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Abstract We propose a new algorithm for approximating the non-asymptotic second
moment of the marginal likelihood estimate, or normalizing constant, provided by a particle
filter. The computational cost of the new method is O(M) per time step, independently of
the number of particles N in the particle filter, where M is a parameter controlling the qual-
ity of the approximation. This is in contrast to O(MN) for a simple averaging technique
using M i.i.d. replicates of a particle filter with N particles. We establish that the approxi-
mation delivered by the new algorithm is unbiased, strongly consistent and, under standard
regularity conditions, increasing M linearly with time is sufficient to prevent growth of the
relative variance of the approximation, whereas for the simple averaging technique it can be
necessary to increase M exponentially with time in order to achieve the same effect. This
makes the new algorithm useful as part of strategies for estimating Monte Carlo variance.
Numerical examples illustrate performance in the context of a stochastic Lotka–Volterra
system and a simple AR(1) model.
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1 Introduction

Particle filters, also known as Sequential Monte Carlo (SMC) methods (Doucet et al. 2001),
are used across a variety of disciplines including systems biology, econometrics, neuro-
science and signal processing, to perform approximate inferential calculations in general
state-space Hidden Markov Models (HMM) and in particular, provide an unbiased esti-
mate of the marginal likelihood. Recent application areas of these techniques include for
example, systems biology (Golightly and Wilkinson 2011; Golightly et al. 2015), where the
calculation of the marginal likelihood (ML) plays an important role in the estimation of the
parameters of stochastic models of biochemical networks. Estimation of the marginal likeli-
hood also features centrally in Particle Markov Chain Monte Carlo methods (Andrieu et al.
2010).

In the present paper we address the problem of approximating the non-asymptotic sec-
ond moment of the particle filter estimate of the marginal likelihood, henceforth for brevity
“the second moment”. As part of strategies to estimate Monte Carlo variance, this allows
one to report a numerical measure of the reliability of the particle filter estimate. Our con-
tributions are to introduce a new particle “Pairs algorithm” and prove that it unbiasedly and
consistently approximates the second moment. We also establish, under regularity condi-
tions, a linear-in-time bound on the relative variance of the approximation to the second
moment, and illustrate through a simple calculation and numerical simulations, that the Pairs
algorithm performs more reliably than a default strategy which uses independent copies of
the particle filter. In order to discuss the connections between our work and the existing
literature, we first need to introduce some notation and definitions.

A HMM is a process (Xn, Yn)n�0, where (Xn)n�0, called the signal process, is a Markov
chain with state space X, initial distribution π0 and transition kernel f . Each of the obser-
vations Yn ∈ Y, is conditionally independent of the rest of the signal process given Xn, with
conditional distribution, g(Xn, ·), where g is a probability kernel from X to Y. The HMM
can be represented as:

X0 ∼ π0(·), Xn | Xn−1 ∼ f (Xn−1, ·), n � 1

Yn | Xn ∼ g(Xn, ·), n � 0. (1)

We consider a fixed observation sequence (yn)n�0, assume that g admits a density
g(x, y) w.r.t. to some dominating measure and write for brevity gn(x) = g(x, yn). For sim-
plicity we also assume throughout that for all n � 0, supx gn(x) < +∞ and gn (x) > 0,
∀x ∈ X. We then define the sequence of distributions (πn)n�1, called prediction filters, as

πn+1(A) :=
∫
X πn(dx)gn(x)f (x,A)

∫
X πn(dx)gn(x)

, ∀A ∈ X , n � 0,

where X is the σ -algebra associated with the space X, and the sequence

(Zn)n�0, Z0 :=
∫

X
g0(x)π0(dx), Zn := Zn−1

∫

X
gn(x)πn(dx), n � 1. (2)

The interpretation of these definitions is the following: πn+1 is the distribution of
Xn+1 | Y0:n = y0:n, where for any sequence (an)n�0 we write ap:q = (ap, . . . , aq), and
Zn is the marginal likelihood of the first n + 1 observations y0:n. In many cases of interest,
the distributions πn and constants Zn cannot be computed exactly, and numerical approxi-
mations are needed. A particle filter, shown in Algorithm 1, provides such approximations,
denoted respectively πN

n and ZN
n . In Algorithm 1 q0 and qn, n � 1 are respectively a distri-

bution and Markov kernels on X, which may depend on the observations sequence (yn)n�0,
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but this dependence is suppressed from the notation. We assume throughout the rest of the
paper that π0(·), f (x, ·) and q0(·) and qn(x, ·) admit a density w.r.t. to some common dom-
inating measure dx, and with a slight abuse of notation, the corresponding densities are
denoted by π0(x), f (x, x′), q0(x) and qn(x, x′).

Algorithm 1 SMC algorithm for estimating Zn using N particles

Initialization

– Sample
{
Xi
0

}N

i=1
i.i.d.∼ q0(·)

– Compute weights
{
Wi

0

}N

i=1 according to Wi
0 = g0(X

i
0)π0(X

i
0)

q0(X
i
0)

normalize, W̃ i
0 = Wi

0∑N
k=1 Wk

0

, and set ZN
0 = 1

N

∑N
i=1 Wi

0

– Resample conditionally i.i.d. draws from
{
Xi
0

}N

i=1 using the normalized weights
{
W̃ i

0

}N

i=1 to obtain a set of equally-weighted particles
{
Xi

0

}N

i=1

For n � 1:

– For each i, set Xi
n−1 = Xi

n−1

– For each i, sample Xi
n ∼ qn(X

i
n−1, ·), compute weights Wi

n = gn(X
i
n)f (Xi

n−1, X
i
n)

qn(X
i
n−1, X

i
n)

,

normalize, W̃ i
n = Wi

n
∑N

k=1 Wk
n

, and set ZN
n = ZN

n−1 ·
(
1

N

∑N
i=1 Wi

n

)

– Resample conditionally i.i.d. draws from
{
Xi

n

}N

i=1 using the normalized weights
{
W̃ i

n

}N

i=1 to obtain a set of equally-weighted particles
{
Xi

n

}N

i=1

It is well known that Algorithm 1 provides an unbiased estimate of Zn, i.e. E
[
ZN

n

] = Zn.
A detailed account of this fact is given in (Del Moral 2004, Ch. 9). The main contribu-

tion of the present paper is to propose and study a new method to approximate E
[(

ZN
n

)2]
.

The approximation is delivered by Algorithm 2 – the Pairs algorithm – which we intro-
duce in the next section, and which must be run in addition to the particle filter used to

estimate ZN
n . Our main motivation for approximating E

[(
ZN

n

)2]
is to calculate Var

[
ZN

n

]
.

