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Abstract In this paper, we consider the asymptotic normality for various inference
problems on multisample and high-dimensional mean vectors. We verify that the
asymptotic normality of concerned statistics is proved under mild conditions for high-
dimensional data. We show that the asymptotic normality can be justified theoreti-
cally and numerically even for non-Gaussian data. We introduce the extended cross-
data-matrix (ECDM) methodology to construct an unbiased estimator at a reason-
able computational cost. With the help of the asymptotic normality, we show that the
concerned statistics given by ECDM can ensure consistency properties for inference
on multisample and high-dimensional mean vectors. We give several applications
such as confidence regions for high-dimensional mean vectors, confidence intervals
for the squared norm and the test of multisample mean vectors. We also provide
sample size determination so as to satisfy prespecified accuracy on inference. Finally,
we give several examples by using a microarray data set.
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1 Introduction

A common feature of high-dimensional data is that the data dimension is high,
however, the sample size is relatively small. This is the so-called “HDLSS” or
“large p, small n” situation where p/n → ∞; here p is the data dimension and
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n is the sample size. The statistical inference on this type of data is becoming
increasingly relevant. Suppose we have independent and p-variate populations,
πi, i = 1, ..., k, having unknown mean vector μi and unknown covariance matrix
�i(≥ O) for each πi. Let θ = (μ1, ..., μk, �1, ..., �k). We do not assume either the
normality of the population distributions or the equality of �s as �1 = · · · = �k.
The eigen-decomposition of �i (i = 1, ..., k) is given by �i = H i�iHT

i , where �i is a
diagonal matrix of eigenvalues, λi1 ≥ · · · ≥ λip ≥ 0, and H i is an orthogonal matrix of
the corresponding eigenvectors. In this paper, we focus on inference on multisample
and high-dimensional mean vectors. Let μ = ∑k

i=1 biμi, where bis are known and
nonzero scalars. Having recorded i.i.d. samples, xij, j = 1, ..., ni, of size ni (≥ 4) from
each πi, we define Tn = ∑k

i=1 bixini , where n = (n1, ..., nk) and xini = ∑ni
j=1 xij/ni.

Chen and Qin (2010) gave a two-sample test in inference on HDLSS data.
Aoshima and Yata (2011a, b) developed a variety of inference on HDLSS data
such as a given-bandwidth confidence region, a two-sample test, a test of equality
of two covariance matrices, classification, variable selection, regression, pathway
analysis and so on along with sample size determination for each inference. Yata and
Aoshima (2012) provided given-width confidence intervals for the norm of mean vec-
tors. Aoshima and Yata (2011a, b) and Yata and Aoshima (2012) assumed that xij =
H i�

1/2
i zij + μi for i = 1, ..., k; j = 1, ..., ni, where zij = (zi1 j, ..., zipj)T , E(zij) = 0,

Var(zij) = I p and the fourth moments of each variable in zij are uniformly bounded.
Here, I p denotes the identity matrix of dimension p. They considered one of the
following three assumptions for πis:

(A-i) πi : Np(μi, �i) for i = 1, ..., k;
(A-ii) zisj, s = 1, ..., p, are independent for i = 1, ..., k;
(A-iii) E(z2isjz

2
itj) = E(z2isj)E(z2itj) and E(zisjzitjziujziv j) = 0 for s �= t,u, v, and some

regularity conditions given in Aoshima and Yata (2011a).

They assumed the following conditions for �is:

(A-iv) lim inf
p→∞ λip > 0, lim sup

p→∞
tr(�t

i)

p
< ∞ (t = 1, 2) and

tr(�4
i )

p2
→ 0 as p → ∞ for

i = 1, ..., k.

Note that (A-i) implies (A-ii). It holds that Eθ (||Tn − μ||2) = ∑k
i=1 b

2
i tr(�i)/ni

(= �n, say). Also, it holds that Varθ (||Tn − μ||2) = 2
∑

i, j b
2
i b

2
jtr(�i� j)/(nin j) under

(A-i). Let Sini = ∑ni
j=1(xij − xini)(xij − xini)

T/(ni − 1) and �̂n = ∑k
i=1 b

2
i tr(Sini)/ni. It

holds that Eθ (||Tn − μ||2 − �̂n) = 0 and

Varθ (||Tn − μ||2 − �̂n) = 2
k∑

i=1

b 4
i tr(�

2
i )

ni(ni − 1)
+ 4

∑

i< j

b 2
i b

2
jtr(�i� j)

nin j
(= K, say).

Let T̂n = ||Tn||2 − �̂n. It holds that Eθ (T̂n) = ||μ||2 and Varθ (T̂n) =
K + 4

∑k
i=1 b

2
i μ

T�iμ/ni (= K∗, say). Then, the following results were obtained by
Aoshima and Yata (2011a) and Yata and Aoshima (2012).

Theorem 1 (Aoshima and Yata 2011a) Assume (A-i) and (A-iv). Then, it holds that

||Tn − μ||2 − �n
√
2
∑

i, j b
2
i b

2
j tr(�i� j)/(nin j)

⇒ N(0, 1) (1)
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when p → ∞ and either ni → ∞ or ni is f ixed for i = 1, ..., k, where “⇒” denotes the
convergence in distribution and N(0, 1) denotes a random variable distributed as the
standard normal distribution.

Theorem 2 (Aoshima and Yata 2011a) Assume (A-iv) and either (A-ii) or (A-iii).
Then, Eq. 1 holds as p → ∞ and ni → ∞, i = 1, ..., k.

Corollary 1 (Aoshima and Yata 2011a) Assume (A-iv) and either (A-ii) or (A-iii).
Then, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

||Tn − μ||2 − �̂n

K1/2 ⇒ N(0, 1).

Theorem 3 (Yata and Aoshima 2012) Assume that niμT�iμ/tr(�2
i ) = o(1), i =

1, ..., k. Assume (A-iv) and either (A-ii) or (A-iii). Then, it holds as p → ∞ and
ni → ∞, i = 1, ..., k, that

T̂n − ||μ||2
K1/2

∗
⇒ N(0, 1).

In this paper, we relax the conditions to verify the asymptotic normality of
concerned statistics for high-dimensional data. Then, we apply the asymptotic nor-
mality to various inference problems on multisample and high-dimensional mean
vectors. In Section 2, we verify that the asymptotic normality of concerned statistics
is proved under mild conditions. We show that the asymptotic normality can be
justified theoretically and numerically even for non-Gaussian data. In Section 3,
we introduce the extended cross-data-matrix (ECDM) methodology, developed
by Yata and Aoshima (2013), to construct an unbiased estimator at a reasonable
computational cost. In Section 4, with the help of the asymptotic normality, we show
that the statistics given by ECDM can ensure consistency properties for inference on
multisample and high-dimensional mean vectors. We give several applications such
as confidence regions for high-dimensional mean vectors, confidence intervals for
the squared norm and the test of multisample mean vectors. In Section 5, we provide
sample size determination so as to satisfy prespecified accuracy on inference. Finally,
in Section 6, we give several examples by using a microarray data set.

