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Abstract A noncommutative algebra corresponding to the classical catenoid is intro-
duced together with a differential calculus of derivations. We prove that there exists a
unique metric and torsion-free connection that is compatible with the complex struc-
ture, and the curvature is explicitly calculated. A noncommutative analogue of the fact
that the catenoid is a minimal surface is studied by constructing a Laplace operator
from the connection and showing that the embedding coordinates are harmonic. Fur-
thermore, an integral is defined and the total curvature is computed. Finally, classes
of left and right modules are introduced together with constant curvature connections,
and bimodule compatibility conditions are discussed in detail.

Keywords Noncommutative catenoid · Noncommutative Riemannian geometry ·
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1 Introduction

In recent years, there has been great progress in understanding Riemannian aspects
of noncommutative geometry and its relation to topology. For instance, the scalar
curvature defined via the heat kernel has been computed for noncommutative tori and
a noncommutative version of the Gauss–Bonnet theorem has been established (see e.g
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[9,11,15,16]). In parallel, one has investigated the role of the Levi–Civita connection
and the curvature tensor, in order to understand to what extent classical geometrical
concepts remain relevant in noncommutative geometry (see e.g [1,4–6,8,13,14,19]).
In contrast to the approach via the heat kernel, much of this work has not been carried
out in the setting ofC∗-algebras and spectral triples, but rather taking a less analytical,
and more algebraical, point of view, constructing curvature through a “bottom-up”
approach starting from a hermitian form on a (projective) module. In the future, it will
be interesting to see how these different approaches may be reconciled. Even though a
lot of progress has been made it is not completely clear what kind of assumptions that
are needed in order to find a unique Levi–Civita connection andwhat kind of properties
(e.g. symmetries) that one should expect. Therefore, it is useful to consider particular
examples to understand what one might (might not) expect in the general case.

Another motivation comes from the theory of minimal surfaces. Whereas the clas-
sical theory is by know well developed (although many interesting questions are
still open), its noncommutative analogue is in an early stage. Several authors have
approached noncommutative minimal submanifolds from different perspectives (see
e.g [2,12,18]) but a general framework is still missing. The catenoid is one of the most
well-known minimal surfaces in Euclidean space, and it is interesting to understand
how its properties manifest themselves in noncommutative geometry. Note that related
quantum catenoids have been considered, although not primarily from a geometrical
point of view [2,3].

In this note we shall construct a noncommutative algebra ̂Ch̄ that is closely related
to the classical catenoid, which is a (noncompact) minimal surface embedded in R

3.
The algebra ̂Ch̄ is not a C∗-algebra in any natural way, and typical representations
are given by unbounded operators. However, the algebraic structure is quite appealing
and in many ways similar to the noncommutative torus, a fact we shall employ to find
several natural constructions.

The paper is organized as follows: In Sect. 2 the algebra ̂Ch̄ , together with a set
of derivations, is introduced and a few basic properties are established. Section 3
introduces a natural module of vector fields and proves that given a metric there exists
a unique torsion-free connection which is compatible with the metric and the complex
structure. Finally, Sect. 4 introduces an integral and computes the total curvature of the
metric, and Sect. 5 studies bimodules together with constant curvature connections.

2 The catenoid algebra

In this section we start from a parametrization of the classical catenoid and use the
Weyl algebra in order to find a natural definition of a noncommutative catenoid. A
parametrization of the catenoid embedded in R3 is given by

�x(u, v) = (

x1(u, v), x2(u, v), x3(u, v)
) = (

cosh(u) cos(v), cosh(u) sin(v), u
)

for−∞ < u < ∞ and 0 ≤ v ≤ 2π . The algebra generated by the functions x1, x2, x3

can in principle also be generated by u, e±u and e±iv . Now, starting from the Weyl
algebra, consisting of two hermitian generators U and V satisfying
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A noncommutative catenoid 1603

[U, V ] = i h̄1,

we shall construct an algebra generated by U , R and W , corresponding (formally)
to U , eU and eiV respectively. Guided by the Baker–Campbell–Hausdorff formula,
giving e.g.

RW = eUeiV = eU+iV+ 1
2 [U,iV ] = eiV+U+ 1

2 [iV,U ]−[iV,U ] = e−h̄eiV eU = e−h̄W R,

as well as the formal expansions of eU and eiV as power series, one introduces the
following relations

W̃W = 1 WW̃ = 1 (2.1)

RR̃ = 1 R̃R = 1 (2.2)

RU = UR R̃U = U R̃ (2.3)

WR = eh̄ RW W R̃ = e−h̄ R̃W (2.4)

W̃ R = e−h̄ RW̃ W̃ R̃ = eh̄ R̃W̃ (2.5)

WU = UW + h̄W W̃U = UW̃ − h̄W̃ (2.6)

where R̃ and W̃ have been introduced, representing the inverses of R and W .

Definition 2.1 Let C〈U, R, R̃,W, W̃ 〉 be the free associative unital algebra on the
letters U, R, R̃,W, W̃ and let Ih̄ be the two-sided ideal generated by relations (2.1)–
(2.6). We define Ch̄ as the quotient algebra

Ch̄ = C〈U, R, R̃,W, W̃ 〉/Ih̄ .

Next, we note that the relations (2.1)–(2.6) allows one to always order any element
lexicographically (with respect to the alphabet U, R, R̃,W, W̃ , up to terms of lower
total order) and, moreover, we prove that ordered monomials are linearly independent.

Proposition 2.2 A basis for Ch̄ is given by

eα jk = UαR jWk

for α ∈ Z≥0 and j, k ∈ Z, where R− j = R̃ j and W−k = W̃ k .

