in Fig. 6A-B and C-D, respectively.

Networks derived by ARACNE had generally lower auROC values than networks
inferred by the other three methods (compare Fig. 6A,C). Apart from the PC200 comparison
to WGCNA inferred networks with filtered interactions (Fig. 6C), these differences in mean
auROC values were significant at the o« = 0.05 level according to a two-sided Welch T-test
(Welch 1947). Of note however, the difference of mean auROC values between ARACNE
and the other methods was substantially diminished when using filtered interactions (Fig.
6C), suggesting that part of the differences in Fig. 6A can be explained due to different num-
bers of predicted links between methods. On the same note, while we observed comparable
ranges of Ecoli250 auPR values and a significantly higher mean PC200 auPR for ARACNE
as compared to CLR with default interactions (Fig. 6B), auPR values for ARACNE in both
network sets were substantially reduced when using filtered interactions, with CLR exhibit-
ing significantly higher mean auPR values compared to all other methods (Fig. 6D). The
results in Fig. 6A appear consistent with the original results presented by Schaffter et al.
(2011), who documented comparable auROC differences between the ARACNE and CLR
methods also coupled to low auPR values, when tested on expression data simulated with
knock-out and knock-down perturbations (Schaffter et al. 2011).

In addition, we observed that the PC200 networks exhibited significantly lower auROC
values and significantly higher auPR values than the respective Ecoli250 networks. Consid-
ering the different structures of the networks in the Ecoli250 and PC200 sets, this difference
points towards a potential impact of the overall network structure on the inference accuracy
of the used methods.
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Fig. 5 Differences in maximum recall and true-positive-rates between network inference methods.
(A-B): True-positive and false-positive rates (A) as well as recall and precision values (B) of the four used
inference methods calculated on one of the Ecoli250 networks interpolated up to the maximum true-positive
rate or recall value, respectively, obtained for the individual method. (C-D): True-positive and false-positive
rates (C) as well as recall and precision values (D) for the four used inference methods calculated on the
same network and interpolated up to the smallest maximum true-positive rate or recall value, respectively,
among all inference methods and Ecoli250 networks

5 Conservation of Centralities in Inferred Networks

In order to investigate the agreement of centrality measures between true and reverse-
engineered networks for the four inference methods, we focused here on degree centrality
and betweenness centrality (Freeman 1977).

Given the symmetric adjacency matrix A = {a, x,}, Where n is the number of genes and
ajj = aj; = 1if there exists a biological interaction between gene i and j andg;; = a;; =0
otherwise, then degree centrality is defined as

n
Cp) =Y aij,
=1
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Fig. 6 Box-and-whisker plots of auROC and auPR values. The auROC (A,C) and auPR (B,D) values of
the networks inferred by four different methods for the Ecoli250 (red) and PC200 (blue) are depicted as box-
and-whisker-plots, with the median values represented by horizontal lines inside each box, lower and upper
box borders indicating 25th and 75th percentiles, respectively, regions between whiskers including all non-
outlier values, and dots representing outliers. The upper panel (A-B) depicts results for the first approach
described above, i.e. including all available interactions obtained by the inference methods, while the lower
panel (C-D) displays the results on filtered interactions

and betweenness centrality can according to Brandes (2001) be defined as

1 ok (v;)
Cp(vi) = = —_—,
2 k;él Okl

with v; denoting the i’th gene, oy; denoting the number of shortest paths between two nodes
vr and v; and oy; (v;) denoting the number of shortest paths between v and v; that traverse
through node v;. Importantly, in order to allow the application of betweenness centrality on
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disconnected networks, if there is no path between nodes v and v; in the network then one
sets

d(vg, v)) = 00, L(vi) =0.
Okl

Degree and betweenness measures were then computed using the MatlabBGL package
(Gleich and Saunders 2009) in the reference network and three different variants of the net-
work obtained by each of the four individual network inference methods. The three different
variants were established by including the same number of top scored links as present in
the reference network (Ny), or using only a number of top scored links equal to 10% (No.1),
or 50% (Np.s) of the total number of links present in the reference network. This approach
was chosen, since there might be differences in centrality conservations depending on the
number and scores of links included in the generation of the reconstructed networks.

We then started with a visual inspection of the distribution of centralities between the
reference networks and respective inferred networks (compare the example for degree cen-
tralities in Fig. 7). As indicated by these qualitative comparisons, nodes that showed a top
degree centrality or betweenness centrality score in the reference network, would often also
receive a higher centrality in the inferred networks. However, we also observed a lot of
noise exemplified by a large number of nodes with low centrality score in the reference
networks that would receive high centralities in the inferred network, an observation that
became more clear when increasing the number of links in the inferred networks (compare
Fig. 7B). Due to this spread in centralities in the inferred networks, even when including the
same number of links as in the reference network, the observed maximum centrality mea-
sures were much lower than for the top scored genes in the reference network (compare Fig.
7B). Hence, potential similarities of centrality distributions between reference and inferred
networks proved difficult to examine qualitatively.