2 Asymptotic normality under mild conditions

We assume that

xij = �iwij + μi for i = 1, ..., k; j = 1, ..., ni, (2)

where �i is a p × ri matrix for some ri > 0 such that �i�
T
i = �i, and wij, j = 1, ..., ni,

are i.i.d. random vectors having E(wij) = 0 and Var(wij) = Iri . Note that Eq. 2
includes the case that �i = H i�

1/2
i and wij = zij. Refer to Bai and Sarandasa (1996),

Chen and Qin (2010) and Aoshima and Yata (A distance-based, misclassification
rate adjusted classifier for multiclass, high-dimensional data. To appear in Ann Inst
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Stat Math) for the details of the model. Let wij = (wi1 j, ..., wiri j)
T for any i, j. As for

wij, we assume that

(A-v) The fourth moments of each variable in wij are uniformly bounded,
E(w2

isjw
2
itj) = E(w2

isj)E(w2
itj) and E(wisjwitjwiujwiv j) = 0 for s �= t,u, v.

Note that any of the assumptions, (A-i) to (A-iii), implies (A-v). That is (A-v) is
milder than any of (A-i) to (A-iii). We assume the following conditions for �is:

(A-vi)
λi1

tr(�2
i )

1/2
→ 0 as p → ∞ for i = 1, ..., k.

We recall that λi1 (i = 1, ..., k) is the largest eigenvalue of �i. Note that
{λi1/tr(�2

i )
1/2}4 ≤ tr(�4

i )/tr(�
2
i )

2. We also note that lim infp→∞ tr(�2
i )/p > 0 under

the assumption that lim infp→∞ λip > 0. Thus (A-iv) implies (A-vi). That is (A-vi) is
milder than (A-iv). Under (A-v) and (A-vi), we have the following result.

Theorem 4 Assume (A-v) and (A-vi). Then, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

||Tn − μ||2 − �̂n

K1/2 ⇒ N(0, 1).

We assume the following extra condition:

(A-vii)
∑k

i=1 μT�iμ/ni
K

= o(1).

Note that the condition that niμT�iμ/tr(�2
i ) = o(1), i = 1, ..., k, in Theorem 3

implies (A-vii). Then, we have the following result.

Theorem 5 Assume (A-v) to (A-vii). Then, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

T̂n − ||μ||2
K1/2

∗
⇒ N(0, 1).

When (A-vii) is not met, we have the following result.

Corollary 2 Assume (A-vi) and

(A-viii) lim inf
∑k

i=1 μT�iμ/ni
K

> 0 as p → ∞ and ni → ∞, i = 1, ..., k.

Then, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

T̂n

||μ||2 = 1 + op(1).

We consider the following conditions instead of (A-v):

(A-v’) Varθ [{(xil − μi)
T(x jl′ − μ j)}2] = O{tr(�i� j)

2} and Varθ {(xil − μi)
T� j(xil −

μi)} = O{tr(�i� j�i� j)} as p → ∞ for i, j = 1, ..., k.

Then, we have the following result.
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Corollary 3 After replacing (A-v) with (A-v’), the results in Theorems 4 and 5 are still
justif ied.

Remark 1 From Eqs. 14 and 16 in Appendix, we note that (A-v) implies (A-v’).

Since �is are unknown, it is necessary to estimate K (or K∗). Let us consider an
estimator of K by

K̂ = 2
k∑

i=1

b 4
i Wini

ni(ni − 1)
+ 4

∑

i< j

b 2
i b

2
jtr(Sini S jn j)

nin j
,

whereWini is defined by Eq. 4. From Lemma 3 in Appendix, we note that K̂/K = 1 +
op(1) as p → ∞ and ni → ∞, i = 1, ..., k, under (A-v). Then, we have the following
result.

Corollary 4 Assume (A-v) and (A-vi). Then, it holds as p → ∞ and ni → ∞, i =
1, ..., k, that

||Tn − μ||2 − �̂n

K̂1/2
⇒ N(0, 1).

Note that K∗/K → 1 as p → ∞ and ni → ∞, i = 1, ..., k, under (A-vii). Then, we
have the following result.

Corollary 5 Assume (A-v) to (A-vii). Then, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

T̂n − ||μ||2
K̂1/2

⇒ N(0, 1).

Remark 2 After replacing (A-v) with (A-v’), the results in Corollaries 4 and 5 are
still justified.

Let us observe Corollaries 4 and 5. We set k = 2, b 1 = 1, b 2 = −1, n1 = n2 = 20,
�1 = B(0.3|i− j|1/3)B and �2 = B(0.4|i− j|1/3)B, where

B = diag[{0.5 + 1/(p + 1)}1/2, ..., {0.5 + p/(p + 1)}1/2]. (3)

Note that tr(�i) = p (i = 1, 2). Also, note that �i, i = 1, 2, hold (A-vi). We consid-
ered two cases: (i) μ1 = μ2, and (ii) μ1 = ((3/p)1/2, ..., (3/p)1/2)T and μ2 = 0 (i.e.,
||μ||2 = ||μ1 − μ2||2 = 3). Let T̃ = (T̂n − ||μ||2)/K̂1/2. Note that T̃ = (||Tn − μ||2 −
�̂n)/K̂1/2 for case (i). We considered the cases of p =10, 100 and 1000. We gener-
ated xij − μi, j = 1, 2, ..., (i = 1, 2) independently from a p-variate distribution. We
considered three distributions: (a) Np(0,�i), (b) p-variate t-distribution, tp(0, �i, ν)

with mean zero, covariance matrix �i and degrees of freedom ν = 10, and (c) �iwij,
where wij = (wi1 j, ..., wiri j)

T and wii′ j = (yii′ j − 1)/
√
2 (i′ = 1, ..., ri) in which yii′ js are

i.i.d. as the chi-squared distribution with 1 degree of freedom. Here, ri = 2p and �i
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is a p × ri matrix such that �i = [H i�
1/2
i /

√
2,−H i�

1/2
i /

√
2]. Note that �i�

T
i = �i. It

should be noted that (A-v) or (A-v’) is met in (b) when ν is sufficiently large. Also,
(A-v) is met in (c).

Independent pseudorandom 2000 observations of T̃ were generated from each
distribution. Let T̃r be the rth observation of T̃ for r = 1, ..., 2000. In the end of the
rth replication, we checked whether the inequality, T̃r ≤ z0.05, is true (or false) and
defined Pir = 1 (or 0), where z0.05 is the upper 0.05 point of N(0, 1). We calculated
P(0.95) = ∑2000

r=1 Pr/2000 as an estimate of Pθ (T̃ ≤ z0.05). Note that the standard
deviation of the estimates is less than 0.011. From Corollaries 4 and 5, it holds
that Pθ (T̃ ≤ z0.05) → 0.95. In Figs. 1 and 2, we gave the histograms of T̃ together
with P(0.95) for (a), (b) and (c) when p =10, 100 and 1000. We considered case (i)
in Fig. 1 and case (ii) in Fig. 2. From Corollaries 4 and 5, we also displayed the

Fig. 1 The histograms of T̃ together with P(0.95) and the probability density of N(0, 1) for (a), (b)
and (c) when p =10, 100 and 1000 in case of (i)
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Fig. 2 The histograms of T̃ together with P(0.95) and the probability density of N(0, 1) for (a), (b)
and (c) when p =10, 100 and 1000 in case of (ii)

asymptotic probability density of T̃, N(0, 1). We observed from Fig. 1 that the
histograms become close to the probability density and P(0.95)s become close to
0.95 as p increases in case (i). Compared to (i), in view of Fig. 2, the convergence of
those quantities seemed to be slow in case (ii) when p is not large enough to meet
K∗/K → 1. However, for sufficiently large p, we observed that they give adequate
performances even in non-Gaussian cases such as (b) and (c).

