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Received: 31 January 2017 / Revised: 19 September 2017 / Accepted: 19 September 2017 /
Published online: 4 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract Poisson transversals are submanifolds in a Poissonmanifoldwhich intersect
all symplectic leaves transversally and symplectically. In this communication, we
prove a normal form theorem for Poissonmaps around Poisson transversals. A Poisson
map pulls a Poisson transversal back to a Poisson transversal, and our first main
result states that simultaneous normal forms exist around such transversals, for which
the Poisson map becomes transversally linear, and intertwines the normal form data
of the transversals. Our second result concerns symplectic integrations. We prove
that a neighborhood of a Poisson transversal is integrable exactly when the Poisson
transversal itself is integrable, and in that case we prove a normal form theorem for the
symplectic groupoid around its restriction to the Poisson transversal, which puts all
structure maps in normal form. We conclude by illustrating our results with examples
arising from Lie algebras.
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1 Introduction

Poisson transversals are special submanifolds which play in Poisson Geometry a role
similar to that of symplectic submanifolds in Symplectic Geometry, and complete
transversals in Foliation Theory. A Poisson transversal of a Poissonmanifold (M, π) is
an embedded submanifold X ⊂ M which intersects all symplectic leaves transversally
and symplectically. These submanifolds lie at the heart of Poisson geometry, appearing
in many constructions and arguments already since the foundational work of Alan
Weinstein [22].

In our previous note [10], we described a normal form theorem around a Poisson
transversal (X, πX ) in (M, π), which depends only on the restriction of π to T ∗M |X .
Choosing a Poisson spray V for π , the corresponding exponential map induces the
Poisson isomorphism around X which puts the structure in normal form:

expV : (N∗X, π
ωV
X ) ↪→ (M, π). (1)

Here π
ωV
X stands for the Poisson structure corresponding to the Dirac structure

p∗(LπX )ωV obtained as follows: by first pulling back the Dirac structure LπX cor-
responding to πX to N∗X via the map p, and then gauge-transforming by a certain
closed two-form ωV on N∗X which is symplectic on the fibers of p. Actually, all
these objects (expV , ωV and π

ωV
X ) are only defined on a small open neighborhood of

X ⊂ N∗X , but we omit this technicality from the notation. The procedure in [10] for
constructing normal forms as in (1) depends only on the choice ofV , and has the added
benefit of allowing simultaneous normal forms for all Poisson transversals in (M, π).

In this communication, we continue our analysis of local properties around Poisson
transversals with normal form results for Poisson maps and symplectic groupoids.

That Poisson transversals behave functorially with respect to Poisson maps has
already been pointed out in [10]: a Poisson map pulls back Poisson transversals to
Poisson transversals, and in fact, it pulls back the corresponding infinitesimal data
pertaining to their normal forms. We prove that the two Poisson structures and the
Poisson map can be put in normal form simultaneously:

Theorem 1 (Normal form for Poisson maps) Let ϕ : (M0, π0) → (M1, π1) be a
Poisson map, and X1 ⊂ M1 be a Poisson transversal. Then ϕ is transverse to X1,
X0 := ϕ−1X1 is a Poisson transversal in (M0, π0), ϕ|X0 : (X0, πX0) → (X1, πX1)

is a Poisson map, and there exist Poisson sprays Vi with exponential maps expVi
:

(N∗Xi , π
ωVi
Xi

) ↪→ (Mi , πi ) which fit into the commutative diagram of Poisson maps:

(M0, π0)
ϕ �� (M1, π1)

(N∗X0, π
ωV0
X0

)

expV0

��

F
�� (N∗X1, π

ωV1
X1

)

expV1

��

where F is the vector bundle map:
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Normal forms for Poisson maps and symplectic groupoids... 713

Fx := (ϕ∗|N∗
ϕ(x)X1)

−1 : N∗
x X0 −→ N∗

ϕ(x)X1,

and, moreover, F satisfies F∗(ωV1) = ωV0 .

Let us remark that there are relatively few normal form results for Poisson maps
in the literature (mostly for moment maps on symplectic manifolds [11,15] and, in
particular, for integrable systems [7,8,18]), and that our result is of a very different
nature: it holds without any “compactness/properness assumptions”, which is just fur-
ther evidence of the central role played by Poisson transversals in Poisson geometry.1

Next, we move to symplectic groupoids. As a general principle, which follows
from the normal form theorem, Poisson transversals encode all the geometry of a
neighborhood in the ambient manifold, and ’transverse properties’ should hold for
the transversal if and only if they hold true around it. We show that integrability by a
symplectic groupoid is one such transverse property:

Theorem 2 (Integrability as a transverse property)APoisson transversal is integrable
if and only if it has an integrable open neighborhood.

In fact, we show much more:

Theorem 3 (Normal form for symplectic groupoids) Let (X, πX ) be a Poisson

transversal in (M, π), and consider a tubular neighborhood M ⊃ E
p→ X in which

the Poisson structure is in normal form, i.e., π |E = πσ
X . If (X, πX ) is integrable by a

symplectic groupoid (GX , ωX ) ⇒ (X, πX ), then:

(a) A symplectic groupoid integrating πσ
X is (GE

X , ωE ) ⇒ (E, πσ
X ), where:

GE
X := GX ×P(X) P(E), ωE := p∗(ωX ) + s∗(σ ) − t∗(σ ).