In a recent arXiv manuscript (Lee and Whiteley 2015), A. Lee and the second author of
the present paper have introduced a method which allows one to unbiasedly approximate
Var

[
ZN

n

]
using the same single run of the particle filter which delivers ZN

n . As N → ∞,
the method of Lee and Whiteley (2015) allows one to consistently approximate asymptotic
variance limN→∞ NVar

[
ZN

n

]
.

We stress that the Pairs algorithm performs the different task of approximating, for any

fixed N � 2, the non-asymptotic quantity E

[(
ZN

n

)2]
to arbitrary accuracy controlled by

an auxiliary parameter M (this statement is made precise in Theorem 2.1 below). Thus the

Pairs algorithm allows one to reliably approximate E
[(

ZN
n

)2]
without requiring that N is

large. We shall later illustrate how this property makes the Pairs algorithm useful within
strategies for estimating Var

[
ZN

n

]
.
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Moreover in Theorem 2.1 we prove an important result regarding the time dependence of

the error of the approximation of E
[(

ZN
n

)2]
delivered by the Pairs algorithm, showing that

under standard regularity conditions, it is sufficient to increase M linearly with n to control
the relative variance of this approximation. This is in contrast to Lee and Whiteley (2015),
who do not provide any results concerning the time-dependence of the errors associated
with their estimators.

We note that Chan and Lai (2013) investigated numerical techniques for assessing the
asymptotic variance associated with particle estimates of expectations with respect to filter-

ing distributions, but they didn’t explore methods for approximating E

[(
ZN

n

)2]
. We also

note that Bhadra and Ionides (2014) proposed to approximate E

[(
ZN

n

)2]
using a “meta-

model”, for purposes of optimizing parameters of the particle filter. Their method amounts
to fitting an AR(1) process to the output of the particle filter; it seems difficult to assess the
bias of their approach and no proof of consistency is given.

2 Pairs Algorithm

2.1 Outline of How the Algorithm is Derived

The full details of the derivation of the Pairs algorithm are given in Appendix. We now give
an account of some of the main ideas behind this derivation. For this some more notation is
needed. Let us introduce the nonnegative integral kernels: for x ∈ X, y = (y1, y2) ∈ X2,

Q1(x, dy) = g0(x)π0(x)

q0(x)
q1(y1, y2)δx(dy1)dy2, (3)

and for n � 2 and x = (x1, x2) ∈ X2, y ∈ X2,

Qn(x, dy) = gn−1(x2)f (x1, x2)

qn−1(x1, x2)
qn(y1, y2)δx2(dy1)dy2. (4)

In terms of compositions of these kernels, the lack-of-bias property of the particle filter
reads as:

E

[
ZN

n

]
= π0Q1 · · ·Qn(1). (5)

The kernels also encapsulate the main ingredients of the particle filter itself, indeed one
may take the point of view that Algorithm 1 is actually derived from the Qn, in the sense
that resampling is performed according to weights given by evaluating the functions

Q1(x,X2) = g0(x)π0(x)

q0(x)
, Qn(x,X2) = gn−1(x2)f (x1, x2)

qn−1(x1, x2)
, n � 2, (6)

and sampling is performed using the the Markov kernels:

Qn(x, ·)
Qn(x,X2)

. (7)

Now introduce the so–called coalescence operator C which acts on functions F : X2 ×
X2 → R as C(F)(x, y) = F(x, x). Cérou et al. (2011) derived the following representation
of the second moment of ZN

n ,

E

[(
ZN

n

)2] = E

[
π⊗2
0 Cε0Q

⊗2
1 Cε1 · · ·CεnQ

⊗2
n+1(1)

]
, (8)
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where C1 := C, C0 := Id, {εn}n�0 is a sequence of i.i.d., {0, 1}-valued random variables
with distribution

P(εn = 1) = 1 − P(εn = 0) = 1

N
,

and Q⊗2
n is the two-fold tensor product of Qn.

The main idea behind the Pairs algorithm is to identify, using Eq. 8, certain nonnegative
kernels Q(N)

n such that the second moment can be written

E

[(
ZN

n

)2] = π⊗2
0 Q(N)

1 · · ·Q(N)
n+1(1).

The details of these kernels Q(N)
n are given in the Appendix. Observing the similar-

ity with Eq. 5, to obtain the Pairs algorithm we shall derive a particle algorithm from the
weighting functions and Markov kernels which are associated withQ(N)

n in the same way as
Eqs. 6–7 are associated with Qn, the result being the Pairs algorithm. Results for standard
particle filters then transfer to the Pairs algorithm directly, which leads to our Theorem 2.1
below.

2.2 The Algorithm and its Properties

In Algorithm 2 both N � 2 and M � 1 are parameters. The computational cost of Algo-
rithm 2 is O(M) per time step, uniformly in N , and the quantity �

(N,M)
n which it delivers

can be considered an approximation to E

[(
ZN

n

)2]
, in the sense of Theorem 2.1 below.

Theorem 2.1 If

sup
x

g0(x)π0(x)

q0(x)
< +∞ and sup

x1,x2

gn(x2)f (x1, x2)

qn(x1, x2)
< +∞, ∀n � 1, (9)

then for any N � 2 and n � 0,

E

[
�(N,M)

n

]
= E

[(
ZN

n

)2]

, ∀M � 1,

�(N,M)
n

a.s.−−−→
M→∞ E

[(
ZN

n

)2]

.

If additionally for each n � 0 there exist constants 0 < w−
n � w+

n < +∞, and for each
n � 1, constants 0 < ε−

n � ε+
n < +∞ and a probability measure μn such that

w−
0 � g0(x)π0(x)/q0(x) � w+

0 , ∀x, (10)

w−
n � gn(x2)f (x1, x2)/qn(x1, x2) � w+

n , ∀x1, x2, n � 1, (11)

ε−
n μn(·) � qn(x, ·) � ε+

n μn(·), ∀x, n � 1, (12)

then for any N � 2 and n � 0,

M >

n+1∑

s=0

�s ⇒ E

⎡

⎢
⎣

⎛

⎝ �
(N,M)
n

E

[(
ZN

n

)2] − 1

⎞

⎠

2
⎤

⎥
⎦ � 4

M

n+1∑

s=0

�s

where �s :=
(

w+
s w+

s+1ε
+
s+1

w−
s w−

s+1ε
−
s+1

)2

is independent of M and N .
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Algorithm 2 Pairs algorithm for approximating E
[(

ZN
n

)2]
using M pair particles

Initialization

– Sample pairs
{
X̌i

0

}M

i=1

i.i.d.∼ q0(·),
{
X̂i
0

}M

i=1

i.i.d.∼ q0(·)
– Compute weights

{
Wi

0

}M

i=1 according to

Wi
0 = 1

N

g0(X̌
i
0)

2π0(X̌
i
0)

2

q0(X̌
i
0)

2
+
(

1 − 1

N

)
g0(X̌

i
0)g0(X̂

i
0)π0(X̌

i
0)π0(X̂

i
0)

q0(X̌
i
0)q0(X̂

i
0)

,

normalize weights W̃ i
0 = Wi

0∑M
k=1 Wk

0

and set �(N,M)
0 = 1

M

∑M
i=1 Wi

0.