Proof In the proof, we shall use the terminology of the Diamond Lemma [7] in order
to show that {eα jk} provides a basis for Ch̄ . To this endwe start by formulating relations
(2.1)–(2.6) in the form of a reduction system:

σ1 = (W̃W,1) σ2 = (WW̃ ,1) σ3 = (R̃R,1)

σ4 = (RR̃,1) σ5 = (RU,UR) σ6 = (R̃U,U R̃)

σ7 = (WR, eh̄ RW ) σ8 = (W R̃, e−h̄ R̃W ) σ9 = (W̃ R, e−h̄ RW̃ )

σ10 = (W̃ R̃, eh̄ R̃W̃ ) σ11 = (WU,UW + h̄W ) σ12 = (W̃U,UW̃ − h̄W̃ ),
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for which we will use the notation σi = (Wi , fi ). Let us set up a semi-group partial
ordering on monomials inU, R, R̃,W, W̃ , which is compatible with the above reduc-
tion system. That is, a semi-group partial ordering such that if σi = (Wi , fi ) then Wi

is strictly greater than every monomial in fi . Let p = X1 · · · Xn and q = Y 1 · · · Ym

be two monomials with Xi ,Y i ∈ {U, R, R̃,W, W̃ }. We say that p < q if n < m
or if n = m and p precedes q in lexicographic order with respect to the alphabet
U, R, R̃,W, W̃ . It is easy to see that this does indeed define a semi-group partial
ordering compatible with the above reduction system. Moreover, it is straightforward
to check that the partial ordering satisfies the descending chain condition. Theorem
1.2 in [7] tells us that if all ambiguities in the above reduction system are resolvable,
then a basis of Ch̄ is given by the irreducible monomials. That is, monomials which
can not be reduced further by using the reduction system, replacing Wi by fi for
i = 1, . . . , 12. How do the irreducible monomials look like? It is clear that the mono-
mialUαR jWk is irreducible since it does not contain any ofW1, . . . ,W12. Moreover,
there are no other irreducible polynomials since one may always use the reduction
system to put monomials in lexicographic ordering, as well as replacing RR̃, R̃R,
WW̃ and W̃W by 1. Thus, it remains to prove that all ambiguities are resolvable.
There are 20 ambiguities to be resolved:

(W̃W )W̃ = W̃ (WW̃ ), (W̃W )R = W̃ (WR), (W̃W )R̃ = W̃ (W R̃),

(W̃W )U = W̃ (WU ), (WW̃ )R = W (W̃ R), (WW̃ )R̃ = W (W̃ R̃),

(WW̃ )W = W (W̃W ), (WW̃ )U = W (W̃U ), (R̃R)R̃ = R̃(RR̃),

(R̃R)U = R̃(RU ), (RR̃)U = R(R̃U ), (RR̃)R = R(R̃R),

(WR)R̃ = W (RR̃), (WR)U = W (RU ), (W R̃)R = W (R̃R),

(W R̃)U = W (R̃U ), (W̃ R)R̃ = W̃ (RR̃), (W̃ RU ) = W̃ (RU ),

(W̃ R̃)R = W̃ (R̃R), (W̃ R̃)U = W̃ (R̃U ),

where the parenthesis mark which part of the monomial that is to be replaced by using
the reduction system. It is straightforward to check that they are all resolvable, but let
illustrate the procedure by explicitly checking (W̃W )R = W̃ (WR):

(1)R − W̃ (eh̄ RW ) = R − eh̄ W̃ RW = R − eh̄e−h̄ RW̃W = R − R = 0.

As previously stated, after showing that all ambiguities are resolvable, Theorem 1.2 in.
[7] implies that the monomials UαR jWk provide a basis for Ch̄ . 
�
We can make Ch̄ into a ∗-algebra by setting

U∗ = U R∗ = R R̃∗ = R̃

W ∗ = W̃ W̃ ∗ = W

andnoting that the set of relations (2.1)–(2.6) is invariantwith respect to this involution.
From now on we will use the more convenient notation R−1 = R̃ and W−1 = W̃ .
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A noncommutative catenoid 1605

The next results gives a differential calculus on Ch̄ , in direct analogy with the classical
derivatives.

Proposition 2.3 There exist hermitian derivations ∂u, ∂v ∈ Der(Ch̄) such that

∂uU = 1 ∂u R = R ∂uW = 0

∂vU = 0 ∂vR = 0 ∂vW = iW

and [∂u, ∂v] = 0.

Proof Since derivations are linear and satisfies the product rule, the relations in Propo-
sition 2.3 completely determine the action of ∂u, ∂v on Ch̄ . However, in order to be
well defined, one needs to check that the derivations respect the relations in Ch̄ . Thus,
one need to check that they are consistent with (2.1)–(2.6). For instance,

∂u(WR − eh̄ RW ) = ∂u(W )R + W∂u(R) − eh̄∂u(R)W − eh̄ R∂u(W )

= WR − eh̄ RW = 0.

In the same way, one may check that ∂u and ∂v respect all the relations in the algebra.
Moreover, one readily checks that the derivations are hermitian; for instance,

∂vW
∗ = ∂vW

−1 = −W−1∂v(W )W−1 = −iW−1 = −iW ∗ = (iW )∗ = (∂vW )∗,

and analogous computations yield similar results for the remaining relations. 
�
Let g denote the (abelian) complex Lie algebra generated by ∂u and ∂v , and introduce

∂ = 1
2 (∂u − i∂v)

∂̄ = 1
2 (∂u + i∂v).

For easy reference, let us write out

∂R = 1
2 R ∂R−1 = − 1

2 R
−1 ∂U = 1

21

∂̄R = 1
2 R ∂̄R−1 = − 1

2 R
−1 ∂̄U = 1

21

∂W = 1
2W ∂W−1 = − 1

2W
−1

∂̄W = − 1
2W ∂̄W−1 = 1

2W
−1.