HereP(M) ⇒ M stands for the pair groupoid of a manifoldM, and p : GE
X →

GX stands for the canonical groupoid map.
(b) The restriction to E of any symplectic groupoid (G, ωG) ⇒ (M, π) integrating π

is isomorphic to themodel (GE
X , ωE ) corresponding toGX := G|X ,ωX := ωG |GX .

We conclude the paper by illustrating our results in the setting of linear Poisson
structures, i.e., Lie algebras. Although in this linear setting the conclusions of our
results are well-known, the usage of Poisson transversals gives a new perspective on
some classical results.

1 Following a suggestion of the referee, let us also point out, as a guide for the reader to Theorems 2
and 3, that in symplectic geometry one has tubular neighborhood theorems for symplectic and Lagrangian
submanifolds. Now Lie-Dirac submanifolds (of which Poisson transvsersals are examples) correspond to
symplectic subgroupoids [4, Theorem 9], while the graph of a Poisson map ϕ : (M0, π0) → (M1, π1),
sitting as a coisotropic submanifold in (M0, π0) × (M1, −π1), corresponds to a Lagrangian subgroupoid
[2, Theorem 5.4].
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714 P. Frejlich, I. Mărcut,

2 Preliminaries on Poisson transversals

Recall from [10] that an embedded submanifold X ⊂ M in a Poissonmanifold (M, π)

is said to be a Poisson transversal if it induces a splitting:

T X ⊕ N X = T M |X , (2)

where N X := π�(N∗X) ⊂ T M |X will be called the embedded normal bundle. As
explained in [10], the restriction π |X of π to T ∗M |X decomposes as:

π |X = πX + wX ,

where πX ∈ Γ (
∧2 T X) is a Poisson structure and wX ∈ Γ (

∧2 N X) is a nondegen-
erate bivector. The main result of [10] is that pair (πX , wX ) encodes the structure of
π around X . To explain this, recall:

Definition 1 Let (M, π) be a Poisson manifold. A vector field V ∈ X(T ∗M) is a
spray for π if:

1. m∗
t (V) = tV , for all t > 0;

2. pr∗ V(ξ) = π�(ξ), for all ξ ∈ T ∗M ,

where mt : T ∗M → T ∗M denotes the map of scalar multiplication by t .

Remark 1 A spray on a Poisson manifold (M, π) can be easily constructed: e.g., the
horizontal lift V(ξ) of π�(ξ) with respect to a fixed linear connection is a Poisson
spray. More generally, a T ∗M Lie algebroid connection ∇ on T ∗M [9] induces a
T ∗M-geodesic flow which comes from a spray V∇ . In fact, it is easily seen that any
spray comes from a T ∗M-connection, andmoreover, there is a unique such connection
which is torsion-free. Thus, all our constructions can be done in terms of connection;
however, we prefer the spray terminology.

The following result played a crucial role in the proof of the normal form theorem
in [10]:

Theorem A [5] Let π be Poisson and denote by φt the time-t (local) flow of a spray
V for π . Then there is an open ΣV ⊂ T ∗M around M with the property that:

1. φ is defined on ΣV × [0, 1];
2. The closed two-form ΩV := ∫ 1

0 φ∗
t ωcandt is symplectic on ΣV ;

3. The submersions

(M, π)
pr←− (ΣV ,ΩV )

expV−→ (M,−π)

give a full dual pair, where expV := pr ◦φ1.

Let X ⊂ (M, π) be a Poisson transversal with associated pair (πX , wX ). We denote
by Υ (wX ) the space of all closed two-forms σ ∈ Ω2(N∗X) which along X satisfy
σ |X = −wX ∈ Γ (

∧2 N X), where we identify
∧2 N X with the space of vertical
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Normal forms for Poisson maps and symplectic groupoids... 715

two-forms in
∧2 T ∗(N∗X)|X . To each σ ∈ Υ (wX ), there corresponds a local model

of π around X , which, in Dirac-geometric terms, is described as the Poisson structure
πσ
X corresponding to the Dirac structure pr∗(LπX )σ . As shown in [10], πσ

X is defined
in a neighborhood of X in N∗X , and for any other σ ′ ∈ Υ (wX ), πσ

X and πσ ′
X are

Poisson diffeomorphic around X , by a diffeomorphism that fixes X to first order.

Theorem B [10] In the notation of Theorem A, the two-form ωV := −ΩV |N∗X
belongs to Υ (wX ), and the exponential map yields a Poisson embedding around X,

expV : (N∗X, π
ωV
X ) ↪→ (M, π).

Remark 2 In Theorem B, expV , and ωV are defined only on small enough neighbor-
hoods of X in N∗X , but we still write expV : N∗X → M , and ωV ∈ Υ (wX ). This
convention will be used throughout Sect. 3, also for other maps and tensors, as it
simplifies notation considerably.