– Resample conditionally i.i.d. draws from
{
X̌i
0, X̂

i
0

}M

i=1
using the normalized weights

{
W̃ i

0

}M

i=1 to obtain a set of equally-weighted particles
{
X̌

i

0, X̂
i

0

}M

i=1

– For each i, set
(
X̌i
0, X̂

i
0

)
=

(
X̌

i

0, X̂
i

0

)
, compute pi

0 =
(

1 + (N − 1)
g0(X̂

i
0)π0(X̂

i
0)q0(X̌

i
0)

g0(X̌
i
0)π0(X̌

i
0)q0(X̂

i
0)

)−1

and sample Y i
0 ∼ Ber(pi

0). If Y i
0 = 1, set

X̂i
0 = X̌i

0. Sample X̌i
1 ∼ q1(X̌

i
0, ·), X̂i

1 ∼ q1(X̂
i
0, ·).

For n � 1:

– Compute weights
{
Wi

n

}M

i=1 according to

Wi
n = 1

N

gn(X̌
i
n)

2f (X̌i
n−1, X̌

i
n)

2

qn(X̌
i
n−1, X̌

i
n)

2

+
(

1 − 1

N

)
gn(X̌

i
n)gn(X̂

i
n)f (X̌i

n−1, X̌
i
n)f (X̂i

n−1, X̂
i
n)

qn(X̌
i
n−1, X̌

i
n)qn(X̂

i
n−1, X̂

i
n)

,

normalize, W̃ i
n = Wi

n
∑M

k=1 Wk
n

, and set �(N,M)
n = �

(N,M)
n−1 ·

(
1

M

∑M
i=1 Wi

n

)

– Resample conditionally i.i.d. draws from
{
X̌i

n−1:n, X̂
i
n−1:n

}M

i=1
using the normalized

weights
{
W̃ i

n

}M

i=1 to obtain a set of equally-weighted particles
{
X̌

i

n−1:n, X̂
i

n−1:n
}M

i=1

– For each i, set
(
X̌i

n−1:n, X̂
i
n−1:n

)
=

(
X̌

i

n−1:n, X̂
i

n−1:n
)
, compute pi

n =
(

1 + (N − 1)
gn(X̂

i
n)f (X̂i

n−1, X̂
i
n)qn(X̌

i
n−1, X̌

i
n)

gn(X̌i
n)f (X̌i

n−1, X̌
i
n)qn(X̂

i
n−1, X̂

i
n)

)−1

and sample Y i
n ∼ Ber(pi

n). If

Y i
n = 1, set X̂i

n = X̌i
n. Sample X̌i

n+1 ∼ qn+1(X̌
i
n, ·), X̂i

n+1 ∼ qn+1(X̂
i
n, ·).

The proof of Theorem 2.1 is given in Appendix. The conditions in Eqs. 10–12 are fairly
standard in the stability theory of particle filters, but are rather strong: they rarely hold when
X is an unbounded subset of Rd . Attempting to establish similar results under more realistic
conditions, for example via the techniques of Whiteley (2013), seems to be a much more
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difficult task, beyond the scope of the present work, and we leave a full investigation of this
matter to future research.

2.3 Comparison to Using i.i.d. Replicates of ZN
n

A natural alternative to �
(N,M)
n as an approximation to E

[(
ZN

n

)2]
is to use M i.i.d.

replicates
{
Z

N,j
n

}M

j=1
of ZN

n and simple averaging,

�̃(N,M)
n := 1

M

M∑

j=1

(
Z

N,j
n

)2
. (13)

The cost of computing �̃
(N,M)
n is O(MN) per time step since it involves M copies of

Algorithm 1, each using N particles.
To illustrate why �

(N,M)
n is to be preferred over �̃

(N,M)
n in terms of relative variance,

consider for simplicity of exposition the case: for n � 1, qn(x, ·) = f (x, ·) = π0(·); for
n = 0, q0(·) = π0(·); and for n � 0, gn(x) = g(x). In this case, for all n � 0, we
have πn = π0 and in Algorithm 1, {Xi

n}Ni=1 are i.i.d. draws from π0. Then with πN
p (g) :=

N−1∑N
i=1 g(Xi

p), ZN
n = ∏n

p=0 πN
p (g), and

E

⎡

⎢
⎣

⎛

⎝ �̃
(N,M)
n

E

[(
ZN

n

)2] − 1

⎞

⎠

2
⎤

⎥
⎦ = 1

M

⎛

⎜
⎝

E

[(
ZN

n

)4]

E

[(
ZN

n

)2]2
− 1

⎞

⎟
⎠

= 1

M

⎛

⎜
⎝

n∏

p=0

E

[
πN

p (g)4
]

E

[
πN

p (g)2
]2 − 1

⎞

⎟
⎠

= 1

M

(
Cn+1 − 1

)
, (14)

where C := E
[
πN
0 (g)4

]
/E

[
πN
0 (g)2

]2 � 1 by Jensen’s inequality, with equality holding if
and only if πN

0 (g) is a.s. constant. So if πN
0 (g) exhibits any stochastic variability at all, in

the sense that C > 1, then M must be scaled exponentially fast with n in order to control
(14), cf. the linear-in-n scaling in Theorem 2.1.

3 Numerical Examples

We will illustrate the properties of the Pairs algorithm using two numerical examples. The
first, in Section 3.1 is a simple toy example, based on a AR(1) auto-regressive process.
The second, in Section 3.2, is a more realistic example involving a Lotka - Volterra system
of ODEs, observed in noise. In Section 3.3 we investigated the performance of the pairs
algorithm within a strategy for estimating Monte Carlo variance.

Throughout Section 3 we denote by M ′ a number of pairs used in the pairs algorithm to

obtain a reliable, benchmark estimate of the true quantity E

[(
ZN

n

)2]
.
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3.1 AR(1) Example

The signal of this model (Xn)n�0 is an AR(1) process, defined by Xn+1 = αXn + εn+1,
where we set α = 0.5, εn ∼ N (0, σ 2), σ = 10. Assume that gn(x) = exp

(−x2/100
)
, ∀n.

We will also assume that qn(x, ·) = f (x, ·), i.e. we will propose using the actual signal
density and we will set q0 = π0, given by X0 ∼ N (0, σ 2/(1 − α2)), i.e. the process
(Xn)n�0 is stationary a priori.