3 Estimation of tr(�2)

Throughout this section, we omit the subscript with regard to the population.
Yata and Aoshima (2013) developed the extended cross-data-matrix (ECDM)
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methodology that is an extension of the CDM methodology created by Yata and
Aoshima (2010). The ECDM methodology can be applied to obtaining an unbiased
estimator of tr(�2) as follows: We assume n ≥ 4. Let n(1) = �n/2� and n(2) = n − n(1),
where �x� denotes the smallest integer ≥ x. Let

Vn(1)(k) =
{

{k/2� − n(1) + 1, ..., k/2�} if k/2� ≥ n(1),

{1, ..., k/2�} ∪ {k/2� + n(2) + 1, ..., n} otherwise;

Vn(2)(k) =
{

{k/2� + 1, ..., k/2� + n(2)} if k/2� ≤ n(1),

{1, ..., k/2� − n(1)} ∪ {k/2� + 1, ..., n} otherwise

for k = 3, ..., 2n − 1, where x� denotes the largest integer ≤ x. Let #(S) denote
the number of elements in a set S. Note that #(Vn(l)(k)) = n(l), l = 1, 2, Vn(1)(k) ∩
Vn(2)(k) = ∅ and Vn(1)(k) ∪ Vn(2)(k) = {1, ..., n} for k = 3, ..., 2n − 1. Also, note that
i ∈ Vn(1)(i+ j) and j ∈ Vn(2)(i+ j) for i < j (≤ n). Let

xn(1)(k) = n−1
(1)

∑

j∈V n(1)(k)

x j and xn(2)(k) = n−1
(2)

∑

j∈V n(2)(k)

x j

for k = 3, ..., 2n − 1. Then, Yata and Aoshima (2013) gave an estimator of tr(�2) by

Wn = 2un
n(n − 1)

n∑

i< j

{
(xi − xn(1)(i+ j))

T(x j − xn(2)(i+ j))
}2

, (4)

where un = n(1)n(2)/{(n(1) − 1)(n(2) − 1)}. Note that Eθ (Wn) = tr(�2). Aoshima and
Yata (A distance-based, misclassification rate adjusted classifier for multiclass, high-
dimensional data. To appear in Ann Inst Stat Math) and Yata and Aoshima (2013)
showed that

Varθ

(
Wn

tr(�2)

)

= 4
n2

{1 + o(1)} + O
{

tr(�4)

tr(�2)2n

}

→ 0 (5)

as p → ∞ and n → ∞ under (A-v). On the other hand, under (A-v’), we can claim
as p → ∞ and n → ∞ that

Varθ

(
Wn

tr(�2)

)

= O(n−2) + O
{

tr(�4)

tr(�2)2n

}

→ 0.

Remark 3 Assume (A-i). It holds as p → ∞ and n → ∞ that

Varθ

(
Wn

tr(�2)

)

= 4
n2

{1 + o(1)} + 8
tr(�4)

tr(�2)2n
{1 + o(1)}. (6)

On the other hand, Bai and Sarandasa (1996) and Srivastava (2005) considered an
estimator of tr(�2) by Vn = c−1

n {tr(S2
n) − tr(Sn)

2/(n − 1)} with cn = (n − 2)(n + 1)/
(n − 1)2. They showed that, when the population distribution is Gaussian, it holds
that Eθ (Vn) = tr(�2) together with Eq. 6. It should be noted that Vn is not an
unbiased estimator unless the population distribution is Gaussian. In addition, one
cannot claim Varθ {Vn/tr(�2)} < ∞ unless the eighth moments of each variable in z j

are uniformly bounded.
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4 Applications

In this section, we give several applications of the results in Section 2.

4.1 Confidence Regions for μ

Let zα be a constant such that P{N(0, 1) > zα} = α. We construct confidence regions
for μ by

R = {
μ ∈ Rp | max

{
�̂n − zα/2K̂1/2, 0

} ≤ ||Tn − μ||2 ≤ �̂n + zα/2K̂1/2};
RU = {

μ ∈ Rp | ||Tn − μ||2 ≤ �̂n + zα K̂1/2},

where α ∈ (0, 1/2). Then, from Corollary 4, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

Pθ (μ ∈ R) = 1 − α + o(1) and Pθ (μ ∈ RU ) = 1 − α + o(1)

under (A-v) and (A-vi).

Remark 4 When �̂n > zα/2K̂1/2, R indicates that μ is included in the region sand-
wiched by the two p-dimensional spheres with radii of (�̂n − zα/2K̂1/2)1/2 and
(�̂n + zα/2K̂1/2)1/2 from center Tn. See Section 2 in Aoshima and Yata (2011a) for
the details.

4.2 Confidence Intervals for ||μ||2

We construct confidence intervals for ||μ||2 by
I = [

max
{
T̂n − zα/2K̂1/2, 0

}
, T̂n + zα/2K̂1/2];

IL = [
max

{
T̂n − zα K̂1/2, 0

}
, ∞)

,

where α ∈ (0, 1/2). Then, from Corollary 5, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

Pθ (||μ||2 ∈ I) = 1 − α + o(1) and Pθ (||μ||2 ∈ IL) = 1 − α + o(1)

under (A-v) to (A-vii). We emphasize that one can apply I and IL to the discrim-
inant analysis for high-dimensional data. Refer to Section 4 in Aoshima and Yata
(2011a, c) and Sections 3 and 4 in Aoshima and Yata (A distance-based, misclas-
sification rate adjusted classifier for multiclass, high-dimensional data. To appear in
Ann Inst Stat Math).

4.3 Test of μ = 0 Against μ �= 0

We consider the following test:

H0 : μ = 0 vs. H1 : μ �= 0. (7)

For given α ∈ (0, 1/2), we test the hypothesis (7) by

rejecting H0 ⇐⇒ T̂n

K̂1/2
> zα.
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Then, from Corollary 5, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

size = α + o(1) and power = �
( ||μ||2
K1/2 − zα

)
+ o(1) (8)

under (A-v) to (A-vii), where �(·) denotes the c.d.f. of N(0, 1). If one cannot assume
(A-vii) in case of μ �= 0, from Corollaries 2 and 5, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

size = α + o(1) and power = 1 + o(1)

under (A-v), (A-vi) and (A-viii).

Remark 5 When k = 2 and (b 1, b 2) = (1,−1), Chen and Qin (2010) also gave Eq. 8
under slightly different conditions.

Remark 6 After replacing (A-v) with (A-v’), all the results in Section 4 are still
justified.

5 Sample Size Determination

In this section, we provide sample size determination so as to satisfy prespecified
accuracy on inference.

5.1 Given-Bandwidth Confidence Region for μ

We consider constructing a given-bandwidth confidence region for μ by

Rn = {
μ ∈ Rp | max{�̂n − δ, 0} ≤ ||Tn − μ||2 ≤ �̂n + δ

}
(9)

for given δ (> 0). We assume δ = o{mini=1,...,k tr(�2
i )

1/2}. For given α ∈ (0, 1/2), we
determine the sample size so as to satisfy

Pθ (μ ∈ Rn) ≥ 1 − α.