3 Normal form for Poisson maps

The result below is a the first indication for a normal form theorem for Poisson maps
should hold around Poisson transversals; we refer the reader to [10] for a proof:

Lemma 1 Let ϕ : (M0, π0) → (M1, π1) be a Poisson map and X1 ⊂ M1 be a
Poisson transversal. Then:

1. ϕ is transverse to X1;
2. X0 := ϕ−1(X1) is also a Poisson transversal;
3. ϕ restricts to a Poisson map ϕ|X0 : (X0, πX0) → (X1, πX1);
4. The differential of ϕ along X0 restricts to a fiberwise linear isomorphism between

embedded normal bundles ϕ∗|N X0 : N X0 → N X1;
5. The map F : N∗X0 → N∗X1, F(ξ) = (ϕ∗)−1(ξ), ξ ∈ N∗X0 is a fiberwise

linear symplectomorphism between the symplectic vector bundles

F : (N∗X0, wX0) → (N∗X1, wX1).

We are ready to state the main result of this section. Consider the same setting as
in Lemma 1.

Theorem 4 (Normal form for Poisson maps) There are sprays V0 for π0, and V1 for
π1, such that under the induced exponentials expVi

: (N∗Xi , π
ωVi
Xi

) ↪→ (Mi , πi ), the
map ϕ corresponds to the bundle map F, and F∗(ωV1) = ωV0 . In particular, we have
a commutative diagram of Poisson maps:

(M0, π0)
ϕ �� (M1, π1)

(N∗X0, π
ωV0
X0

)

expV0

��

F �� (N∗X1, π
ωV1
X1

)

expV1

��
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716 P. Frejlich, I. Mărcut,

In other words, the theorem allows us to bring simultaneously both Poisson struc-
tures in normal form and the Poisson map becomes linear in the normal directions.
This specializes to the normal form theorem of [10] by taking M0 = M1, X0 = X1
and ϕ = id. Remark 2 applies also here: the result is only local around X0 and X1, as
the exponential maps expVi

are defined only around Xi . Moreover, if Xi are not closed
submanifolds, then we can only guarantee that the sprays Vi are defined around Xi .

Proof (of Theorem 4) We split the proof into five steps:

Step 1: Extending the map F around X0 and X1. Let U1 ⊂ M1 be an open neighbor-
hood of X1, so small that there exists a subbundle H1 ⊂ TU1 to which ϕ is transverse,
and which satisfies H1|X1 = T X1. Define

U0 := ϕ−1(U1) ⊂ M0, H0 := (ϕ∗)−1(H1) ⊂ T M0.

The fact that ϕ is transverse to H1 implies that H0 is a smooth subbundle. Consider
the annihilators of the distributions H0 and H1:

C∗
0 := (H0)

◦ ⊂ T ∗U0, C∗
1 := (H1)

◦ ⊂ T ∗U1.

Transversality also implies that, for every x ∈ U0, the transposed of the differential
restricts to a linear isomorphism between the annihilators:

ϕ∗
x : C∗

1,ϕ(x)
∼−→ C∗

0,x , x ∈ U0.

The fiberwise inverse of this map gives the vector bundle map, denoted

C∗
0

F̃ ��

��

C∗
1

��
U0

ϕ �� U1

(3)

which extends the map F .

Step 2: Constructing F̃-related sprays on C∗
0 and C∗

1 . A vector bundle E → M
endowed with a linear map E → T M will be called an anchored vector bundle. Note
that π�

i : C∗
i → TUi are anchored vector bundles, for i = 0, 1. Moreover, that ϕ is a

Poisson map implies that F̃ is a map of anchored vector bundles:

ϕ∗π�
0(ξ) = ϕ∗π�

0ϕ
∗(F̃ξ) = π

�
1(F̃ξ). (4)

Next, the notion of spray has an obvious generalization to any anchored vector bundle.
LetV1 ∈ X(C∗

1 ) be a spray onC
∗
1 . Since (3) forms a pullback diagram,we can pullback

V1 to a sprayV0 on the anchored vector bundleC∗
0 . Indeed, for all x ∈ U0 and ξ ∈ C∗

0,x ,
the differentials form a pullback diagram:
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Normal forms for Poisson maps and symplectic groupoids... 717

TξC∗
0

F̃∗ ��

��

TF̃(ξ)C
∗
1

��
TxU0

ϕ∗ �� Tϕ(x)U1

,

and therefore, there is a unique vector V0(ξ) ∈ TξC∗
0 satisfying:

pr∗(V0(ξ)) = π
�
0(ξ), F̃∗(V0(ξ)) = V1(ξ);

existence follows from (4). Clearly, V0 and V1 are F̃-related and V0 satisfies
the second spray condition. The first spray condition follows by noting that also
1
t (mt,∗)−1(V0(tξ)) satisfies the same equations as V0(ξ).