In the classical setting, functions composed from u, e±u, e±iv make up a small subset
of the smooth functions on the catenoid; for instance, even though 1 + u2 is strictly
positive for all u ∈ R, there is no element corresponding to 1/(1+ u2) in the algebra.
Thus, one would like to extend Ch̄ to include elements that correspond to more general
functions. In this paper, our main concern is not to find the most general algebra for
this purpose, but rather to take an opposite approach, where a minimal extension of
Ch̄ is considered in order to develop the framework (although, it would be interesting
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to see how the results of [20] apply to the current situation). We will take an approach
built on localization, using the Ore condition. Therefore, one starts by understanding
the set of zero divisors.

Proposition 2.4 The algebra Ch̄ has no zero-divisors.
Proof For every a ∈ Ch̄ one may write

a =
∑

α, j,k

aα jkU
αR jWk

with aα jk ∈ C, and we define the following integers

N (a) =max{α : ∃ j, k such that aα jk 
= 0}
J (a) =max{ j : ∃k such that aN (a) jk 
= 0}
K (a) =max{k : aN (a)J (a)k 
= 0}.

Now, assume that ab = 0 with a 
= 0 and b 
= 0. From the relations (2.1)–(2.6) it
follows that in the product ab, there is exactly one term proportional to

UN (a)+N (b)RJ (a)+J (b)WK (a)+K (b),

and the coefficient is given by aN (a)J (a)K (a)bN (b)J (b)K (b). Now, since {UαR jWk} is
a basis for Ch̄ it follows that either aN (a)J (a)K (a) = 0 or bN (b)J (b)K (b) = 0. However,
this contradicts the assumption. Hence, if ab = 0 then at least one of a and b has to
be zero. 
�
Next, we establish the Ore condition for Ch̄ , which gives a condition for a non-trivial
localization to exist.

Lemma 2.5 For every a, b ∈ Ch̄ , there exists p, q ∈ Ch̄ such that

ap = bq,

and at least one of p and q is non-zero.

Proof The proof is a simple argument counting the number of equations and the
number of variables in a set of linear equations (compare with the proof of a similar
statement in the case of the Weyl algebra [17]). Let us assume that we are given
a, b ∈ Ch̄ , and define N to be the an integer such that

aα jk = bα jk = 0

whenever at least one of α, | j |, |k| is greater than N . Now, we have to find

p =
∑

α jk

pα jkU
αR jWk and q =

∑

α jk

qα jkU
αR jWk
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A noncommutative catenoid 1607

such that ap − bq = 0. Let us choose p and q such that pα jk = qα jk = 0 whenever
α, | j | or |k| is greater than M . This implies that p and q together has 2M(2M + 1)2

coefficients to be determined. On the other hand, the equation ap − bq = 0 gives rise
to at most (N +M)(2N +2M +1)2 linear equations in the coefficients pα jk and qα jk ,
by looking at each basis element separately. Choosing M = 4N gives

#{variables} − #{equations} = 12N 3 + 56N 2 + 15N + 1,

which is ≥ 1 for all N ≥ 0. Since any homogeneous linear system, where the number
of variables is strictly greater than the number of equations, has a non-zero solution,
we conclude that there exists a solution where at least one of p and q is non-zero. 
�
Together with Proposition 2.4, Lemma 2.5 implies that there exists a field of fractions
Fh̄ for Ch̄ and, furthermore, that the inclusion map λ : Ch̄ → Fh̄ is injective (see e.g.
[10]). The algebra Fh̄ is not particularly well suited as an analogue of the algebra of
functions on the catenoid, since it contains many functions that are not well-defined at
every point of the catenoid. Therefore, we will construct an extension of Ch̄ including
inverses for a large class of polynomials.

Let Zh̄(U, R) denote the commutative subalgebra of Ch̄ generated by 1,U , R, R−1,
and define a homomorphism (of commutative algebras) φ : Zh̄(U, R) → C∞(R) via

φ(1) = 1 φ(U ) = u φ(R) = eu φ(R−1) = e−u .

Define the following subset of Zh̄(U, R):

Z+
h̄ (U, R) = {p ∈ Zh̄(U, R) : |φ(p)(u)| > 0 for all u ∈ R}.

Lemma 2.6 Z+
h̄ (U, R) is a multiplicative set.

Proof Let p, q ∈ Z+
h̄ , which implies that |φ(p)| > 0 and |φ(q)| > 0. Since φ

is a homomorphism, it follows that |φ(pq)| = |φ(p)||φ(q)| > 0. Hence pq ∈
Z+
h̄ (U, R). 
�

In the followingwewould like to construct an algebra where all elements of Z+
h̄ (U, R)

are invertible. To this end, let us recall a few basic results concerning noncommutative
localization. Let R, R′ be rings, and let S be a subset of R. A homomorphism f :
R → R′ is called S-inverting if f (s) is invertible for all s ∈ S. A general construction
gives the following result:

Proposition 2.7 ([10], Proposition 1.3.1) Given a ring R and a subset S ⊆ R there
exists a ring RS and an S-inverting homomorphism ι : R → RS such that for
every S-inverting homomorphism f : R → R′ there exists a unique homomorphism
g : RS → R′ such that f = g ◦ ι.

However, the result does not provide any information on the kernel of ι, which might
be all of R. Thus, to guarantee a non-trivial localization one has to go one step further.
First, let us consider the case when R = Ch̄ and S = Ch̄\{0}. Since Ch̄ satisfies the Ore
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condition and has no zero-divisors, one may conclude (cp. [10, Theorem 1.3.2]) that
the inclusion map ι1 : Ch̄ → Fh̄ = (Ch̄)S is injective. Next, we let S = Z+

h̄ (U, R) and
consider ̂Ch̄ = (Ch̄)Z+

h̄ (U,R) together with ι : Ch̄ → ̂Ch̄ . Now, consider the universal
property of ̂Ch̄ applied to R′ = Fh̄ and ι1 : Ch̄ → Fh̄ . Clearly, ι1 is a Z+

h̄ (U, R)-
inverting map from Ch̄ to Fh̄ . Hence, there exists a unique homomorphism g : ̂Ch̄ →
Fh̄ such that ι1 = g ◦ ι. Since ι1 is injective it follows that ι is injective. In particular,
this implies that the localization ̂Ch̄ is non-trivial. Let us summarize the discussion in
the following result.