In order to determine the agreement of centralities between the reference and inferred
networks more quantitatively, we were then interested in comparing the ranks of nodes
under the individual centralities between the two networks using a rank correlation metric.
Importantly, since centralities are here understood as a method of prioritization of nodes, it
is obvious that more importance should be placed on high ranked nodes, which dictates the
use of a weighted rank correlation metric. During the recent years many different weighted
variants of Spearman’s p and Kendall’s T have been discussed in the literature, compare
(Dancelli et al. 2013; Tarsitano 2009; Pozzi et al. 2012). Since the chosen centralities in
combination with the inferred network structures, which will often miss a subset of nodes
thus receiving a zero centrality, implies a high number of ties in the rankings, Kendall’s t
and specifically the tp variant, designed particularly for rankings with ties, appears here to
be the preferable method. Accordingly, we used here the weighted Kendall’s T measure
proposed by Pozzi et al. (2012), which is computed for the two variables y' and y/ over a
running window At as

At—1 At S
=Y Y wuSgn(y; — y)Sen(y! — ),
k=1 I=k+1

where we define the exponential smoothing weights as

2At—k—l
e [3

Wkl = 2A1— v w

Ar—1
Z Zw =v+1€
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corresponding reference network are shown underneath for the No | network type (A) and the N network
type (B), respectively

with / > k and the constant 0 indicating the specific time of the weights, such that

At—1 At
> Y wi
k=1 l=k+1

Importantly, the weights here are just the weights defined by Pozzi et al. (2012) in reverse
order, i.e. decreasing on both subscripts in order to place more importance on the nodes with
high ranks in the reference networks. Ar was chosen equal to 250 and 200 for the Ecoli250
and PC200 datasets, respectively, and 0 = % according to the recommendations of the
authors (Pozzi et al. 2012).

The results of the weighted rank correlation analysis of centralities between reference
and inferred networks are shown in Fig. 8.
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Fig. 8 Kendall’s 7 of centralities in reference and inferred networks. The Kendall’s t values for degree
(A,C) and betweenness centralities (B,D) between reference and inferred networks for Ecoli250 (A-B) and
PC200 (C-D) are shown as box-and-whisker-plots for the four inference methods. Centralities have been
compared for three variations of the inferred networks; Ng ; (blue), No 5 (red), Nj (green)

As can be seen from Fig. 8 none of the used inference methods produced a network
with a high correlation of degree or betweenness centralities between reference and inferred
networks, considering the three network variants Ng 1, Ng 5 and N. The highest mean cor-
relations for both centrality types in Ecoli250 and PC200 are seen with the CLR method
across all three network variants except the case of betweenness in the PC200-N variant.
Interestingly, in all comparisons of degree centrality for the PC200 networks as well as the
other three CLR results, the N 1 networks achieved a better mean correlation than the Ny 5
networks with a further reduction observed in the N networks.

In order to explore the observed discrepancies in centralities between reference and
inferred networks further, we inspected the expected and predicted links in the three network
variants (compare example in Fig. 9).

From the inspection of predicted links, as exemplified by the networks in Fig. 7, it is
obvious that when choosing only a small number of highly scored links from the network
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Fig. 9 Inspection of CLR inferred links. The reference Ecoli250 network (A) from Figure 1A is shown
together with the CLR inferred N 1 (B), No 5 (C) and N; (D) networks, i.e. using a number of highly scored
predicted links equal to 10%, 50% and 100% of the total number of links present in the reference network.
Reference links in the benchmark network are shown in blue, true-positive predicted links are shown in green
and false-positive predicted links are shown in red

inference results (compare Fig. 9B), one can among those links obtain a large proportion
of true-positives, but the number of links does not suffice to reconstruct enough of the
overall topology of the reference network to obtain a high degree of agreement between
centralities. When increasing the number of links in the inferred networks, however, the
topology appears to become dominated by false-positive links (compare Fig. 9C-D), which
might lead to a more random distribution of centralities in the inferred networks.

6 Conclusion and Future Prospectives

The results presented in this study show that the inference methods are indeed able to
accurately predict a certain proportion of biological links from simulated expression data.
However, the number of correctly predicted links does not appear to suffice in order to also
reconstruct the underlying network topology to a degree necessary to obtain a high con-
servation of graph centralities between reference and inferred networks. In addition, it has
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previously been reported that network inference methods might show a lower prediction
accuracy for links connecting to a high degree centrality node as compared to links connect-
ing to low centrality nodes (Marbach et al. 2010). Together, these two observations might
explain the revealed dissimilarities of centralities between reference and inferred networks.

As briefly mentioned in the description of the used reference networks, the choice of
network sizes might have an influence on the displayed results. However, as demonstrated in
Schaffter et al. (2011), networks of larger dimensions might have lower connectivity, which
might affect the inference accuracy. As a consequence, the conservation of centralities in
larger networks might be similarly affected. In addition, using simulated networks as well as
knowledge-based networks of Escherichia coli and Saccharomyces cerevisiae, all three of
which contain a substantially larger number of nodes and edges than the networks utilized
in the present work, we did not find any substantial improvement on the correlation of
centrality distributions between reference and inferred networks (Weishaupt et al. 2016).

It is also possible that at least part of the observed disagreements of centralities can be
attributed to difficulties of inferring networks from the chosen synthetic expression data
and that the tested methods might actually perform better on true microarray expression
data. It would hence be important to repeat the outlined experiments using other mod-
els of expression data, compare for instance (Van den Bulcke et al. 2006; Langfelder
and Horvath 2008). Additional and more comprehensive studies will also be required to
evaluate the performance of other recently developed network methods with respect to the
conservation of centrality methods in inferred networks. Specifically, considering the fact
that methods make different systematic errors in inferring gene interactions (Schaffter et al.
2011; Marbach et al. 2012) and that accurately predicted links also differ between networks
(data not shown), future studies would probably also benefit from further investigating how
a combination of highly scored links from multiple network methods could be utilized to
improve our ability to reconstruct relevant network topologies from gene expression data
(Marbach et al. 2010).

In summary, more work will be needed to establish the usefulness of networks inferred
from expression data using current methodology for the purpose of centrality based gene
prioritization.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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