Step 3: Extending the sprays. Let ρ : E → T N be an anchored vector bundle, let
F ⊂ E be a vector subbundle, and let V be a spray on F . Consider a complement
E = F ⊕G, and linear connections on F and G with horizontal lifts denoted hF and
hG , respectively. Using the canonical isomorphism T E  T F×T N TG, we construct
the following spray Ṽ on E :

Ṽ( f, g) = (V(ρ( f )) + hF (ρ(g)), hG(ρ( f ) + ρ(g))) ∈ T f F × TgG.

Moreover, note that Ṽ is tangent to F and extends V .
Applying this construction, find sprays Ṽi on T ∗Ui , for i = 0, 1, which are tangent

to C∗
i , and extend Vi . Note that, if Xi is a closed submanifold of Mi , then Ṽi can be

extended to the entire T ∗Mi .
To simplify notation, we will denote Ṽi also by Vi .

Step 4: Commutativity of the diagrams. Let Φ t
Vi

denote the time-t local flow of Vi .

Since Vi is tangent to C∗
i , and F̃∗V0 = V1, on C∗

0 we have that F̃ ◦ Φ t
V0

= Φ t
V1

◦ F̃ .

Since F̃ extends F , we obtain the commutative diagram:

N∗X0

Φ1
V0 ��

F
��

C∗
0

F̃
��

pr �� U0

ϕ

��
N∗X1

Φ1
V1 �� C∗

1
pr �� U1

which implies the equality ϕ ◦ expV0
= expV1

◦F from the statement.

Step 5: Compatibility of the two-forms. As in Theorems A and B, we denote by
ΩVi := ∫ 1

0 (Φ t
Vi

)∗ωcandt and ωVi := −ΩVi |N∗Xi . By Theorem B, the exponentials

expVi
: (N∗Xi , π

ωVi
Xi

) ↪→ (Mi , πi ) are Poisson diffeomorphisms around Xi . Hence,

also F : (N∗X0, π
ωV0
X0

) → (N∗X1, π
ωV1
X1

) is a Poisson map in a neighborhood of X0.
This does not directly imply that F∗(ωV1) = ωV0 , and this is what we prove next.

Recall that the tautological one-form λcan ∈ Ω1(T ∗Mi ) is defined by λcan,ξ (v) :=
〈ξ, pr∗(v)〉, for ξ ∈ T ∗Mi and v ∈ Tξ (T ∗Mi ). We show now that F̃ satisfies:
F̃∗(λcan|C∗

1
) = λcan|C∗

0
. For ξ ∈ C∗

0 and v ∈ TξC∗
0 , we have:
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718 P. Frejlich, I. Mărcut,

(F̃∗λcan)ξ (v) = 〈F̃(ξ), pr∗(F̃∗(v))〉 = 〈(ϕ∗)−1(ξ), (pr ◦F̃)∗(v)〉
= 〈(ϕ∗)−1(ξ), (ϕ ◦ pr)∗(v)〉 = 〈(ϕ∗)−1(ξ), ϕ∗(pr∗(v))〉
= 〈ξ, pr∗(v)〉 = λcan,ξ (v).

This implies that F̃∗(ωcan|C∗
1
) = ωcan|C∗

0
. Using that F̃ intertwines the flows of the

sprays, and that these flows preserve the submanifolds C∗
0 , C

∗
1 , we obtain:

(Φ t∗
V0

ωcan)|C∗
0

= Φ t∗
V0

(ωcan|C∗
0
) = Φ t∗

V0
◦ F̃∗(ωcan|C∗

1
)

= F̃∗ ◦ Φ t∗
V1

(ωcan|C∗
1
) = F̃∗(Φ t∗

V1
(ωcan)|C∗

1
).

Integrating for t ∈ [0, 1], this yields that F̃∗(ΩV1 |C∗
1
) = ΩV0 |C∗

0
holds around X0.

Restricting to N∗X0, we obtain the conclusion F∗(ωV1) = ωV0 . ��

4 Integrability

Symplectic groupoids are the natural objects integrating Poissonmanifolds. In this sec-
tion,we discuss the relation between integrability of a Poissonmanifold and integrabil-
ity of one of its transversals. For integrable Poisson manifolds, we give a normal form
theorem for the symplectic groupoid around its restriction to a Poisson transversal.

4.1 Symplectic groupoids

We recollect here a few facts about symplectic groupoids and integrability of Poisson
manifolds. For references, see [3,4].

We denote the source/target maps of a Lie groupoid G ⇒ M by s, t : G → M , and
the multiplication by m : G ×s,t G → G.

A differential form η ∈ Ωq(G) is called multiplicative if

m∗η = pr∗1 η + pr∗2 η ∈ Ωq(G ×s,t G),

where pr1, pr2 : G ×s,t G → G are the projections.
A symplectic groupoid is a Lie groupoid G ⇒ M endowed with a multiplicative

symplectic structure ω ∈ Ω2(G). The base M of a symplectic groupoid (G, ω) carries
a Poisson structure π such that:

(M, π)
s←− (G, ω)

t−→ (M,−π)

is a full dual pair.
A Poisson manifold (M, π) is called integrable if such a symplectic groupoid

(G, ω) exists giving rise to π , in which case the groupoid is said to integrate (M, π).