Aoshima and Yata (2011a) considered sample size determination as follows: From
the fact that tr(�i� j) ≤ {

tr
(
�2

i

)
tr
(
�2

j

)}1/2, it holds K1/2 ≤ √
2
∑k

i=1 b
2
i tr(�2

i )
1/2/

(ni − 1). One may choose nis such that

min
k∑

i=1

ni subject to
√
2

k∑

i=1

b 2
i tr
(
�2

i

)1/2
/(ni − 1) ≤ δ/zα/2.

Then, the sample size is determined by

ni ≥ zα/2
√
2

δ
|bi|tr

(
�2

i

)1/4
k∑

j=1

|b j|tr
(
�2

j

)1/4 + 1 (= Ci, say) (10)

for each πi. Note that ni → ∞, i = 1, ..., k, as p → ∞.
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Theorem 6 (Aoshima and Yata 2011a) Assume (A-iv) and either (A-ii) or (A-iii).
Then, for nis satisfying Eq. 10, it holds as p → ∞ that

lim inf Pθ (μ ∈ Rn) ≥ 1 − α. (11)

We can claim Eq. 11 under mild conditions as follows.

Theorem 7 Assume (A-v) and (A-vi). Then, for nis satisfying Eq. 10, Eq. 11 holds
as p → ∞.

5.2 Two-Stage Procedure

Since �is are unknown, it is necessary to estimate Ci in Eq. 10. We proceed with
the following two steps along the lines of the elastic two-stage procedure given by
Aoshima and Yata (2011b):

1. Choosemi(≥ 4), i = 1, ..., k, such as

mi

Ci
≤ 1,

Ci

m2
i

→ 0 and
Ci

mi

tr
(
�4

i

)

tr
(
�2

i

)2 → 0 as p → ∞ under (A-vi). (12)

Note that Eq. 12 is met when lim infp→∞ mi/Ci > 0 and lim supp→∞ mi/Ci < 1.
Take pilot samples, xij, j = 1, ...,mi, of size mi from each πi. Then, calculate
Wimi according to Eq. 4. Define the total sample size for each πi by

Ni = max

⎧
⎨

⎩
mi,

⎡

⎢
⎢
⎢

zα/2
√
2

δ
|bi|W1/4

imi

k∑

j=1

|b j|W1/4
jm j

⎤

⎥
⎥
⎥

+ 1

⎫
⎬

⎭
, (13)

where �x� denotes the smallest integer ≥ x.
2. For each i, if Ni = mi, do not take any additional samples from πi and otherwise,

that is if Ni > mi, take additional samples, xij, j = m + 1, ..., Ni, of size Ni − mi

from πi. By combining the initial samples and the additional samples, calculate
xiNi and SiNi , i = 1, ..., k. Let N = (N1, ..., Nk). Then, define RN according to
Eq. 9 with TN = ∑k

i=1 bixiNi and �̂N = ∑k
i=1 b

2
i tr(SiNi)/Ni.

We have the following theorem.

Theorem 8 Assume (A-v) and (A-vi). For two-stage procedure given by Eqs. 12
and 13, we have as p → ∞ that

lim inf Pθ (μ ∈ RN) ≥ 1 − α.

Remark 7 The results in Theorems 7 and 8 are still justified under (A-v’) instead of
(A-v).

Remark 8 Under Eq. 12, (A-v) and (A-vi), it holds as p → ∞ that Varθ {Wimi

/tr(�2
i )} = o(C−1

i ). Then, we can claim as p → ∞ that Ni/Ci = 1 + op(1), which is
in the HDLSS situation in the sense that Ni/p = op(1) under the condition that
maxi=1,...,k tr(�2

i )
1/2/δ = o(p).
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Remark 9 Onemay choosemi(≥ 4) such asmi/Ci > 1 for some i. Then, the assertion
in Theorem 8 can still be claimed. However, it may cause over-sampling in the sense
that Ni/Ci > 1 w.p.1.

Remark 10 One can obtain sample size determination both for the confidence
interval (Section 4.2) and for the test (Section 4.3) as well in similar fashion. Under
(A-v) and (A-vi), it can be verified to ensure the accuracy required in Yata and
Aoshima (2012, Sections 2 and 3) and Aoshima and Yata (2011a, Section 3). We
omit the details for brevity.

5.3 Simulation

In order to study the performance of the two-stage procedure given by Eqs. 12
and 13, we used computer simulations. Our goal was to construct a 95 %
given-bandwidth confidence region, RN. In other words, we set α = 0.05. We
set μi′ = (0, ..., 0)T , bi′ = (−1)i

′−1 and �i′ = ci′ B(ρ
|i− j|1/3
i′ )B, i′ = 1, ..., k, where B is

defined by Eq. 3. Note that tr(�i) = ci p (i = 1, .., k). We considered two cases:
(i) k = 2, δ = 5, (c1, c2) = (1, 1), (ρ1, ρ2) = (0.3, 0.4) and (m1,m2) = (10, 10), and
(ii) k = 4, δ = 10, (c1, c2, c3, c4) = (1, 1, 1.2, 1.2), (ρ1, ρ2, ρ3, ρ4) = (0.3, 0.4, 0.3, 0.4)
and (m1,m2,m3,m4) = (10, 10, 15, 15). In Table 1, we generated independent
pseudorandom observations from πi : Np(0, �i), i = 1, ..., k. In Table 2, we gene-
rated them from �iwij, where �i = H i�

1/2
i , wij = (wi1 j, ..., wipj)

T and wii′ j = yii′ j − 1
(i′ = 1, ..., p) in which yii′ js are i.i.d. as the Poisson distribution with parameter λ = 1
for πi, i = 1, ..., k.

Table 1 Required sample size and coverage probability given by Eqs. 12 and 13 when πi :
Np(0,�i), i = 1, ...,k

Ci ni ni − Ci V(ni) P s(P)

Case (i): k = 2, δ = 5 and (m1,m2) = (10, 10)
p = 200
π1 22.67 22.67 0.0 8.42 0.957 0.00456
π2 25.29 25.25 −0.04 17.51

p = 1000
π1 49.87 49.55 −0.31 30.86 0.954 0.00468
π2 56.1 55.82 −0.28 47.26

Case (ii): k = 4, δ = 10 and (m1,m2,m3,m4) = (10, 10, 15, 15)
p = 200
π1 23.7 23.76 0.06 6.29 0.958 0.00449
π2 26.45 26.26 −0.19 11.32
π3 25.87 25.96 0.09 3.89
π4 28.88 28.88 0.0 8.82

p = 1000
π1 52.2 51.97 −0.23 21.6 0.95 0.0049
π2 58.73 58.26 −0.47 33.03
π3 57.09 57.07 −0.02 12.55
π4 64.24 63.96 −0.28 21.95
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Table 2 Required sample size and coverage probability given by Eqs. 12 and 13 when �i =
Hi�

1/2
i , wij = (wi1 j, ..., wipj)

T and wii′ j = yii′ j − 1 (i′ = 1, ..., p) in which yii′ js are i.i.d. as the Poisson
distribution with parameter λ = 1 for πi, i = 1, ...,k