Proposition 2.8 There exists an algebra ̂Ch̄ together with an injective Z+
h̄ (U, R)-

inverting homomorphism ι : Ch̄ → ̂Ch̄ such that for every ring R′ and every Z+
h̄ (U, R)-

inverting homomorphism f : Ch̄ → R′, there exists a unique homomorphism g : ̂Ch̄ →
R′ such that f = g ◦ ι.

For the algebra Ch̄ , a basis was given by monomials of the formUαR jWk . For ̂Ch̄ one
may obtain a corresponding normal form, using the following result.

Lemma 2.9 For every p ∈ Z+
h̄ (U, R) there exists q ∈ Z+

h̄ (U, R) such that

Wp = qW

where q(U, R) = p(U + h̄1, eh̄ R).

Proof Assume that p ∈ Z+
h̄ (U, R) and write

p =
∑

pα jU
αR j

which gives

Wp =
∑

pα jWUαR j =
∑

pα j (U + h̄1)αWR j

=
∑

pα j (U + h̄1)α(eh̄ R) jW = p(U + h̄1, eh R)W.

Now, let us argue that p(U + h̄1, eh̄ R) ∈ Z+
h̄ (U, R). By construction, φ(p)(u) =

p(u, eu) which implies that

φ
(

p(U + h̄1, eh̄ R)
)

(u) = p(u + h̄, eh̄eu) = p(u + h̄, eu+h̄) = φ(p)(u + h̄).

Since |φ(p)(u)| > 0 for all u ∈ R, it follows that |φ(p)(u + h̄)| > 0 for all u ∈ R,
which shows that p(U + h̄1, eh̄ R) ∈ Z+

h̄ (U, R). 
�
From Lemma 2.9 one can derive

Wp−1 = p(U + h̄1, eh̄ R)−1W

W−1 p−1 = p(U − h̄1, e−h̄ R)−1W−1
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A noncommutative catenoid 1609

for p ∈ Z+
h̄ (U, R). Thus, using these relations, an element a ∈ ̂Ch̄ can always be

written as

a =
∑

k∈Z
akW

k

with ak ∈ F+
h̄ (U, R), the commutative subalgebra of ̂Ch̄ generated by Zh̄(U, R) and

inverses of elements in Z+
h̄ (U, R).

3 Curvature

In this section we introduce a module of vector fields over ̂Ch̄ , together with a compati-
ble connection. Given a metric h, it turns out that there exists a unique torsion-free and
almost complex connection that is compatible with h. Moreover, the corresponding
curvature tensor is computed as well as the Ricci and scalar curvature.

For the classical catenoid, parametrized by

�x(u, v) = (

cosh(u) cos(v), cosh(u) sin(v), u
)

the space of (complex) vector fields can be spanned by φ and φ̄, where

φ = 2∂ �x = (sinh(z),−i cosh(z), 1)

with z = u + iv. Correspondingly, let {e1, e2, e3} denote the canonical basis of the
free (right) module (̂Ch̄)3, and set

	 = e1	
1 + e2	

2 + e3	
3

	̄ = e1(	
1)∗ + e2(	

2)∗ + e3(	
3)∗,

where

	1 = 1
2e

1
2 h̄(RW − R−1W−1)

	2 = − i
2e

1
2 h̄(RW + R−1W−1)

	3 = 1,

and let X (̂Ch̄) denote the module generated by 	 and 	̄. Note that

	1 ∼ 1

2
(eueiv − e−ue−iv) = sinh(z)

	2 ∼ − i

2
(eueiv + e−ue−iv) = −i cosh(z)

when considering the formal correspondence R ∼ eu and W ∼ eiv as h̄ → 0.
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Proposition 3.1 {	, 	̄} is a basis forX (̂Ch̄), which shows thatX (̂Ch̄) is a free (right)
̂Ch̄ -module of rank 2.

Proof Let a, b ∈ ̂Ch̄ and assume that 	a + 	̄b = 0, which is equivalent to

	1a + (	1)∗b = 0

	2a + (	2)∗b = 0

	3a + (	3)∗b = 0

By multiplying these equations from the left by 	1,	2,	3 respectively, and taking
their sum, one obtains

(

	1(	1)∗ + 	2(	2)∗ + 	3(	3)∗
)

b = 0 ⇒ b = 0

since

(

	1)2 + (

	2)2 + (

	3)2 = 1

4
eh̄

(

(RW − R−1W−1)2 − (RW + R−1W−1)2
)

+ 1

= 1

4
eh̄

(

RW RW − RW R−1W−1 − R−1W−1RW + R−1W−1)

− 1

4
eh̄

(

RW RW + R−1W−1R−1W−1 + RW R−1W−1 + R−1W−1RW
) + 1

= − 1

2
eh̄

(

RW R−1W−1 + R−1W−1RW
) + 1 = − 1

2
eh̄

(

e−h̄1 + e−h̄1
) + 1 = 0.