In Fig. 1 we compare two approaches for estimating E

[(
ZN

n

)2]
: using the Pairs algo-

rithm, and the standard MC approach using i.i.d. replicates as in Eq. 13. We consider two
sub–examples: the first one is for comparatively small number of particles N = 50, and
the second sub–example is with higher number of particles N = 250. The plots show

log(�(N,M)
n )− log(�(N,M ′)

n ) for the Pairs algorithm and log(�̃(N,M̃)
n )− log(�(N,M ′)

n ) for the
standard MC approach (please refer to Algorithm 2 and Eq. 13). Here we take M ′ = 106 so

that �(N,M ′)
n is a reliable, benchmark value of E

[(
ZN

n

)2]
.

In the top left plot of Fig. 1 we have chosen M = M̃ = 104. For the equal cost plot on
the top right we have chosen M = 104 and M̃ = 2500. Here, by “equal cost” we mean

0 100 200 300 400 500
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time
0 100 200 300 400 500

−1

−0.5

0

0.5

1

1.5

Time

0 500 1000 1500 2000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

2

Time

Fig. 1 AR(1) example - The top two plots represent the comparison of the estimates of E
[(

ZN
n

)2]
obtained

using the standard MC approach (gray, thin lines) and the Pairs algorithm (black, thick lines), where N = 50
for the case of equal M (top left) and equal cost (top right) respectively. The bottom two represent the
comparison of the same two algorithms, but for the case, where N = 250 for the case of equal M (bottom
left) and equal cost (bottom right)
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−0.2

0
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0.4

0.6

0.8

Time
0 100 200 300 400 500

−0.5

0

0.5

1

Time

Fig. 2 AR(1) example - boxplots using all of the 100 available simulated paths for the caseN = 50 particles
and equal M and equal cost. The grey boxplots correspond to the MC approach, and black ones - to the Pairs
algorithm

that M and M̃ are chosen such that the execution times of the standard MC algorithm and
the Pairs algorithm are the same. The time parameter n varies from 0 to 500 in both plots
and we plot 20 independent runs of both algorithms in order to compare their variability
properties.

The second row of plots in Fig. 1 consists of plots for the case of larger number of
particles N = 250. Again, in the bottom left we are comparing the case where M =
M̃ = 104, and in bottom right we are comparing the equal cost case where M = 104 and
M̃ = 700. The fact that M̃ is lower here than in the N = 50 case reflects the fact that the
cost of the standard MC approach is O(M̃N) per time step, compared to O(M) for the Pairs
algorithm. We have plotted 20 independent runs for both algorithms.

Figure 2 shows boxplots based on 100 independent runs for both algorithms for the case
of equal M = M̃ = 104 and equal cost. We also have N = 50. It is apparent that the

estimates of E
[(

ZN
n

)2]
that we obtain using the Pairs algorithm have much less variability

than the estimates produced using the standard Monte Carlo approach with i.i.d. replicates
(especially for big values of the time parameter n).

3.2 Lotka - Volterra System Example

In this section we illustrate the numerical performance of the pairs algorithm in the context
of a partially observed Langevin approximation to Lotka-Volterra ODE system (Golightly
and Wilkinson 2011). The signal process in the HMM is obtained from a discretization
of the stochastic differential equation (SDE) dXt = α(Xt , c)dt + √

β(Xt , c)dWt , where
Xt = (X1,t , X2,t ), Wt = (W1,t ,W,2t ). Here Wt is a vector, each of the components
of which is independent standard Brownian motion, c = (c1, c2, c3) are parameters and
α(x, c) and β(x, c) are the drift and diffusion coefficients given for the Lotka-Volterra
system by

α(x, c) =
(

c1x1 − c2x1x2
c2x1x2 − c3x2

)

, β(x, c) =
(

c1x1 + c2x1x2 −c2x1x2
−c2x1x2 c2x1x2 + c3x2

)

,

with x = (x1, x2).
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We consider Euler discretization of the SDE with time resolution �t = 1/m for some
m � 1, with the resulting process satisfying

Xn+(j+1)�t − Xn+j�t = α(Xn+j�t , c)�t + √
β(Xn+j�t , c)�tχj (15)

for n ∈ N and j ∈ {0, 1, . . . , m − 1}, where χj is a sequence of N (0, 1)–independent
random variables. The signal process in the HMM, denoted by (Xn)n�0, consists of a R2–
valued random variable X0 = (100, 100) and for n � 1 a R

2m–valued random variable
Xn+1 = (Xn+�t ,Xn+2�t , . . . , Xn+1). The model for the observations is Yn = Xn + εn,
where εn ∼ N (0, �2×2) , �2×2 = σ 2I2×2, where I2×2 is the 2 × 2 identity matrix. We
also assume that we have observed the process at integer times n. Following Golightly and
Wilkinson (2011), we consider two values of the observation noise variance σ 2 = 10 and
σ 2 = 200. We fix the rate constants c = (c1, c2, c3) = (0.5, 0.0025, 0.3), and we will use
m = 1 for the discretization parameter.

We adopt the same approach to constructing the proposal kernels (qn)n�1 suggested in
?[ ()Section 4.3]golightly2011bayesian, in which qn(xn, xn+1) is chosen to be a tractable
Gaussian approximation to the conditional density of xn+1 given xn, yn+1. The proposal
kernel is given by

qn+1(xn, xn+1) =
m−1∏

j=0

ψn+(j+1)�t (xn+j�t , xn+(j+1)�t )

where ψn+(j+1)�t (xn+j�t , ·) = N (·; xn+j�t +aj�t, bj�t), where aj = αj +βj (βj�j +
�)−1(yn+1 − (xn+j�t + αj�j )), bj = βj − βj (βj�j + �)−1βj�t , �j = 1 − j�t ,
αj = α(xn+j�t , c), βj = β(xn+j�t , c). We consider the process (Xn, Yn)n�0 as a HMM,
to which the particle algorithms are applied to.

We first obtain a reliable benchmark value of E
[(

ZN
n

)2]
, denoted by �

(N,M ′)
n , using

a single run of the Pairs algorithm with M ′ = 106. We compare �
(N,M)
n from the Pairs

algorithm with the simple Monte Carlo approximation �̃
(N,M̃)
n based on i.i.d. replicates,

defined in Eq. 13 in Fig. 3 for two different values of the observation noise - σ 2 = 10 and

σ 2 = 200. In both cases we plot again log(�(N,M)
n ) − log(�(N,M ′)

n ) for the Pairs algorithm

and log(�̃(N,M̃)
n ) − log(�(N,M ′)

n ) for the standard MC approach.
On the top left of Fig. 3 we have the low noise example. In this example, we setN = 100,

M = 104 and M̃ = 300. On the top right plot we present the large noise case where we set
N = 100, M = 105 and M̃ = 3000 in order to equalize the computational cost. Again, as
in the previous example, we have plotted 20 independent runs for both algorithms.