Ci ni ni − Ci V(ni) P s(P)

Case (i): k = 2, δ = 5 and (m1,m2) = (10, 10)
p = 200
π1 22.67 22.51 −0.16 10.06 0.958 0.00451
π2 25.29 25.06 −0.23 19.89

p = 1000
π1 49.87 49.74 −0.13 32.03 0.955 0.00466
π2 56.1 55.89 −0.21 50.49

Case (ii): k = 4, δ = 10 and (m1,m2,m3,m4) = (10, 10, 15, 15)
p = 200
π1 23.7 23.65 −0.05 6.65 0.954 0.00471
π2 26.45 26.15 −0.3 14.02
π3 25.87 25.97 0.1 5.06
π4 28.88 28.84 −0.04 11.78

p = 1000
π1 52.2 52.02 −0.18 22.79 0.955 0.00466
π2 58.73 58.52 −0.21 40.09
π3 57.09 57.11 −0.02 13.63
π4 64.24 64.16 −0.08 24.75

When p = 200 and 1000, we used the two-stage procedure given by Eqs. 12
and 13. The findings were obtained by averaging the outcomes from 2000
(= R, say) replications. Under a fixed scenario, suppose that the rth replication
ends with Ni = nir (i = 1, ..., k) observations and the corresponding confidence
region with nr = (n1r, ..., nkr) for r = 1, ..., R. Let ni = R−1∑R

r=1 nir and V(ni) =
(R − 1)−1∑R

r=1(nir − ni)2. In the end of the rth replication, we checked whether
μ does (or does not) belong to the corresponding confidence region and defined
Pr = 1 (or 0) accordingly. Let P = R−1∑R

r=1 Pr, which estimates the target coverage
probability, having its estimated standard error s(P) where s2(P) = R−1P(1 − P).

Let us explain, for example, the entries from the second block for case (i)
in Table 1 that were given when p = 1000. We had C1 = 49.87 and C2 = 56.1
from Eq. 10. From 2000 independent replications, we observed n1 = 49.55 (n1 −
C1 = −0.31), n2 = 55.82 (n2 − C2 = −0.28) and P = 0.954 together with V(n1) =
30.86, V(n2) = 47.26 and s(P) = 0.00468. Throughout, the two-stage procedure
seemed to construct required confidence regions successfully even for a discrete case
such as in Table 2.

6 Example

We analyzed gene expression data given by Chiaretti et al. (2004) in which the
data set consists of 12625 (= p) genes. The expression measures were obtained
by using the three-step robust multichip average (RMA) preprocessing method.
Refer to Pollard et al. (2005) as well for the details. The data set had two tumor
cellular subtypes, B-cell and T-cell. We divided each type into two groups with
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respect to the relapse as follows: (a) π1: B-cell with the relapse (n1 = 50 samples);
(b) π2: B-cell without the relapse (n2 = 26 samples); (c) π3: T-cell with the relapse
(n3 = 15 samples); and (d) π4: T-cell without the relapse (n4 = 9 samples).

6.1 Tests of μ1 = μ3 and μ2 = μ4

We first considered testing μ1 = μ3. We set α = 0.05. We calculated T̂n =
||x1n1 − x3n3 ||2 − tr(S1n1)/n1 − tr(S3n3)/n3 = 1267 and K̂ = 2(W1n1/{n1(n1 − 1)}+
W3n3/{n3(n3 − 1)}) + 4tr(S1n1 S3n3)/(n1n3) = 4331 with W1n1 = 2.84 × 105, W3n3 =
2.83 × 105 and tr(S1n1 S3n3) = 2.64 × 105 according to Eq. 4. Hence, we obtained
T̂n/K̂1/2 = 19.3. From the fact that

T̂n

K̂1/2
> zα = 1.64,

we rejected the null hypothesis, μ1 = μ3, with size 0.05 according to Section 4.3.
According to Section 4.2, we calculated 95 % confidence intervals for ||μ||2 = ||μ1 −
μ3||2 as follows:

I = [1138, 1396],
IL = [

max
{
T̂n − zα K̂1/2, 0

}
,∞) = [1159,∞).

Since both I and IL did not include ||μ|| = 0, we concluded μ1 �= μ3 significantly.
Similarly, we considered testing μ2 = μ4. From the fact that

T̂n

K̂1/2
= ||x2n2 − x4n4 ||2 − tr(S2n2)/n2 − tr(S4n4)/n4√

2W2n2/{n2(n2 − 1)} + 2W4n4/{n4(n4 − 1)} + 4tr(S2n2 S4n4)/(n2n4)

= 23.6 > zα,

we rejected the null hypothesis, μ2 = μ4, with size α = 0.05.

6.2 Confidence Region for μ = (μ1 − μ3) − (μ2 − μ4)

We considered constructing a confidence region for μ = (μ1 − μ3) − (μ2 − μ4). We
set α = 0.05. We calculated Tn = (x1n1 − x3n3) − (x2n2 − x4n4) = (0.151,−0.193, ...,
0.115,−0.102)T , K̂ = 2

∑4
i=1 Wini/{ni(ni − 1)} + 4

∑
i< j tr(Sini S jn j)/(nin j) = 20010

and �̂n = ∑4
i=1 tr(Sini)/ni = 563. According to Section 4.1, we obtained a confidence

region as

R = {
μ ∈ Rp | max

{
�̂n − zα/2K̂1/2, 0

} ≤ ||Tn − μ||2 ≤ �̂n + zα/2K̂1/2}

= {
μ ∈ Rp | 285 ≤ ||Tn − μ||2 ≤ 840

}
.

When μ = 0, we had ||Tn − μ||2 = ||Tn||2 = 651, so that μ = 0 ∈ R. Thus we con-
sidered 0 as a likely candidate of μ = (μ1 − μ3) − (μ2 − μ4). In other words, we
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concluded that there is not much significant difference between B-cell and T-cell
in terms of the relapse.

6.3 Given-Bandwidth Confidence Region for μ = μ1 − μ2

We considered constructing a given-bandwidth confidence region for μ = μ1 − μ2
along the line of Section 5.2. We set α = 0.05, δ = 150 and m1 = m2 = 15. By using
pilot samples of sizes m1 = m2 = 15, we calculated W1m1 = 2.96 × 105 and W2m2 =
2.21 × 105 according to Eq. 4. From Eq. 13, we calculated the total sample sizes as

N1 = max

⎧
⎨

⎩
15,

⎡

⎢
⎢
⎢

zα/2
√
2

δ
W1/4

1m1

2∑

j=1

W1/4
jm j

⎤

⎥
⎥
⎥

+ 1

⎫
⎬

⎭
= 21 and N2 = 20.

So, we took the next 6 samples from π1 and the next 5 samples from
π2. Then, we had TN = x1N1 − x2N2 = (0.101,−0.185, ..., 0.012, 0.025)T and �̂N =
tr(S1N1)/N1 + tr(S2N2)/N2 = 259. According to Eq. 9, we constructed a given-
bandwidth confidence region as

RN = {
μ ∈ Rp | max{�̂N − δ, 0} ≤ ||TN − μ||2 ≤ �̂N + δ

}

= {
μ ∈ Rp | 109 ≤ ||TN − μ||2 ≤ 409

}
.