Analogously, one may multiply the equations from the left with (	1)∗, (	2)∗, (	3)∗
respectively, and find that their sum implies that a = 0. Since, by definition, 	 and 	̄

generate X (̂Ch̄), this shows that {	, 	̄} is indeed a basis for X (̂Ch̄). 
�
Let h be a hermitian form (or metric) on X (̂Ch̄), i.e.

h(X,Y + Z) = h(X,Y ) + h(X, Z)

h(X,Y )∗ = h(Y, X)

h(X,Ya) = h(X,Y )a

for all X,Y, Z ∈ X (̂Ch̄) and a ∈ ̂Ch̄ . We will assume a diagonal metric on X (̂Ch̄)
given by

h(	,	) = S, h(	̄, 	̄) = T, h(	, 	̄) = 0

with S and T being invertible, implying that themetric is non-degenerate. For instance,
one may consider the induced metric from the free module by letting h : (̂Ch̄)3 ×
(̂Ch̄)3 → ̂Ch̄ denote the bilinear form defined by
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A noncommutative catenoid 1611

h(X,Y ) =
3

∑

i=1

(Xi )∗Y i

for X = ei Xi and Y = eiY i , for which one computes

S = h(	,	) = 1 + 1
2e

−h̄(R2 + R−2)

T = h(	̄, 	̄) = 1 + 1
2e

h̄(R2 + R−2)

h(	, 	̄) = h(	̄,	) = 0.

Note that S, T ∈ Z+
h̄ (U, R) (implying that they are invertible). We emphasize that in

what follows, S and T are taken to be arbitrary invertible elements of ̂Ch̄ .
A connection on X (̂Ch̄) is a map ∇ : g × X (̂Ch̄) → X (̂Ch̄) such that

∇d(λX + Y ) = λ∇d X + ∇dY

∇λd+d ′ X = λ∇d X + ∇d ′ X

∇d(Xa) = (∇d X
)

a + Xd(a),

for λ ∈ C, X,Y ∈ X (̂Ch̄), d, d ′ ∈ g, and a ∈ ̂Ch̄ . A connection is called hermitian if

dh(X,Y ) = h(∇d∗ X,Y ) + h(X,∇dY ),

for d ∈ g and X,Y ∈ X (̂Ch̄). Moreover, we say that ∇ is torsion-free if

∇∂	̄ = ∇∂̄	.

Let us introduce an almost complex structure J : X (̂Ch̄) → X (̂Ch̄) by setting

J	 = i	

J 	̄ = −i	̄

and extending J to X (̂Ch̄) as a (right) ̂Ch̄-module homomorphism. A connection is
called almost complex if

(∇d J )(X) ≡ ∇d J (X) − J∇d X = 0

for all d ∈ g and X ∈ X (̂Ch̄).
With respect to the basis {	, 	̄}, a connection on X (̂Ch̄) is given by choosing

arbitrary 
a
bc ∈ ̂Ch̄ (for a, b, c ∈ {1, 2}) and setting

∇a X ≡ ∇∂a X = 	b∂a X
b + 	c


c
abX

b

where 	1 = 	, 	2 = 	̄, ∂1 = ∂ , ∂2 = ∂̄ and X = 	a Xa . Demanding that the
connection is torsion-free immediately gives that 
a

bc = 
a
cb.
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1612 J. Arnlind, C. Holm

Lemma 3.2 Let ∇ be a connection on X (̂Ch̄) given as

∇a X = 	b∂a X
b + 	c


c
abX

b.

The connection is almost complex if and only if


2
11 = 
1

22 = 0


2
21 = 
1

12 = 0.

Proof The condition for ∇ to be almost complex is equivalent to

∇∂ (J	) − J∇∂	 = 0 (3.1)

∇∂̄ (J	) − J∇∂̄	 = 0 (3.2)

∇∂ (J 	̄) − J∇∂	̄ = 0 (3.3)

∇∂̄ (J 	̄) − J∇∂̄ 	̄ = 0. (3.4)

For an arbitrary connection ∇, given by

∇a X ≡ ∇∂a X = 	b∂a X
b + 	c


c
abX

b,

these equations are equivalent to

2i	̄
2
11 = 0 2i	̄
2

21 = 0

−2i	
1
12 = 0 −2i	
1

22 = 0,

which immediately gives the desired result since {	, 	̄} is a basis for X (̂Ch̄). 
�
Thus, it follows from Lemma 3.2 that a connection is torsion-free and almost complex
if and only if

∇∂	 = 	
1, ∇∂̄ 	̄ = 	̄
2, ∇∂̄	 = ∇∂	̄ = 0 (3.5)

for some 
1, 
2 ∈ ̂Ch̄ . If, in addition, the connection is hermitian the connection
coefficients will be uniquely fixed, as formulated in the next result.

Theorem 3.3 There exists a unique hermitian torsion-free almost complex connection
∇ on X (̂Ch̄), given by

∇∂	 = 	S−1∂S

∇∂̄ 	̄ = 	̄T−1∂̄T

∇∂̄	 = ∇∂	̄ = 0.
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Proof As noted in (3.5), an arbitrary torsion-free almost complex connection may be
written as

∇∂	 = 	
1, ∇∂̄ 	̄ = 	̄
2, ∇∂̄	 = ∇∂	̄ = 0.

To prove that the connection is compatible with the metric, one needs to show that

∂h(	a,	b) = h(∇∂̄	a,	b) + h(	a,∇∂	b)

∂̄h(	a,	b) = h(∇∂	a,	b) + h(	a,∇∂̄	b)

for a, b ∈ {1, 2}. For a 
= b, the above conditions are void since each term is separately
zero. For a = b = 1 one obtains

∂S = S
1 and ∂̄S = (
1)∗S

both giving 
1 = S−1∂S. Similarly, for a = b = 2 one obtains 
2 = T−1∂̄T . Thus,
demanding that a connection is metric, torsion-free and almost complex uniquely fixes
the connection components 
a

bc. 
�
The curvature R(∂a, ∂b)X = ∇a∇bX − ∇b∇a X is easily computed to be

R(∂, ∂̄)	 = −	∂̄
(

S−1∂S
)

(3.6)

R(∂, ∂̄)	̄ = 	̄∂
(

T−1∂̄T
)

(3.7)

and since X (̂Ch̄) is a free module, one has uniquely defined curvature components
R(∂a, ∂b)	c = 	p R p

cab given by

R1
112 = −∂̄

(

S−1∂S
)

R2
212 = ∂

(

T−1∂̄T
)

R1
212 = R2

112 = 0.