In the two plots, and especially for large values of the time parameter n, the estimate that
we obtain with the help of the Pairs algorithm has much less variability than the estimate
calculated using standard Monte Carlo with i.i.d. replicates. We can clearly see that with
the increase of the time parameter n, the rate of growth of the variability of the estimates

of E
[(

ZN
n

)2]
obtained using the Pairs algorithm is far less than the corresponding rate

for the standard Monte Carlo approach (using i.i.d. replicates). The observations about the
variability of the estimates in Fig. 3 are also supported by the corresponding boxplots, based
on 100 independent runs of the two algorithms.

Table 1 shows numerical values for ZN
n and �

(N,M)
n for different values of the time

parameter n for the Lotka–Volterra example. We see, that although the scale of the values

in Table 1 is small, we still have, by Jensen’s inequality, that E
[(

ZN
n

)2] � E
[
ZN

n

]2
.
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Fig. 3 Lotka - Volterra example - comparison of the estimates of E
[(

ZN
n

)2]
for the Pairs algorithm and

the standard Monte Carlo approach for the case of low observation noise (σ 2 = 10, on the left) and large
observation noise (σ 2 = 200, on the right). The plots are for equal time cost. Again, grey corresponds to the
MC approach and black corresponds to the Pairs algorithm. The boxplots are based on 100 independent runs
of the two algorithms

3.3 Estimating Monte Carlo Variance

The purpose of this example is to show that the benefits of approximating E
[(

ZN
n

)2]
using

the Pairs algorithm carry over to its use within a strategy for both estimating Zn and report-
ing Monte Carlo variance. As a benchmark for comparisons, we consider the following
standard approach based on i.i.d. replicates of a particle filter.

MC Strategy Run M̃ independent particle filters, each with Ñ particles, to give
{
Z

Ñ,j
n

}M̃

j=1
. Then report:

– Z̃
(Ñ,M̃)
n = 1

M̃

∑M̃
j=1 Z

Ñ,j
n as an estimate of Zn

– 1
M̃

1
M̃−1

∑M̃
j=1

(
Z

Ñ,j
n − Z̃

(Ñ,M̃)
n

)2
as an estimate of Var

[
Z̃

(Ñ,M̃)
n

]

The cost of this strategy is O(ÑM̃), and the variance estimate it delivers is a stan-
dard sample variance, thus unbiased. There are various ways that the MC strategy could be
changed or augmented by using the Pairs algorithm. We consider the following:
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Table 1 Estimates of Zn and E

[(
ZN

n

)2]
(using the Pairs algorithm, hence �

(N,M)
n with M = 106) for the

two cases of low and large observation noise for the Lotka-Volterra example

Time Low noise Large noise

n ZN
n �

(N,M)
n ZN

n �
(N,M)
n

1 7.4 × 10−3 4.9 × 10−5 2.21 × 10−4 6.3 × 10−8

5 4.13 × 10−15 1.6 × 10−29 4.07 × 10−21 3.9 × 10−41

10 2.51 × 10−33 4.9 × 10−66 4.59 × 10−42 1.15 × 10−82

25 2.02 × 10−80 4.9 × 10−160 3.42 × 10−100 2.69 × 10−198

50 2.23 × 10−159 8.9 × 10−318 2.81 × 10−195 � 10−324

100 6.41 × 10−317 � 10−324 � 10−324 � 10−324

Pairs Strategy Run M independent particle filter algorithms, each with N particles, to

give
{
Z

N,j
n

}N

j=1
. Additionally run one instance of the Pairs algorithm with parameters

(M,N), to give �
(N,M)
n . Then report:

– Z
(N,M)
n = 1

M

∑M
j=1 Z

N,j
n as an estimate of Zn

– 1
M−1

[

�
(N,M)
n −

(
Z

(N,M)
n

)2]

as an estimate of Var
[
Z

(N,M)
n

]

The cost of this strategy is O(MN + M). So if for instance N = Ñ and M = M̃ , the
additional cost of the Pairs strategy beyond that of the MC strategy becomes negligible as
N grows.

To see that the variance estimate delivered by the Pairs strategy is unbiased, note that:

M

M − 1
E

[

�(M,N)
n −

(
Z(N,M)

n

)2]

= M

M − 1

⎡

⎣E
[
�(M,N)

n

]
− 1

M2

M∑

j=1

E

[(
Z

N,j
n

)2] − 1

M2

M∑

i �=j

E

[
ZN,i

n

]
E

[
Z

N,j
n

]
⎤

⎦

= M

M − 1

[

E

[(
ZN

n

)2] − 1

M
E

[(
ZN

n

)2] −
(

1 − 1

M

)

E

[
ZN

n

]2]

= Var[ZN
n ] = MVar

⎡

⎣ 1

M

M∑

j=1

Z
(N,j)
n

⎤

⎦ ,

where the second equality uses the lack-of-bias property of the Pairs algorithm from

Theorem 2.1, i.e. E
[
�

(M,N)
n

]
= E

[(
ZN

n

)2]
.

Numerical results are shown in Fig. 4. In order to achieve better visual represen-

tation, we plot normalized estimates Z
(N,M)
n /ZN ′

n and Z̃
(Ñ,M̃)
n /ZN ′

n and their variances

Var
[
Z

(N,M)
n

]
/
(
ZN ′

n

)2
and Var

[
Z̃

(Ñ,M̃)
n

]
/
(
ZN ′

n

)2
, where ZN ′

n is a reliable, benchmark

estimate of Zn obtained from a particle filter with N ′ = 106. We make comparisons with
N = Ñ = 50 and M = M̃ = 104, with these settings in our implementation the additional
cost of the Pairs strategy beyond that of the MC strategy was found to be insignificant, very
similar results were obtained if the costs of the two strategies were exactly equalized.
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In Fig. 4 we compare the MC and Pairs strategies. The top left shows box plots of

Z
(N,M)
n /ZN ′

n and Z̃
(Ñ,M̃)
n /ZN ′

n obtained from 1000 independent realizations of the two
strategies, for different values of n. The top right shows boxplots for the variance esti-
mates, also from 1000 realizations. We can clearly see that for increasing n the estimates
for the MC strategy exhibit larger variability than the estimates obtained from the Pairs
strategy. On the bottom two plots of Fig. 4 we compare the kernel density estimates

for Var
[
Z

(N,M)
n

]
/
(
ZN ′

n

)2
and Var

[
Z̃

(Ñ,M̃)
n

]
/
(
ZN ′

n

)2
for n = 500. On bottom left

the estimated density is plotted, and on bottom right the log of the density is plotted,
highlighting the heavier tails of the distribution for the MC strategy. The kernel density
estimates in both plots were produced using a normal kernel function with bandwidths
0.06 (Pairs strategy) and 0.9 (MC strategy). The density estimates indicated a more con-
centrated distribution for the Pairs strategy (thick, black line) than for the MC strategy
(grey line).
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Fig. 4 AR(1) example - comparison of Pairs and MC strategies for Ñ = N = 50 particles and
M̃ = M = 104. On top left we plot the estimates of E