When μ = 0, we had ||TN − μ||2 = ||TN||2 = 243, so that μ = 0 ∈ RN. Thus we
considered 0 as a likely candidate of μ = μ1 − μ2. If one considers a mean structure
such as μ = μ1 − μ2 = c(1, ..., 1)T with an unknown constant c, we can provide an
allowable range of c by c ∈ [−0.126, 0.104] such that μ = c(1, ..., 1)T ∈ RN.
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Appendix

Throughout this section, we assume that b 1 = · · · = bk = 1, without loss of gene-
rality. Throughout, let n∗ = ∑k

i=1 ni. Let y j = (x1 j − μ1)/n1 for j = 1, ..., n1, and

yj+∑i−1
i′=1 ni′

= (xij−μi)/ni for j= 1, ..., ni (i≥ 2). Let Vn∗ j =
∑ j−1

i=1 y
T
i y j for j= 2, ..., n∗.

Note that Eθ {(2∑n∗
j=2 Vn∗ j)

2} = 2
∑k

i=1 tr(�
2
i )(ni − 1)/n3i + 4

∑
i< j tr(�i� j)/(nin j)

(= Kv, say).

Lemma 1 Assume (A-v) and (A-vi). Then, it holds as p → ∞ and ni → ∞,

i = 1, ..., k, that

4
∑n∗

j=2 V
2
n∗ j

Kv

= 1 + op(1).
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Proof Let �i = (γ i1, ..., γ iri), i = 1, ..., k. Let i∗ be an integer such that
i ∈ [1 +∑i∗−1

j=1 n j,
∑i∗

j=1 n j], where
∑0

j=1 n j = 0. Note that tr(�i� j�i′� j) =
tr(�1/2

j �i�
1/2
j �

1/2
j �i′�

1/2
j ) ≤ {tr(�i� j�i� j)tr(�i′� j�i′� j)}1/2. Under (A-v), we

have for i �= i′ �= j that

n2i∗n
2
i′∗n

4
j∗ Eθ

{
(yTi y j)

2(yTi′ y j

)2} = n4j∗ Eθ

(
yTj �i∗ y j y

T
j �i′∗ y j

)

= Eθ

( r j∗∑

s,t,u,v

γ T
j∗s�i∗γ j∗tγ

T
j∗u�i′∗γ j∗vw j∗sjw j∗t jw j∗ujw j∗v j

)

= tr(�i∗� j∗)tr(�i′∗� j∗) + 2tr(�i∗� j∗�i′∗� j∗)

+ O

{ r j∗∑

s=1

γ T
j∗s�i∗γ j∗sγ

T
j∗s�i′∗γ j∗s

}

= tr(�i∗� j∗)tr(�i′∗� j∗) + O
[{tr(�i∗� j∗�i∗� j∗)tr(�i′∗� j∗�i′∗� j∗)}1/2

]
(14)

from the fact that

r j∗∑

s=1

γ T
j∗s�i∗γ j∗sγ

T
j∗s�i′∗γ j∗s

≤
{ r j∗∑

s=1

(
γ T

j∗s�i∗γ j∗s
)2

r j∗∑

s′=1

(
γ T

j∗s′�i′∗γ j∗s′
)2
}1/2

≤
{ r j∗∑

s,t

(γ T
j∗s�i∗γ j∗t)

2
r j∗∑

s′,t′
(γ T

j∗s′�i′∗γ j∗t′)
2

}1/2

= {tr(�i∗� j∗�i∗� j∗)tr(�i′∗� j∗�i′∗� j∗)}1/2. (15)

On the other hand, from Eq. 15, under (A-v), we have for i �= j that

Eθ

{(
yTi y j

)4}
n4i∗n

4
j∗

= Eθ

⎧
⎨

⎩

( ri∗∑

s,u

r j∗∑

t,v

γ T
i∗sγ j∗twi∗siw j∗tjγ

T
i∗uγ j∗vwi∗uiw j∗v j

)2
⎫
⎬

⎭

= tr(�i∗� j∗)
2 + Eθ

⎧
⎪⎨

⎪⎩

⎛

⎝
ri∗∑

s�=u

r j∗∑

t �=v

γ T
i∗sγ j∗twi∗siw j∗t jγ

T
i∗uγ j∗vwi∗uiw j∗v j

⎞

⎠

2
⎫
⎪⎬

⎪⎭

+ O{tr(�i∗� j∗�i∗� j∗)} + O

( r j∗∑

s=1

γ T
j∗s�i∗γ j∗sγ

T
j∗s�i∗γ j∗s

)

+ O

( ri∗∑

s=1

γ T
i∗s� j∗γ i∗sγ

T
i∗s� j∗γ i∗s

)

= 3tr(�i∗� j∗)
2 + O{tr(�i∗� j∗�i∗� j∗)} = O

{
tr(�i∗� j∗)

2} (16)
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from the fact that tr(�i� j�i� j) = tr{(�1/2
i � j�

1/2
i )2} ≤ tr(�i� j)

2. Let B j = � j′/n2j′ for

j∈ [1 +∑ j′−1
i=1 ni,

∑ j′
i=1 ni], where

∑0
i=1 ni = 0. Note that Eθ (V2

n∗ j) = ∑ j−1
i=1 tr(BiB j)

for j = 2, ..., n∗, and 4
∑n∗

j=2
∑ j−1

i=1 tr(BiB j) = Kv . From Eqs. 14–16, we have for
2 ≤ j < j′ that

Eθ

[{
V2

n∗ j − Eθ (V2
n∗ j)

}2] ≤ Eθ

(
V4

n∗ j
) = O

⎧
⎨

⎩

j−1∑

i,i′
tr(BiB j)tr(Bi′ B j)

⎫
⎬

⎭
; (17)

Eθ

[{
V2

n∗ j − Eθ (V2
n∗ j)

}{
V2

n∗ j′ − Eθ (V2
n∗ j′)

}]

= O

⎡

⎣
j−1∑

i,i′
{tr(BiB jBiB j)tr(Bi′ B j′ Bi′ B j′)}1/2

⎤

⎦

+ O

[ j−1∑

i=1

tr(BiB j){tr(BiB j′) + tr(B jB j′)}
]

(18)

from the fact that

Eθ

{(
yTi y j

)2(yTi y j′
)(
yTj y j′

)} ≤ [
Eθ

{(
yTi y j

)4}
Eθ

{(
yTi y j′

)2(yTj y j′
)2}]1/2

= O
[
tr(BiB j){tr(BiB j′)tr(B jB j′)}1/2

]

= O
[
tr(BiB j){tr(BiB j′) + tr(B jB j′)}

]

for i < j < j′. Then, from Eq. 17, we can obtain as ni → ∞, i = 1, ..., k, that
n∗∑

j=2

Eθ

[{
V2

n∗ j − Eθ

(
V2

n∗ j
)}2] ≤

n∗∑

j=2

Eθ

(
V4

n∗ j
) = O

(
K2

v

mini=1,...,k ni

)

= o
(
K2

v

)
. (19)