Theorem 5 APoisson transversal (X, πX ) of a Poissonmanifold (M, π) is integrable
if and only if the restriction (U, π |U ) of π to an open neighborhood U of X is an
integrable Poisson manifold.
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Proof Step 1: If. Let (Σ,Ω) ⇒ (U, π) be a symplectic groupoid, and p : U ⊃ E →
X be a tubular neighborhood on which the normal form holds: π |E = πσ

X , for some
closed two-form σ on E , satisfying σ(v) = 0 for all v ∈ T X . Denote GX := Σ |X ,
ωX := Ω|GX . ThenπX is integrable by the symplectic groupoid (GX , ωX ) ⇒ (X, πX ).
This is proved in [4], in themore general setting of “Lie-Dirac submanifolds” (Theorem
9); for completeness, we include a simple proof:

Applying Lemma 1 to the Poisson map

(t, s) : (Σ,Ω) → (U,−π) × (U, π),

and the Poisson transversal X × X ⊂ U × U , we deduce that (t, s) is transverse to
X × X , that (t, s)−1(X × X) =: GX ⊂ Σ is a Poisson transversal in Σ (thus ωX is
symplectic), and that the induced map

(t, s) : (GX , ωX ) → (X,−πX ) × (X, πX )

is again Poisson. Hence, (GX , ωX ) is a symplectic groupoid integrating (X, πX ).
Step 2 : Only if. Recall [14] that integrability of a Poisson manifold by a symplectic

groupoid is equivalent to integrability of its cotangent Lie algebroid. In particular,
GX integrates T ∗X . By Theorem B and Lemma 2 below, in a tubular neighborhood
p : E → X of the Poisson transversal (X, πX ) ⊂ (M, π), the cotangent Lie algebroid
T ∗E ofπ |E is isomorphic to the pullback Lie algebroid T E×T X T ∗X of the cotangent
Lie algebroid T ∗X of πX by p. By Proposition 1.3 [13], the pullback Lie algebroid
T E ×T X T ∗X is integrable by the pullback groupoid (see below), and so (E, πσ

X ) is
integrable. ��

An inconvenient feature of both Theorem 5 and its proof is that we are left with
a poor understanding of how the symplectic groupoids integrating (X, πX ) and a
neighborhood of it are related. This is the issue we address in the next section.

5 Normal form for symplectic groupoids

Our next goal is to state and prove Theorem 6 below, which refines Theorem 5 in that
it gives a precise description of the symplectic groupoid integrating a neighborhood
of a Poisson transversal in terms of the symplectic groupoid integrating the Poisson
transversal itself.

We begin with a description of the Lie algebroid structure corresponding to Poisson
structures constructed using the ’Poisson transversal recipe’. Concretely, consider the
following set-up, which appears around Poisson transversals:

– (X, πX ) is a Poisson manifold;
– p : E → X is a surjective submersion;
– σ is a closed two-form on E such that the Dirac structure p∗(LπX )σ corresponds
to a globally defined Poisson structure πσ

X on E .

Consider the pullback of the Lie algebroid T ∗X via the submersion p : E → X
(see e.g., [12] for the general construction of Lie algebroid pullbacks)
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720 P. Frejlich, I. Mărcut,

T E ×T X T ∗X = {(U, η) ∈ T E × T ∗X : p∗(U ) = π
�
X (η)}.

The Lie algebroid T E ×T X T ∗X fits into a short exact sequence of Lie algebroids:

0 −→ V −→ T E ×T X T ∗X −→ T ∗X −→ 0, (5)

where V ⊂ T E denotes the Lie algebroid V = ker(p∗). We have:

Lemma 2 The cotangent Lie algebroid T ∗E of πσ
X is isomorphic to the pullback Lie

algebroid T E ×T X T ∗X via the map

σ� + p∗ : T E ×T X T ∗X ∼−→ T ∗E, (U, η) �→ σ�(U ) + p∗(η).

Under this isomorphism, the short exact sequence (5) corresponds to

0 −→ V
σ�−→ T ∗E −→ T ∗X −→ 0,

where the second map assigns to ξ ∈ T ∗E the unique η ∈ T ∗X for which p∗(η) =
ξ − σ�((πσ

X )�(ξ)).

Proof We have a sequence of Lie algebroid isomorphisms: first, the cotangent Lie
algebroid T ∗E of πσ

X is defined such that the map

prT ∗E : p∗(LπX )σ
∼−→ T ∗E

be a Lie algebroid isomorphism; next, the gauge transformation by σ is also a Lie
algebroid isomorphism

eσ : p∗(LπX )
∼−→ p∗(LπX )σ , eσ (U + ξ) = U + ξ + σ�(U );

and finally, the map T E ×T X T ∗X ∼−→ p∗(LπX ), U + η �→ U + p∗(η) is an iso-
morphism as well. The composition of these maps returns the morphisms from the
statement. ��

We present next a general construction for symplectic groupoids, which provides
the local model of a symplectic groupoid around its restriction to a Poisson transversal.