[
ZN

n

]
/ZN ′

n for both MC and Pairs strategies (which
are equal). On top right plot we compare the two strategies in terms of estimates of the relative variance

V ar
[
Z

(N,M)
n

]
/
(
ZN ′

n

)2
and V ar

[
Z̃

(Ñ,M̃)
n

]
/
(
ZN ′

n

)2
respectively (the y–axis is on a log–scale). On the

bottom left (right) plot we compare the kernel density estimates of the pdf (log–pdf) of the relative variance
for the two strategies for time n = 500 (the y–axis of the bottom right plot is on a log–scale). For the bottom
two plots the x–axis is on a log–scale
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Appendix: Auxiliary Definitions, Results and Proof of Theorem 2.1

This appendix is structured as follows. After introducing notation in Sections A.1, A.2 intro-
duces a generic particle system, of which we show Algorithm 1 to be a special case. The
account of this generic particle system and some of its properties is needed in order to derive
an associated pairs particle system in Section A.3, of which we show Algorithm 2 to be a
special case. The proof of Theorem 2.1, in Section A.4, rests on the key observation that
the pairs particle system is also an instance of the generic particle system of Section A.2,
allowing properties of the latter to be transferred to the Pairs algorithm.

A.1 Notation and Conventions

For a measurable space (E,E), denote by Bb(E) the set of all R-valued, measurable
and bounded functions on E, and by M(E) and P(E) the sets of respectively measures
and probability measures on E . For μ ∈ M(E) and ϕ ∈ Bb(E) we write μ(ϕ) :=∫
E

ϕ(x)μ(dx). For a non-negative integral kernel L : E×E → [0, ∞), ϕ ∈ Bb(E) and μ ∈
M(E), we write L(ϕ)(x) := ∫

E
L(x, dy)ϕ(y), (μL) (·) := ∫

E
μ(dx)L(x, ·) and for two

such kernels, L and M , we write their composition as (LM)(x, ·) := ∫
E

L(x, dx′)M(x, ·).
We write two-fold tensor product measures and functions as respectively μ⊗2 ∈ M(E2)

and ϕ ⊗ ϕ ∈ Bb(E × E). For ϕ ∈ Bb(E × E) we write the tensor product integral oper-
ator L⊗2(ϕ)(x, x′) := ∫

E×E
L(x, dy)L(x′, dy′)ϕ(y, y′). We introduce also a measurable

space (E0, E0) and use exactly similar notation when dealing with functions, measures and
kernels on (E0, E0), and kernels between (E0, E0) and (E, E).

A.2 A Generic Particle System

For each n � 2 let Qn : E × E → (0, ∞) be an integral kernel such that for each x ∈ E,
Qn(x, ·) is a finite measure on (E,E). Then introduce

Mn : (x,A) ∈ E × E �→ Qn(x,A)

Qn(x,E)
∈ [0, 1]; Gn−1 : x ∈ E �→ Qn(x,E) ∈ (0, ∞),

(16)
which are respectively a Markov kernel and a measurable, bounded, strictly positive func-
tion. Let also Q1 : E0 × E → (0, ∞) be a finite integral kernel, with M1 and G0 defined
similarly to Eq. 16.

For 0 � p � n define Qp,n = Qp+1 · · ·Qn with Qn,n := Id. Fix some η0 ∈ P(E0),
and define the measures (γn)n�0 and probability measures (ηn)n�1 by γ0 := η0 and

γn(·) := η0Q0,n(·), ηn(·) := γn(·)
γn(E)

, n � 1. (17)

With these objects, and for some fixed N � 1, we associate a particle process (ζn)n�0 as

follows. The initial configuration ζ0 = {
ζ i
0

}N

i=1 are independent and identically distributed

http://creativecommons.org/licenses/by/4.0/
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according to η0, and the evolution of ζn = {
ζ i
n

}N

i=1 is described by the following probability
law

P( ζn ∈ dζn| ζ0, ..., ζn−1) : =
N∏

i=1

∑N
j=1 Qn(ζ

j

n−1, dζ i
n)

∑N
j=1 Qn(ζ

j

n−1, E)
(18)

=
N∏

i=1

∑N
j=1 Gn−1(ζ

j

n−1)Mn(ζ
j

n−1, dζ i
n)

∑N
j=1 Gn−1(ζ

j

n−1)
, n � 1,

where dζn is to be understood as an infinitesimal neighborhood of a point (ζ 1
n , ..., ζN

n ).
Let us define the empirical measures

ηN
n := N−1

N∑

i=1

δζ i
n
, n � 0. (19)

γ N
0 := ηN

0 , γ N
n (·) := ηN

n (·)
n−1∏

p=0

ηN
p (Gp), n � 1. (20)

Algorithm 1 as an Instance of the Generic Particle System

Let (X,X ), π0, f , g be the ingredients of the HMM as in Section 1. To obtain Algorithm 1
as an instance of the generic particle system under the law (18), take E0 = X, E0 = X , and
E = X2 , E = X⊗2. Then for points x = (x1, x2) ∈ E and y = (y1, y2) ∈ E, take

Mn(x, dy) = δx2(dy1)qn(y1, y2)dy2, Gn−1(x) = gn−1(x2)f (x1, x2)

qn−1(x1, x2)
, n � 2, (21)

and for x ∈ E0, y = (y1, y2) ∈ E, take

M1(x, dy) = δx(dy1)q1(y1, y2)dy2, G0(x) = g0(x)π0(x)

q0(x)
, η0 = π0. (22)

Observe then that with Zn as in Eq. 2 and ZN
n as in Algorithm 1,

γn+1(1) ≡ Zn, γ N
n+1(1) ≡ ZN

n . (23)

Properties of the Generic Particle System

We now give a brief account of certain key properties of the particle system introduced
above, which we shall later put to use in analyzing the pairs algorithm.

Remark A.1 It is known that when, for each n � 0,

sup
x

Gn(x) < ∞, (24)

we have for any ϕ ∈ Bb(E),

ηN
n (ϕ)

a.s.−−−→
N →∞ ηn(ϕ), γ N

n (ϕ)
a.s.−−−→

N →∞ γn(ϕ), (25)

see e.g. (Del Moral 2004, Theorem 7.4.2). Moreover, as discussed in (Del Moral 2004,
Section 9.4.1),

E

[
γ N
n (ϕ)

]
= γn(ϕ) = η0Q0,n(ϕ), ∀N � 1. (26)
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Cérou et al. (2011) have obtained second moment formulae for γ N
n (1) via a study of the

tensor product empirical measures:

(
ηN

n

)⊗2 := 1

N
2

N∑

i=1

N∑

j=1

δζ i
n
⊗ δ

ζ
j
n

(
γ N
n

)⊗2 := γ N
n (1)2

(
ηN

n

)⊗2
.