One may also proceed to define Rabpq = h(	̄a, R(∂p, ∂q)	b), where 	̄1 = 	̄ and
	̄2 = 	, giving

R1212 = T ∂
(

T−1∂̄T
)

R2112 = −S∂̄
(

S−1∂S
)

R1112 = R2212 = 0

and we note that Rabpq does not enjoy the all the symmetries of the classical Riemann
tensor due to the fact that S 
= T in the noncommutative setting.

Furthermore, there are natural definitions of both Ricci and scalar curvature

Ricab = Rp
apb

R = −T−1R1212S
−1 + S−1R2112T

−1
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1614 J. Arnlind, C. Holm

giving

Ric12 = −∂̄
(

S−1∂S
)

Ric21 = −∂
(

T−1∂̄T
)

Ric11 = Ric22 = 0.

R = −∂
(

T−1∂̄T
)

S−1 − ∂̄
(

S−1∂S
)

T−1

In all these expressionswe note the appearance of “logarithmic” derivatives, in analogy
with ∂∂̄ ln( f ) = ∂( f −1∂̄ f ). For the unique connection in Theorem3.3 onemay define
both gradient and divergence in a natural way.

Definition 3.4 For f ∈ ̂Ch̄ and X = 	a + 	̄b ∈ X (̂Ch̄), define

∇ f = 	S−1∂̄ f + 	̄T−1∂ f

div(X) = S−1∂(Sa) + T−1∂̄(Tb)

�( f ) = div(∇ f ).

An element f ∈ ̂Ch̄ is called harmonic if �( f ) = 0.

Proposition 3.5 If f ∈ ̂Ch̄ then

�( f ) = (S−1 + T−1)∂∂̄ f.

Proof The proof consists of a straight-forward computation:

div(∇ f ) = div
(

	S−1∂̄ f + 	̄T−1∂ f
) = S−1∂

(

SS−1∂̄ f
) + T−1∂̄

(

T T−1∂ f
)

= S−1∂∂̄ f + T−1∂̄∂ f = (S−1 + T−1)∂∂̄ f

since [∂, ∂̄] = 0. 
�
In classical geometry, the fact that the catenoid is a minimal surface may be character-
ized by demanding that the embedding coordinates x1, x2, x3 are harmonic. A similar
statement holds for ̂Ch̄ ; namely, one notes that if

X1 = 1
2e

1
2 h̄

(

RW + R−1W−1 + (RW + R−1W−1)∗
)

X2 = − i
2e

1
2 h̄

(

RW − R−1W−1 − (RW − R−1W−1)∗
)

X3 = U

then (Xi )∗ = Xi and ∂Xi = 	i for i = 1, 2, 3, in analogy with the classical embed-
ding coordinates intoR3. One may readily check that the noncommutative embedding
coordinates are harmonic

�(X1) = (S−1 + T−1)∂̄∂X1 = (S−1 + T−1)∂̄	1

= 1
2e

1
2 h̄(S−1 + T−1)∂̄(RW − R−1W−1)
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A noncommutative catenoid 1615

= 1
2e

1
2 h̄(S−1 + T−1)

(

RW − RW + R−1W−1 − R−1W−1) = 0

�(X2) = (S−1 + T−1)∂̄∂X2 = (S−1 + T−1)∂̄	2

= i

2
e
1
2 h̄(S−1 + T−1)∂̄(RW + R−1W−1)

= 1
2e

1
2 h̄(S−1 + T−1)

(

RW − RW − R−1W−1 + R−1W−1) = 0

�(X3) = (S−1 + T−1)∂̄∂X3 = (S−1 + T−1)∂̄( 121) = 0.

4 Integration and total curvature

Let us introduce a concept of integration in analogy with integration on the classical
catenoid. The total integral of a function on the catenoid, with respect to the induced
metric can be computed in local coordinates as

τ( f ) =
∫ ∞

−∞

( ∫ 2π

0
f (u, v) cosh2(u)dv

)

du

whenever the integral exists. For a function, expressible as

f (u, v) =
∑

k∈Z
fk(u, eu)eikv

we note that τ( f ) = τ( f0). To define a corresponding linear functional on ̂Ch̄ , we start
by extending the map φ : Zh̄(U, R) → C∞(R) (as defined in Sect. 2) to F+

h̄ (U, R)

by setting φ(p−1) = 1/φ(p) for p ∈ Z+
h̄ (U, R). Then, given a ∈ Ch̄

a =
∑

k∈Z
akW

k

we set

τ0(a) = 2π
∫ ∞

−∞
φ(a0)du

whenever the integral exists. Note that τ0 is in general not a trace.
Given a conformal metric of the type

h(	,	) = h(	̄, 	̄) = S h(	, 	̄) = 0

where S ∈ F+
h̄ (U, R) is invertible, one introduces an integral with respect to the

corresponding volume form as

τh(a) = 4π
∫ ∞

−∞
φ(a0)φ(S) du.
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1616 J. Arnlind, C. Holm

The extra factor of two is introduced for convenience due to the fact that for a conformal
metric with h(∂, ∂) = h(∂̄, ∂̄) = s one finds that g(∂u, ∂u) = g(∂v, ∂v) = 2s. As an
illustration of the above concepts, let us compute the noncommutative total curvature,
i.e. the integral of the Gaussian curvature (defined to be half of the scalar curvature).
From Sect. 3 one finds the Gaussian curvature

K = −1

4
∂u

(

S−1∂u S
)

S−1

since ∂S = ∂̄S = 1
2∂u S when S ∈ F+

h̄ (U, R), and the corresponding integral gives

τh(K ) = −π

∫ ∞

−∞
∂u

(

s−1∂us
)

du = −π
[

s−1∂us
]∞
−∞,

where s = φ(S). For instance, choosing a metric in analogy with the induced metric
from R

3

S = 1

4
(R + R−1)2 ⇒ s = φ(S) = cosh2(u) ⇒

τh(K ) = −π
[

2 tanh(u)
]∞
−∞ = −4π,

in accordance with the classical result.