5.1 A pullback construction for symplectic groupoids

The construction of the pullback groupoid is rather standard (according to [13], it
dates back to Ehresmann). We reexamine the construction in the setting of symplectic
groupoids, in order to obtain a more explicit proof of Theorem 5.

Let P(E) := E × E ⇒ E and P(X) := X × X ⇒ X stand, respectively, for the
pair groupoids of E and X . Define the groupoid GE

X ⇒ E to be the pullback of the
groupoid maps:
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GE
X

p

��

(t,s) �� P(E)

p×p .

��
GX

(t,s)
�� P(X)

(6)

That is, GE
X is the manifold

GE
X := {

(e′, g, e) : p(e′) = t(g), p(e) = s(g)
} ⊂ E × GX × E,

endowed with the structure maps

s(e′, g, e) = e, t(e′, g, e) = e′, (e′′, h, e′)(e′, g, e) = (e′′, hg, e)
(e′, g, e)−1 = (e, g−1, e′), 1e = (e, 1p(e), e);

As pullbacks by groupoid maps of closed, multiplicative forms ωX ∈ Ω2(GX ), σ ∈
Ω2(P(E)), both p∗(ωX ) and s∗(σ ) − t∗(σ ) are closed, multiplicative two-forms on
GE
X , and hence so is their sum:

ωE ∈ Ω2(GE
X ), ωE := p∗(ωX ) + s∗(σ ) − t∗(σ ).

Proposition 1 (GE
X , ωE ) ⇒ (E, πσ

X ) is a symplectic groupoid.

The proof of Proposition 1 uses some general remarks about Dirac structures and
Dirac maps:

Lemma 3 Consider a commutative diagram of manifolds:

A

i
��

j �� B

k
��

C
l �� D,

where A and T A are identified with the set-theoretic pullbacks A ∼= B ×D C, and
T A ∼= T B ×T D TC (e.g., if k : B → D and l : C → D are transverse maps).
Assume further that the manifolds above are endowed with Dirac structures: L A on
A, LB on B, LC on C, and LD on D.

(a) If k and i are backward Dirac maps, and l is forward Dirac, then j is also forward
Dirac.

(b) If j : (A, LA) → (B, LB) is forward Dirac, and ω is a closed two-form on
B, then j is also a forward Dirac map between the gauge-transformed Dirac

structures: j : (A, L j∗(ω)
A ) → (B, Lω

B).
(c) If L A is the graph of a closed two-form ω on A, and LB is the graph of a

Poisson structure π on B, and j : (A, LA) → (B, LB) is forward Dirac, then
ker(ω) ⊂ ker( j∗).
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Proof (a) Observe that, counting dimensions, it suffices to show that j∗L A ⊂ LB . Fix
then a ∈ A, and set b := j (a), c := i(a) and d := k(b) = l(c). To further simplify
the notation, we also let La := L A,a , Lb := LB,b, Lc := LC,c, and Ld := LD,d .

Choose XB + ηB ∈ j∗(La). This means that XB = j∗(XA), for some vector XA

with XA + j∗(ηB) ∈ La . Since i is a backward Dirac map, there is a covector ηC
such that j∗(ηB) = i∗(ηC ) and i∗(XA) + ηC ∈ Lc. Since i∗(ηC ) = j∗(ηB), the
dual of the pullback property for T A implies that there is a covector ηD ∈ T ∗

d D,
with ηC = l∗(ηD) and ηB = k∗(ηD). Since l is a forward Dirac map, we have that
l∗(XC ) + ηD ∈ Ld . Commutativity of the diagram implies that l∗(XC ) = k∗(XB).
Thus k∗(XB)+ηD ∈ Ld , and k∗(ηD) = ηB . Finally, since k is a backward Dirac map,
XB + ηB ∈ Lb. Hence XB + ηB ∈ Lb, and the conclusion follows.

(b) Note that, again by dimensional reasons, we need only show that Lω
b ⊂

j∗(L j∗(ω)
a ). Choose a ∈ A and set b := j (a), La := L A,a and LB := LB,b. Consider

XB + ηB ∈ Lω
b . This means that XB + ηB − ιXBω ∈ Lb. Since j is a forward Dirac

map, there is a vector XA with XB = j∗(XA) and XA+ j∗(ηB − ιXBω) ∈ La . Clearly,
j∗(ιXBω) = j∗(ι j∗(XA)ω) = ιXA j

∗(ω). Hence XA + j∗(ηB) − ιXA j
∗(ω) ∈ La , and

so XA + j∗(ηB) ∈ L j∗(ω)
a . This shows that XB + ηB ∈ j∗(L j∗(ω)

a ).
(c) If V ∈ ker(ω), then V ∈ Lω. But j forward Dirac implies j∗(V ) ∈ Lπ , and
therefore j∗(V ) = 0. ��
Proof (of Proposition 1) We apply Lemma 3 (a) to the pullback diagram (6), where
these manifolds have the following Dirac structures :

(X,−πX ) × (X, πX ), (E, p∗(L−πX )) × (E, p∗(LπX )), (GX , ωX ), (GE
X ,p∗(ωX )).