Introducing the coalescence operator C which acts on bounded measurable functions F

as C(F)(x, y) = F(x, x), we have:

Proposition A.1 (Cérou et al. 2011, Lemma 3.2)For any F ∈ Bb(E × E),

E

[(
γ N
n

)⊗2
(F )

]

= E

[
η⊗2
0 Cε0Q

⊗2
1 Cε1 · · · Q⊗2

n Cεn(F )
]

(27)

and in particular for F = 1 ⊗ 1,

E

[
γ N
n (1)2

]
= E

[
η⊗2
0 Cε0Q

⊗2
1 Cε1 · · ·Cεn−1Q

⊗2
n (1 ⊗ 1)

]
(28)

where C1 := C, C0 := Id and {εn}n�0 is a sequence of i.i.d., {0, 1}-valued random
variables with distribution

P(εn = 1) = 1 − P(εn = 0) = 1

N
.

Proposition A.2 (Cérou et al. 2011, Corollary 1.5) If for each p � 0 there exists a finite
constant cp such that

sup
n�p

sup
(x,y)∈E2

Qp,n(1)(x)

Qp,n(1)(y)
� cp, (29)

then for any n � 0,

N >

n∑

s=0

cs ⇒ E

[(
γ N
n (1)

γn(1)
− 1

)2
]

� 4

N

n∑

s=0

cs .

Remark A.2 If for each n � 0

δn := sup
(x,y)∈E2

Gn (x)

Gn(y)
< ∞ and Mn,n+m(x, ·) � β(m)

n Mn,n+m(y, ·), ∀(x, y) ∈ E2

(30)
for some constants m � 1, β

(m)
n ∈ [1, ∞[, then Eq. 29 is satisfied with cp =

β
(m)
p

∏
p�q<p+m δq . For a proof see e.g. (Cérou et al. 2011, Lemma 1.5). We note that the

statement of (Cérou et al. 2011, Corollary 1.5) is written in terms of the condition (30), but
the proof of (Cérou et al. 2011, Corollary 1.5) actually uses Eq. 29.

A.3 The Pairs Particle System

In order to derive the Pairs algorithm, our first step is to obtain in Proposition A.3 below an
alternative representation of the formula on the right of Eq. 27. Define for each n � 1, the
kernels,

Q(N)
n (x, dy) := 1

N
Qn(x̌, dy̌)Qn(x̌, dŷ) +

(

1 − 1

N

)

Qn(x̌, dy̌)Qn(x̂, dŷ),
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with y = (y̌, ŷ) ∈ E2, x = (x̌, x̂) ∈ E2 when n � 2 and x = (x̌, x̂) ∈ E2
0 when n = 1.

Similarly to Qp,n we write for p < n, Q(N)
p,n := Q(N)

p+1 · · ·Q(N)
n and Q(N)

n,n := Id. Note that

we can equivalently write Q(N)
n using the previously defined coalescence operator C as:

Q(N)
n = 1

N
CQ⊗2

n +
(

1 − 1

N

)

Q⊗2
n .

Proposition A.3 For any n � 1, N � 2, and F ∈ Bb(E × E),

E

[
(γ N

n )⊗2(F )
]

= η⊗2
0 Q(N)

0,n (FN), (31)

where FN := N−1CF + (1 − 1/N)F , and in the particular case F = 1 ⊗ 1,

E

[
γ N
n (1)2

]
= η⊗2

0 Q(N)
0,n (1 ⊗ 1). (32)

Proof Starting from the identity of Proposition A.1, namely equation (27), we have

E

[
(γ N

n )⊗2(F )
]

=
∑

ε0:n∈{0,1}n+1

η⊗2
0 Cε0Q

⊗2
1 Cε1 · · · Q⊗2

n Cεn(F )

n∏

p=0

(

1 − 1

N

)I[εp=0] ( 1

N

)I[εp=1]

=
∑

ε0:n−1∈{0,1}n

∫

E2
0×E2n

FN(xn)η
⊗2
0 (dx0)

n∏

p=1

(
Cεp−1Q

⊗2
p

)
(xp−1, dxp)

(

1 − 1

N

)I[εp−1=0] ( 1

N

)I[εp−1=1]

=
∫

E2
0×E2n

FN(xn)η
⊗2
0 (dx0)

n∏

p=1

Q(N)
p (xp−1, dxp)

= η⊗2
0 Q(N)

0,n (FN),

which establishes (31). For Eq. 32, noteC(1⊗1) = 1⊗1 and (γ N
n )⊗2(1⊗1) = γ N

n (1)2.

Throughout the remainder of this section N � 1 is fixed. Similarly to Eq. 16, we

now associate with
(
Q(N)

n

)

)n�1
collections of Markov kernels

(
M(N)

n

)

n�1
and positive

functions
(
G(N)

n

)

n�0
, given for x = (x̌, x̂) ∈ E2,

G(N)
n−1(x) := Q(N)

n (x, E × E) = 1

N
Gn−1(x̌)2 +

(

1 − 1

N

)

Gn−1(x̌)Gn−1(x̂),(33)

M(N)
n (x, dy) := Q(N)

n (x, dy)

Q(N)
n (x, E × E)

= Q(N)
n (x, dy)

∫
E×E

Q(N)
n (x, dz)

= Q(N)
n (x, dy)

G(N)
n−1(x)

= pn−1
(
x̌, x̂

)
Mn

(
x̌, dy̌

)
Mn

(
x̌, dŷ

)
(34)

+(1 − pn−1
(
x̌, x̂

)
)Mn

(
x̌, dy̌

)
Mn

(
x̂, dŷ

)
,

where

pn−1
(
x̌, x̂

) :=
[

1 + (N − 1)
Gn−1(x̂)

Gn−1(x̌)

]−1

. (35)
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Now similarly to Eq. 17, define the measures
(
�

(N)
n

)

n�0
and probability measures

(
H

(N)
n

)

n�1
according to H

(N)
0 := �

(N)
0 := η⊗2

0 and

�(N)
n (·) := η⊗2

0 Q(N)
0,n (·), H (N)

n (·) := �
(N)
n (·)

�
(N)
n (E × E)

, n � 1. (36)

With these objects, and for some fixed M � 1, we associate a particle process (ξn)n�0

as follows. The initial configuration ξ0 = {
ξ10 , , . . . , ξM

0

}
consists of M i.i.d. pairs,

each ξ i
0 = (ξ̌ i

0, ξ̂
i
0) valued in E2

0 and having distribution H
(N)
0 = η⊗2

0 ; and for n � 1,

ξn = {
ξ1n , , . . . , ξM

n

}
consists of M pairs, each ξ i

n = (ξ̌ i
n, ξ̂

i
n) valued in E2, with evolution

given by:

P( ξn ∈ dξn| ξ0, ..., ξn−1) : =
M∏

i=1

∑M
j=1Q

(N)
n (ξ

j

n−1, dξ i
n)

∑M
j=1Q

(N)
n (ξ

j

n−1, E)
(37)

=
M∏

i=1

∑M
j=1G

(N)
n−1(ξ

j

n−1)M
(N)
n (ξ

j

n−1, dξ i
n)

∑M
j=1G

(N)
n−1(ξ

j

n−1)
, n � 1.