5 Bimodules

In this section we will introduce classes of left and right modules over Ch̄ , as well as
study compatibility conditions for bimodules. Moreover, constant curvature connec-
tions are introduced and their relations to the bimodule structure is discussed.

Let C∞
0 (R × Z) denote the space of complex valued smooth functions on R × Z

with compact support (in both variables), together with the inner product

〈ξ, η〉 =
∞
∑

k=−∞

∫ ∞

−∞
ξ(x, k)η̄(x, k)dx . (5.1)

Proposition 5.1 Let λ0, λ1, ε ∈ R and r ∈ Z. If λ0ε + λ1r = −h̄ then

(Wξ)(x, k) = ξ(x − ε, k − 1)

(W−1ξ)(x, k) = ξ(x + ε, k + 1)

(Rξ)(x, k) = eλ0x+λ1kξ(x, k)

(R−1ξ)(x, k) = e−λ0x−λ1kξ(x, k)

(Uξ)(x, k) = (λ0x + λ1k)ξ(x, k)
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for ξ ∈ C∞
0 (R× Z), defines a left Ch̄ -module structure on C∞

0 (R× Z). Correspond-
ingly,

(ξW )(x, k) = ξ(x − ε′, k − r ′)
(ξW−1)(x, k) = ξ(x + ε′, k + r ′)

(ξ R)(x, k) = eμ0x+μ1kξ(x, k)

(ξ R−1)(x, k) = e−μ0x−μ1kξ(x, k)

(ξU )(x, k) = (μ0x + μ1k)ξ(x, k)

defines a right Ch̄ -module structure on C∞
0 (R × Z) if μ0, μ1, ε

′ ∈ R and r ′ ∈ Z

such that μ0ε
′ + μ1r ′ = h̄. Moreover, both the left and right module structures are

compatible with the inner product; i.e.

〈aξ, η〉 = 〈

ξ, a∗η
〉

and 〈ξa, η〉 = 〈

ξ, ηa∗〉

for a ∈ Ch̄ and ξ, η ∈ C∞
0 (R × Z).

Proof Let us show that the above definitions define a left module structure. The right
module structure is checked in an analogous way.

It follows immediately from the definitions that

WW−1ξ = ξ, W−1Wξ = ξ, RR−1ξ = ξ, R−1Rξ = ξ

[R,U ]ξ = 0, [R−1,U ]ξ = 0.

Thus, it remains to check the following relations:

WR = eh̄ RW

WU = UW + h̄W.

One gets

WRξ(x, k) − eh̄ RWξ(x, k) = Weλ0x+λ1kξ(x, k) − eh̄ Rξ(x − ε, k − r)

= eλ0(x−ε)+λ1(k−r)ξ(x − ε, k − r) − eh̄eλ0x+λ1kξ(x − ε, k − r)

= eλ0x+λ1k
(

e−λ0ε−λ1r − eh̄
)

ξ(x − ε, k − r) = 0,

by using that λ0ε + λ1r = −h̄. Finally, one computes

WUξ(x, k) −UWξ(x, k) − h̄Wξ(x, k)

= W (λ0x + λ1k)ξ(x, k) −Uξ(x − ε, k − r) − h̄ξ(x − ε, k − r)

= (

λ0(x − ε) + λ1(k − r)
)

ξ(x − ε, k − r) − (λ0x + λ1k)ξ(x − ε, k − r)

− h̄ξ(x − ε, k − r)

= ( − λ0ε − λ1r − h̄
)

ξ(x − ε, k − r) = 0,
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1618 J. Arnlind, C. Holm

again using that λ0ε + λ1r = −h̄. It is now straightforward to check that the module
structure is compatible with the inner product; e.g.

〈Wξ, η〉 =
∞
∑

k=−∞

∫ ∞

−∞
ξ(x − ε, k − r)η̄(x, k)dx

which, by setting l = k − r and y = x − ε, becomes

〈Wξ, η〉 =
∞
∑

l=−∞

∫ ∞

−∞
ξ(y, l)η̄(y + ε, l + r)dy =

〈

ξ,W−1η
〉

= 〈

ξ,W ∗η
〉

,

and similar computations are carried out for the remaining generators. 
�

In order for C∞
0 (R × Z) to be a Ch̄ − Ch̄′ -bimodule, one has to demand that the two

structures in Proposition 5.1 are compatible; i.e. that A(ξ B) = (Aξ)B for all A ∈ Ch̄
and B ∈ Ch̄′ . This induces certain compatibility conditions on the parameters, as
formulated in the next result.

Proposition 5.2 Let λ0, λ1, ε, ε
′ ∈ R and r, r ′ ∈ Z such that λ0ε + λ1r = −h̄ and

μ0ε
′ + μ1r ′ = −h̄′. If λ0ε

′ + λ1r ′ = 0 and μ0ε + μ1r = 0 then C∞
0 (R × Z) is a

Ch̄ − Ch̄′ -bimodule.

Proof To prove that C∞
0 (R×Z) is a bimodule, one has to show that the left and right

module structures given in Proposition 5.1 are compatible; i.e.