We deduce that the map

(t, s) : (GE
X ,p∗(ωX )) −→ (E, p∗(L−πX )) × (E, p∗(LπX ))

is forward Dirac. By Lemma 3 (b), this map is forward Dirac also after gauge-
transformations:

(t, s) : (GE
X , ωE ) −→ (E,−πσ

X ) × (E, πσ
X ).

It remains to show that ωE is nondegenerate. As GE
X = E ×X GX ×X E , we obtain

that its tangent bundle is the pullback TGE
X = T E ×T X TGX ×T X T E . Explicitly:

TGE
X = {(A, B,C) ∈ T E × TGX × T E : p∗(A) = t∗(B), s∗(B) = p∗(C)}.

In this decomposition, we can write

ωE ((A, B,C), (A′, B ′,C ′)) = −σ(A, A′) + ωX (B, B ′) + σ(C,C ′). (7)

By Lemma 3 (c),

ker(ωE ) ⊂ ker(s∗) ∩ ker(t∗) = {(0, B, 0) : s∗(B) = 0, t∗(B) = 0}
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But, for (0, B, 0) �= 0 we have that ι(0,B,0)ωE = p∗(ιBωX ) �= 0, because ωX is
nondegenerate. Hence, ωE is nondegenerate. Thus (GE

X , ωE ) is a symplectic groupoid
integrating (E, πσ

X ). ��

5.2 The normal form theorem

We are now ready to prove that the structure of a symplectic groupoid around a Poisson
transversal is described by the pullback construction:

Theorem 6 (Normal form for symplectic groupoids) Let (Σ,Ω) ⇒ (M, π) be a
symplectic groupoid, and let (X, πX ) be a Poisson transversal in M. Let p : E → X
be a tubular neighborhood on which the normal form holds: π |E = πσ

X , for some
closed two-form σ on E, satisfying σ�(U ) = 0 for all U ∈ T X. Denote

GX := Σ |X , ωX := Ω|GX , ΣE := Σ |E , ΩE := Ω|ΣE .

Then, the Lie algebroid isomorphism T E ×T X T ∗X ∼= T ∗E of Lemma 2 integrates
to an isomorphism of symplectic groupoids Ψ : (GE

X , ωE ) ∼= (ΣE ,ΩE ).

Proof We split the proof into three steps: constructing Ψ as an isomorphism of Lie
groupoids, showing that it is a symplectomorphism, and finally, that it integrates the
isomorphism of Lie algebroids T E ×T X T ∗X ∼= T ∗E .

Step 1: Construction of Lie groupoid isomorphism Ψ .
Let A denote the Lie algebroid of ΣE , i.e.,

TΣE |E = T E ⊕ A, A = ker(s∗).

The identification between the Lie algebroid A and the cotangent Lie algebroid T ∗E
is obtained via the symplectic form:

−Ω
�
E : A ∼−→ T ∗E, −Ω

�
E (u)(v) = −ΩE (u, v).

By Lemma 2, the map σ� : V → T ∗E is an injective Lie algebroid morphism.
Note that V is integrable by the submersion groupoid E ×X E ⇒ E of p : E → X .
Since E ×X E has 1-connected s-fibers, the Lie algebroid map

(−Ω
�
E )−1 ◦ σ� : V → A (8)

integrates to a Lie groupoid map

Φ : E ×X E −→ ΣE .

For e ∈ E , denote by τ(e) ∈ E ×X E the arrow that starts at p(e) ∈ X ⊂ E , and ends
at e: τ(e) := (e, p(e)), and define the map:

Ψ : GE
X −→ ΣE , Ψ (e′, g, e) := Φ(τ(e′)) · g · Φ(τ(e))−1.
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It is straightforward to check that Ψ is an isomorphism of Lie groupoids, with inverse

Θ : ΣE −→ GE
X , Θ(g) = (e′, Φ(τ(e′))−1 · g · Φ(τ(e)), e),

where e′ := t(g), e := s(g).

Step 2: Ψ is an isomorphism of symplectic groupoids.We begin with the observation
that the identification T E ×T X TGX ×T X T E = TGE

X can be realized using the
multiplication map:

T E ×T X TGX ×T X T E � (U, V,W ) �→ m∗
(
m∗(τ∗(U ), V ), τ−1∗ (W )

)
∈ TGE

X .

Therefore, for any multiplicative two-form η, we have that:

η((U, V,W ), (U ′, V ′,W ′))
= η|E×X E (τ∗(U ), τ∗(U ′)) + η|GX (V, V ′) + η|E×X E (τ−1∗ (W ), τ−1∗ (W ′)).

Therefore, in order to prove that ωE and ω̃E := Ψ ∗(ΩE ) coincide, it suffices to show
that they have the same restriction to the subgroupoids GX , E ×X E , which is what
we turn to next.

That ωE |GX = ω̃E |GX follows by our construction: indeed, we haveΨ |GX = id and
ωX = ΩE |GX ; since σ |X = 0, also ωX = ωE |GX , and hence our conclusion.