We then introduce the empirical measures

H(N,M)
n := M−1

M∑

i=1

δξi
n
, n � 0, (38)

�
(N,M)
0 := H

(N,M)
0 , �(N,M)

n (·) := H(N,M)
n (·)

n−1∏

p=0

H(N,M)
p (G(N)

p ), n � 1.

Algorithm 2 as an Instance of the pairs particle system

Let (X,X ), f , g, π0, etc. be the ingredients of the HMM, defined in Section 1. To cast Algo-
rithm 2 as an instance of the pairs particle system described above, we just make the same
choices as in Eqs. 21–22. Moreover, in that situation observe that for �

(N,M)
n as appearing

in Algorithm 2,

�
(N,M)
n+1 (1 ⊗ 1) ≡ �(N,M)

n (39)

A.4 Proof of Theorem 2.1

To conclude the paper, we gather together various facts from the preceeding sections of the
appendix and complete the proof of Theorem 2.1.

Proof of Theorem 2.1 Unless stated otherwise, throughout the proof N � 2 is fixed to
an arbitrary value. Comparing Eq. 37 with Eq. 18, we see that the pairs particle system
described in Section A.3 is itself an instance of the generic particle system described in
Section A.2; in place of E0, η0, E, Gn, Mn etc. in the latter take E2

0 , η
⊗2
0 , E2, G(N)

n , M(N)
n

etc. This observation allows us to transfer the various properties described in Section A.2
over to the pairs particle system, as follows.

Firstly, Eqs. 24–25 read in this situation as: if for each n � 0,

sup
x

G(N)
n (x) < ∞, (40)
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then for any F ∈ Bb(E × E),

H(N,M)
n (F )

a.s.−−−→
M→∞ H(N)

n (F ), �(N,M)
n (F )

a.s.−−−→
M→∞ �(N)

n (F ). (41)

Secondly, the lack-of-bias property (26), combined with Eqs. 36 and 32, reads as:

E

[
�(N,M)

n (1 ⊗ 1)
]

= �(N)
n (1 ⊗ 1) = η⊗2

0 Q(N)
0,n (1 ⊗ 1) = E

[
γ N
n (1)2

]
, ∀M � 1. (42)

Thirdly, Proposition A.2 reads: if for each p � 0 there exists a finite constant cp such
that

sup
n�p

sup
(x,y)∈E4

Q(N)
p,n(1)(x)

Q(N)
p,n(1)(y)

� cp, (43)

then for any n � 0,

M >

n∑

s=0

cs ⇒ E

⎡

⎣

(
�

(N,M)
n (1 ⊗ 1)

E
[
γ N
n (1)2

] − 1

)2
⎤

⎦ � 4

M

n∑

s=0

cs , (44)

where in writing the l.h.s. of the inequality in Eq. 44, the identity �
(N)
n (1⊗1) = E

[
γ N
n (1)2

]

from Eq. 42 has been applied.
To complete the proof of Theorem 2.1 it remains to show that in the setting (21)–(22),

the conditions Eqs. 9 and 10–12 imply respectively (40) and (43) for suitable constants cp

which do not depend on N , since then re-writting Eqs. 41, 42 and 44 using Eqs. 23 and 39
gives the claims of the Theorem.

The condition (9) does indeed imply (40), since by Eq. 33, supx G
(N)
n (x) = supx Gn(x)2

for any N . It remains to establish (43). We first observe that with Gp as in Eqs. 21–22,
conditions (10)–(11) imply that there for each p � 0,

dp := sup
x,y

G(N)
p (x)

G(N)
p (y)

= sup
x,y

Gp(x)2

Gp(y)2
�
(

w+
p

w−
p

)2

< +∞.

Now consider (43) for some given p. When n � p + 1,

Q(N)
p,n(1)(x)

Q(N)
p,n(1)(y)

� dp.

For n � p + 2, suppose there exist contants 0 < k−
p � k+

p < +∞ independent of N ,

andm(N)
p ∈ P(X2 × X2) such that

k−
pm

(N)
p (·) � Q(N)

p,p+2(x, ·) � k+
pm

(N)
p (·), ∀x. (45)

Then

Q(N)
p,n(1)(x)

Q(N)
p,n(1)(y)

= Q(N)
p,p+2Q

(N)
p+2,n(1)(x)

Q(N)
p,p+2Q

(N)
p+2,n(1)(y)

�
k+

p

k−
p

m(N)
p Q(N)

p+2,n(1)

m(N)
p Q(N)

p+2,n(1)
= k+

p

k−
p

,
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and Eq. 43 would then hold with cp := dp ∨ k+
p

k−
p
. Thus to complete the proof we shall show

that conditions (10)–(12) imply (45). To this end note that:

Q(N)
p,p+2 =

(

1 − 1

N

)[
1

N
C +

(

1 − 1

N

)

Id

]

Q⊗2
p+1Q

⊗2
p+2

+ 1

N

[
1

N
C +

(

1 − 1

N

)

Id

]

Q⊗2
p+1CQ⊗2

p+2, (46)

and with

k−
p :=

(
w−

p w−
p+1ε

−
p+1

)2
, k+

p :=
(
w+

p w+
p+1ε

+
p+1

)2
,

for all x = (x1, x2),

k−
p μ⊗2

p+1(dy1)q
⊗2
p+2(y1, dy2) � Q⊗2

p+1Q
⊗2
p+2(x, dy) � k+

p μ⊗2
p+1(dy1)q

⊗2
p+2(y1, dy2) (47)

and

k−
p

∫

X
μp+1(dz)δ⊗2

z (dy1)q
⊗2
p+2(y1, dy2) � Q⊗2

p+1CQ⊗2
p+2(x, dy) (48)

� k+
p

∫

X
μp+1(dz)δ⊗2

z (dy1)q
⊗2
p+2(y1, dy2),

where δz(·) is the Dirac measure on X located at z, and dy = dy1dy2 is to be understood as
the infinitesimal neighbourhood of y = (y1, y2) ∈ X2 × X2. Combining (46)–(48) we find
that (45) holds with

m(N)
p (dy) :=

(

1 − 1

N

)

μ⊗2
p+1(dy1)q

⊗2
p+2(y1, dy2)+ 1

N

∫

X
μp+1(dz)δ⊗2

z (dy1)q
⊗2
p+2(y1, dy2).
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