(

(Aξ)B
)

(x, k) = (

A(ξ B)
)

(x, k)

for all A ∈ Ch̄ and B ∈ Ch̄′ . It is enough to check compatibility for the generators, for
instance

(

(Wξ)R
)

(x, k) − (

W (ξ R)
)

(x, k) = eμ0x+μ1k(Wξ)(x, k) − (ξ R)(x − ε, k − r)

= (

eμ0x+μ1k − eμ0(x−ε)+μ1(k−r))ξ(x − ε, k − r) = 0

since μ0ε + μ1r = 0. Similarly, one gets

(

(Rξ)W
)

(x, k) − (

R(ξW )
)

(x, k) = (Rξ)(x − ε′, k − r ′) − eλ0x+λ1k(ξW )(x, k)

= (

eλ0(x−ε′)+λ1(k−r ′) − eλ0x+λ1k
)

ξ(x − ε′, k − r ′) = 0

since λ0ε
′ + λ1r ′ = 0. The remaining compatibility conditions may be checked in an

analogous way. 
�
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Note that it possible to obtain a Ch̄ − Ch̄′ -bimodule for arbitrary h̄, h̄′ ∈ R; namely,
for ε 
= ε′ one may set

r = r ′ = 1 λ0 = − h̄

ε − ε′ μ0 = − h̄′

ε − ε′

λ1 = h̄ε′

ε − ε′ μ1 = h̄′ε
ε − ε′ ,

fulfilling the requirements of Proposition 5.2.
Define linear maps ∇u,∇v : C∞

0 (R × Z) → C∞
0 (R × Z) via

(∇uξ)(x, k) = α
dξ

dx
(x, k) and (∇vξ)(x, k) = βxξ(x, k) (5.2)

for α, β ∈ C. It is straightforward to check that

∇u(aξ) = a∇uξ + (∂ua)ξ

∇v(aξ) = a∇vξ + (∂va)ξ

for all a ∈ Ch̄ if and only if α = 1/λ0 and β = i/ε. Similarly, it holds that

∇u(ξa) = (∇uξ)a + ξ(∂ua)

∇v(ξa) = (∇vξ)a + ξ(∂va)

for all a ∈ Ch̄′ if and only if α = 1/μ0 and β = i/ε′. Thus, (5.2) defines a left resp.
right connection on C∞

0 (R × Z) of constant curvature αβ; i.e.

∇u∇vξ − ∇v∇uξ = αβξ.

By choosing suitable parameters, one obtains a bimodule connection.

Proposition 5.3 Assume that C∞
0 (R×Z) is a Ch̄−Ch̄′ -bimodule as in Proposition 5.2,

and that

(∇uξ)(x, k) = 1

λ0

dξ

dx
(x, k)

(∇vξ(x, k)) = i

ε
xξ(x, k)

is a bimodule connection on C∞
0 (R × Z).

(1) If h̄ = h̄′ then h̄ = h̄′ = 0,
(2) if h̄ 
= h̄′ then h̄/h̄′ ∈ Q and

λ0 = μ0 = h̄r ′

ε(r − r ′)
λ1 = − h̄

r − r ′ μ1 = − h̄′

r − r ′
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1620 J. Arnlind, C. Holm

for arbitrary ε = ε′ ∈ R and r, r ′ ∈ Z such that r/r ′ = h̄/h̄′. Moreover,

∇u∇vξ(x, k) − ∇v∇uξ(x, k) = i
h̄ − h̄′

h̄h̄′ ξ(x, k).

Proof For a bimodule connection one must necessarily have λ0 = μ0 and ε = ε′.
Together with the conditions in Proposition 5.2 one obtains the equations

λ0ε + λ1r = −h̄ (5.3)

λ0ε + μ1r
′ = h̄′ (5.4)

λ0ε + λ1r
′ = 0 (5.5)

λ0ε + μ1r = 0. (5.6)

Since λ0, ε 
= 0 (in order for the bimodule connection to be defined), Eqs. (5.5) and
(5.6) imply that r, r ′ 
= 0. Thus, one may solve these equations as

λ1 = −λ0ε

r ′ μ1 = −λ0ε

r
. (5.7)

Inserting (5.7) into (5.3) and (5.4) gives

λ0ε
(

1 − r

r ′
)

= −h̄ (5.8)

λ0ε
(

1 − r ′

r

)

= h̄′ (5.9)

Now, assume that h̄ = h̄′. Summing (5.8) and (5.9) yields

r

r ′ + r ′

r
= 2,

which has the unique solution r = r ′, implying that h̄ = h̄′ = 0 via (5.8). This proves
the first part of the statement. Next, assume that h̄ 
= h̄′.

First we note that neither h̄ nor h̄′ can be zero, since that implies [by (5.8) and (5.9)]
that h̄ = h̄′ = 0 contradicting the assumption that h̄ 
= h̄′. Thus, we can assume that
h̄, h̄′ 
= 0, which implies that r 
= r ′ [again, by (5.8) and (5.9)]. Solving (5.8) for λ0
gives

λ0 = h̄r ′

ε(r − r ′)
(5.10)

which, when inserted in (5.9), gives

r

r ′ = h̄

h̄′ .
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Hence, the quotient h̄/h̄′ is necessarily rational, since r, r ′ ∈ Z, and inserting (5.10)
into (5.7) yields

λ1 = − h̄

r − r ′ μ1 = − h̄′

r − r ′ .

Finally,

λ0ε = h̄r ′

r − r ′ = h̄ r h̄′
h̄

r − r h̄′
h̄

= h̄h̄′

h̄ − h̄′

giving

∇u∇vξ − ∇v∇uξ = i

λ0ε
ξ = i

h̄ − h̄′

h̄h̄′ ξ.


�
It is noteworthy that the curvature of the bimodule connection only depends on h̄ and
h̄′ and is consequently independent of the particular choice of parameters that defines
the bimodule. For the noncommutative torus, one proceeds to define compatible left
and right hermitian structures, which implies first of all that the modules are projective
and secondly, that certain torus algebras for different values of θ areMorita equivalent.
It would be interesting to obtain similar results for the noncommutative catenoid.
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