On the other hand, under (A-vi), we have for all i, i′, j, j′ that

{tr(�i� j�i� j)tr(�i′� j′�i′� j′)}1/2
{
tr
(
�2

i

)
tr
(
�2

j

)
tr
(
�2

i′
)
tr
(
�2

j′
)}1/2 ≤

{
tr
(
�4

i

)
tr
(
�4

j

)
tr
(
�4

i′
)
tr
(
�4

j′
)}1/4

{tr(�2
i )tr(�

2
j)tr(�

2
i′)tr(�

2
j′)}1/2

≤ {λi1λ j1λi′1λ j′1}1/2
{
tr
(
�2

i

)
tr
(
�2

j

)
tr
(
�2

i′
)
tr(�2

j′)
}1/4

→ 0

from the facts that tr(�i� j�i� j) ≤ tr(�2
i �

2
j) ≤ tr(�4

i )
1/2tr(�4

j)
1/2 and tr(�4

i )
1/2 ≤

λi1tr(�2
i )

1/2. Then, it holds under (A-vi) that

{tr(�i� j�i� j)tr(�i′� j′�i′� j′)}1/2/(nin jni′n j′)

K2
v

= O

[
{tr(�i� j�i� j)tr(�i′� j′�i′� j′)}1/2/(nin jni′n j′)

{
tr
(
�2

i

)
/n2i + tr

(
�2

j

)
/n2j

}{
tr
(
�2

i′
)
/n2i′ + tr

(
�2

j′
)
/n2j′

}

]

= O

[
{tr(�i� j�i� j)tr(�i′� j′�i′� j′)}1/2
{
tr
(
�2

i

)
tr
(
�2

j

)
tr
(
�2

i′
)
tr
(
�2

j′
)}1/2

]

→ 0.
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Hence, from Eq. 18, under (A-vi), we can claim that

n∗∑

2≤ j< j′
Eθ

[{
V2

n∗ j − Eθ

(
V2

n∗ j
)}{

V2
n∗ j′ − Eθ

(
V2

n∗ j′
)}] = o

(
K2

v

)
. (20)

Thus by combining Eqs. 19 and 20, we have as p → ∞ and ni → ∞, i = 1, ..., k, that

Varθ

⎛

⎝
n∗∑

j=2

V2
n∗ j

⎞

⎠ = o
(
K2

v

)

under (A-v) and (A-vi). Thus by using Chebyshev’s inequality, from the fact that
4
∑n∗

j=2 Eθ (V2
n∗ j) = Kv , it holds that 4

∑n∗
j=2 V

2
n∗ j/Kv = 1 + op(1). Thus it concludes

the result. ��

Lemma 2 Let I(·) be the indicator function. For Lindeberg’s condition, under (A-v),
it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

n∗∑

j=2

Eθ

{
V2

n∗ j

Kv

I

(
V2

n∗ j

Kv

> τ

)}

→ 0

for any τ > 0.

Proof By using Chebyshev’s inequality and Schwarz’s inequality, we have that

n∗∑

j=2

Eθ

{
V2

n∗ j

Kv

I

(
V2

n∗ j

Kv

> τ

)}

≤
n∗∑

j=2

[
Eθ

(
V4

n∗ j

K2
v

)

Eθ

{
I
(V2

n∗ j

Kv

> τ
)}]1/2

≤ τ−1K−2
v

n∗∑

j=2

Eθ

(
V4

n∗ j
)
. (21)

Then, by combining Eq. 21 with Eq. 19, we can conclude the result. ��

Lemma 3 Assume (A-v). Then, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

K̂
K

= 1 + op(1).

Proof From Eqs. 14 and 16, we have for i �= j that

Eθ

[{(
(xis − μi)

T(x jt − μ j)
)2 − tr(�i� j)

}2] = O{tr(�i� j)
2};

Eθ

[{(xis − μi)
T(x jt − μ j)}2{(xis′ − μi)

T(x jt − μ j)}2 − tr(�i� j)
2]

= O{tr(�i� j�i� j)} (s �= s′) (22)

under (A-v). We write that

tr(Sini S jn j) =
ni∑

s=1

n j∑

t=1

[{xis − μi − (xini − μi)}T{x jt − μ j − (x jn j − μ j)}
]2

(ni − 1)(n j − 1)
.
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Then, from Eq. 22, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

Varθ {tr(Sini S jn j)} = o{tr(�i� j)
2} (23)

for i < j. By combining Eq. 5 with Eq. 23, we can claim under (A-v) that
K̂ = K{1 + op(1)} as p → ∞ and ni → ∞, i = 1, ..., k. Thus it concludes the result.

��

Proofs of Theorem 4 and Corollary 4 Define Sn∗t = ∑t
j=2 Vn∗ j for t = 2, ..., n∗. Let

Fn∗i = σ(y1, y2, ..., yi) be the σ algebra by {y1, y2, ..., yi} for i ≥ 2. Note that Sn∗t is of
zero mean and square integrable. Note that Eθ (Sn∗t|Fi) = ∑i

j=2 Vn∗ j = Sn∗i for t > i.
Thus {Sn∗i,Fn∗i}n∗

i=2 is a sequence of zero mean and a square integrable martingale.
We consider applying the martingale central limit theorem given by McLeish (1974).
Refer to Section 2.6 in Ghosh et al. (1997) for the details of the martingale central
limit theorem. We have as ni → ∞, i = 1, ..., k, that

||Tn − μ||2 − �̂n

= 2
k∑

i=1

∑

s<t

(xis − μ)T(xit − μ)

ni(ni − 1)
+ 2

∑

i< j

ni∑

s=1

n j∑

t=1

(xis − μ)T(x jt − μ)

nin j

= 2
n∗∑

j=2

Vn∗ j + 2
k∑

i=1

∑

s<t

(xis − μ)T(xit − μ)

n2i (ni − 1)
= 2

n∗∑

j=2

Vn∗ j + op(K1/2). (24)

Note that K/Kv → 1 as ni → ∞, i = 1, ..., k. Then, by using the martingale central
limit theorem, we obtain that

||Tn − μ||2 − �̂n

K
= 2

∑n∗
j=2 Vn∗ j

Kv

+ op(1) ⇒ N(0, 1) (25)

by combining Lemmas 1 and 2 with Eq. 24. Thus it concludes the result of Theorem
4. On the other hand, by using Lemma 3, we obtain from Eq. 25 that (||Tn − μ||2 −
�̂n)/K̂ ⇒ N(0, 1). It concludes the result of Corollary 4. ��

Proofs of Theorem 5 and Corollary 5 Note that

T̂n − ||μ||2 = ||Tn − μ||2 − �̂n + 2(Tn − μ)Tμ

= ||Tn − μ||2 − �̂n + op(K1/2)

and K∗/K → 1 under (A-vii). Thus in a way similar to the proofs of Theorem 4 and
Corollary 4, we can conclude the results. ��

Proof of Corollary 2 Note that
∑k

i=1 λi1/(niK1/2) = O{∑k
i=1 λi1/tr(�2

i )
1/2} = o(1)

under (A-vi). Then, it holds under (A-vi) that

k∑

i=1

μT�iμ

niK
≤ ||μ||2

k∑

i=1

λi1

niK
= ||μ||2

K1/2

k∑

i=1

λi1

niK1/2 = ||μ||2
K1/2 × o(1),
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so that we obtain that K/||μ||4 = o(1) under (A-vi) and (A-viii). Then, it
holds that

∑k
i=1 μT�iμ/(ni||μ||4) ≤ ∑k

i=1 λi1/(ni||μ||2) ≤ ∑k
i=1 tr(�

2
i )

1/2 /(ni||μ||2) =
O(K1/2/||μ||2) = o(1). Thus we have that Varθ (T̂n)/||μ||4 = K∗/||μ||4 = o(1) under
(A-vi) and (A-viii). It concludes the result. ��

Proof of Corollary 3 By using Schwarz’s inequality, it holds under (A-v’) that
Eθ [{(xil − μi)

T� j(xil − μi) − tr(�i� j)}{(xil − μi)
T� j′(xil − μi) − tr(�i� j′)}] ≤

[Varθ {(xil − μi)
T� j(xil − μi)}Varθ {(xil − μi)

T� j′(xil − μi)}]1/2 = O[{tr(�i� j�i� j) ×
tr(�i� j′�i� j′)}1/2] for i, j, j′ = 1, ..., k. Then, we have under (A-v’) that

n4j∗ Eθ {yTj �i∗ y j y
T
j �i′∗ y j} − tr(�i∗� j∗)tr(�i′∗� j∗)

= Eθ [{n2j∗ yTj �i∗ y j − tr(�i∗� j∗)}{n2j∗ yTj �i′∗ y j − tr(�i′∗� j∗)}]
= O[{tr(�i∗� j∗�i∗� j∗)tr(�i′∗� j∗�i′∗� j∗)}1/2],

so that Eq. 14 holds. On the other hand, under (A-v’), it holds for i �= j
that n4i∗n

4
j∗ Eθ {(yTi y j)

4} = Varθ {n2i∗n2j∗(yTi y j)
2} + tr(�i∗� j∗)

2 = O{tr(�i∗� j∗)
2}, so that

Eq. 16 holds. Thus we claim Lemmas 1 and 2 after replacing (A-v) with (A-v’). We
can conclude the result in a way similar to the proofs of Theorems 4 and 5. ��

Proof of Theorem 7 We have from Eq. 10 that K1/2 ≤ δ/zα/2. Then, from Theorem
4, we claim as p → ∞ that

Pθ (μ ∈ Rn) = Pθ (max{−δ + �̂n, 0} ≤ ||Tn − μ||2 ≤ δ + �̂n)

= Pθ

( −δ

K1/2 ≤ ||Tn − μ||2 − �̂n

K1/2 ≤ δ

K1/2

)

= Pθ

(∣
∣
∣
∣
||Tn − μ||2 − �̂n

K1/2

∣
∣
∣
∣ ≤ δ

K1/2

)

≥ Pθ

(∣
∣
∣
∣
||Tn − μ||2 − �̂n

K1/2

∣
∣
∣
∣ ≤ zα/2

)

= Pθ (|N(0, 1)| < zα/2) + o(1) = 1 − α + o(1) (26)

under (A-v) and (A-vi). Thus the proof is completed. ��

Proof of Theorem 8 FromEqs. 5 and 12, it holds as p → ∞ that |Ni − Ci| = op(C
1/2
i )

under (A-v) and (A-vi). Then, we write that |Ni − Ci| = Op(ωC
1/2
i ), where ω (> 0)

is a variable such that ω → 0 as p → ∞. Let CiL = Ci − (ωCi)
1/2�, i = 1, ..., k. We

claim as p → ∞ thatmax{mi,CiL} ≤ Ni < Ci + (ωCi)
1/2 w.p.1. Then, in a way similar

to the proofs of Theorems 2.4 and 2.5 in Aoshima and Yata (2011a), we claim that

||TN − μ||2 − �̂N = ||TCL − μ||2 − �̂CL + op(δ),

where CL = (C1L, ...,CkL). From the fact that CiL/Ci → 1 as p → ∞, similarly to
Eq. 26, we can obtain under (A-v) and (A-vi) that

Pθ (μ ∈ RN) = Pθ

(∣
∣||TN − μ||2 − �̂N

∣
∣ ≤ δ

)

= Pθ

(∣
∣||TCL − μ||2 − �̂CL

∣
∣ ≤ δ

)+ o(1) ≥ 1 − α + o(1).

It concludes the result. ��

Methodol Comput Appl Probab (2015) 17: –4 419 39438



References

Aoshima M, Yata K (2011a) Two-stage procedures for high-dimensional data. Seq Anal 30:356–399
(Editor’s special invited paper)

Aoshima M, Yata K (2011b) Authors’ response. Seq Anal 30:432–440
Aoshima M, Yata K (2011c) Effective methodologies for statistical inference on microarray studies.

In: Spiess PE (ed) Prostate cancer - from bench to bedside. InTech, pp 13–32
Bai Z, Sarandasa H (1996) Effect of high dimension: by an example of a two sample problem. Stat

Sin 6:311–329
Chen SX, Qin YL (2010) A two-sample test for high-dimensional data with applications to gene-set

testing. Ann Stat 38:808–835
Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R (2004) Gene expres-

sion profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with
different response to therapy and survival. Blood 103:2771–2778

Ghosh M, Mukhopadhyay N, Sen PK (1997) Sequential estimation. Wiley, New York
McLeish DL (1974) Dependent central limit theorems and invariance principles. Ann Probab 2:620–

628
Pollard KS, Dudoit S, van der Laan MJ (2005) Multiple testing procedures: R multitest package

and applications to genomics. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S
(eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer,
New York, pp 249–271

Srivastava MS (2005) Some tests concerning the covariance matrix in high dimensional data. J Jpn
Stat Soc 35:251–272

Yata K, Aoshima M (2010) Effective PCA for high-dimension, low-sample-size data with singular
value decomposition of cross data matrix. J Multivar Anal 101:2060–2077

Yata K, Aoshima M (2012) Inference on high-dimensional mean vectors with fewer observations
than the dimension. Methodol Comput Appl Probab 14:459–476

Yata K, Aoshima M (2013) Correlation tests for high-dimensional data using extended cross-data-
matrix methodology. J Multivar Anal 117:313–331

Methodol Comput Appl Probab (2015) 17: –4 419 39 439

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

	Asymptotic Normality for Inference on Multisample, High-Dimensional Mean Vectors Under Mild Conditions
	Abstract
	Introduction
	Asymptotic normality under mild conditions
	Estimation of tr(2)
	Applications
	Confidence Regions for bold0mu mumu Raw
	Confidence Intervals for ||bold0mu mumu Raw||2
	Test of bold0mu mumu Raw=bold0mu mumu 00Raw0000 Against bold0mu mumu Raw=bold0mu mumu 00Raw0000

	Sample Size Determination
	Given-Bandwidth Confidence Region for bold0mu mumu Raw
	Two-Stage Procedure
	Simulation

	Example
	Tests of bold0mu mumu Raw1=bold0mu mumu Raw3 and bold0mu mumu Raw2=bold0mu mumu Raw4
	Confidence Region for bold0mu mumu Raw=(bold0mu mumu Raw1-bold0mu mumu Raw3)-(bold0mu mumu Raw2-bold0mu mumu Raw4)
	Given-Bandwidth Confidence Region for bold0mu mumu Raw=bold0mu mumu Raw1-bold0mu mumu Raw2

	Appendix
	References