We next show that ωE |E×X E = ω̃E |E×X E . Regarding E ×X E as the subgroupoid
of GE

X consisting of elements (e′, 1x , e), for p(e′) = x = p(e), we clearly have
Ψ |E×X E = Φ, and

ωE |E×X E = s∗(σ ) − t∗(σ ).

Now, Φ∗(ΩE ) is a multiplicative two-form on the source-simply connected
groupoid E ×X E , and is thus determined by its IM-form [1]. The IM-form2 corre-
sponding toΩE is simply−Ω

�
E : A → T ∗E . Pulling it back via the Lie algebroidmap

(8) to V, we deduce that the IM-form corresponding to Φ∗(ΩE ) is σ� : V → T ∗E ,
which is also the IM-form of the multiplicative two-form s∗(σ ) − t∗(σ ). We thus
conclude that s∗(σ ) − t∗(σ ) = Φ∗(ΩE ), that

ωE |E×X E = ω̃E |E×X E ,

and that Ψ is an isomorphism of symplectic groupoids.
Step 3:Ψ integrates the Lie algebroid isomorphismof Lemma 2.Note that the algebroid
of GX is given by

TGX |X = T X ⊕ AX , AX := {v ∈ A : t∗(v) ∈ T X} ⊂ A|X ;

2 Note that our sign convention is different from that in [1]; namely, the IM-form corresponding to a closed
two-form η on a groupoid G, is given by A � V �→ u∗(−ιV η), where u : M → G is the unit map.
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and the identification of AX with the cotangent Lie algebroid of πX is given by
(−ωX )� : AX

∼−→ T ∗X . Now, the Lie algebroid of GE
X is the pullback Lie alge-

broid T E ×T X AX . Let ψ denote the Lie algebroid map induced by Ψ . Consider the
commutative diagram of Lie algebroid isomorphisms:

T E ×T X AX

(id,(−ωX )�)

��

(−ωE )�

����
���

���
��

ψ �� A

(−ΩE )�

��
T E ×T X T ∗X

ϕ
�� T ∗E,

where the top-right triangle is commutative by the fact that Ψ ∗(ΩE ) = ωE , and ϕ is
defined such that the entire diagram is commutative, i.e.,

ϕ := (id, (−ωX )�) ◦ (−ω
�
E )−1.

We need to check that ϕ is the isomorphism from Lemma 2, and for that we need to
compute (ωE )�. At a unit e ∈ E , with x = p(e), there are two decompositions of the
tangent space to GE

X :

TeGE
X

∼= TeE ⊕ TeE ×Tx X AX,x ∼= TeE ×Tx X TxGX ×Tx X TeE .

In the first decomposition, the first factor is the tangent space to the units, and the
second is the Lie algebroid (i.e., the tangent space to the source-fiber), whereas the
second decomposition is based on the pullback construction of GE

X = E ×X GX ×X E .
The identification between these decompositions is given by:

(U, V,W ) �→ (U + V, p∗(U ) + W,U ).

Using the expression (7) of ωE with respect to the second decomposition, and the
identification above, we compute ωE with respect to the first decomposition:

ωE ((0, V,W ), (U, 0, 0)) = (
s∗(σ ) − t∗(σ ) + p∗(ωX )

)
(V,W, 0)(U, p∗(U ),U )

= −σ(V,U ) + ωX (W, p∗(U ));

therefore:

(−ωE )�(V,W ) = σ(V ) − p∗((ωX )�(W )).

This shows that the diagram commutes for ϕ(V, η) = σ�(V ) + p∗(η), which is the
map from Lemma 2. This finishes the proof. ��
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6 Linear Poisson structures

In this section, we write our results explicitly for linear Poisson structures. Our goal
is to illustrate Theorems A, B, 1 and 3 in this context, thus recasting and reproving
some well-known results in what (we would argue) is their proper setting.

Let (g, [·, ·]) be a Lie algebra. The dual vector space g∗ carries a canonical Poisson
structure πg, called the linear Poisson structure. It is defined by

πg,ξ := ξ ◦ [·, ·] ∈ ∧2g∗ = ∧2Tξg
∗.

In fact, any Poisson structure on a vector space for which the linear functions form a
Lie subalgebra is of this form.

Linear Poisson structures are always integrable. The following construction of a
symplectic groupoid integrating (g∗, πg) is standard and we recall it to establish the
notation. Let G be a Lie group integrating g. Then a symplectic groupoid integrating
πg is the action groupoid:

(
G � g∗,ΩG

)
⇒ (g∗, πg)

associated with the coadjoint action (g, ξ) �→ Ad∗
g−1ξ ; it carries the symplectic struc-

ture: ΩG ∈ Ω2(G × g∗) given by:

ΩG((x, ξ), (y, η))(g,ξ0) = ξ(g−1y) − η(g−1x) + ξ0([g−1x, g−1y]), (9)

for (x, ξ), (y, η) ∈ T(g,ξ0)(G × g∗) = TgG × g∗, where g−1x and g−1y denotes the
action of G on TG. For a detailed exposition (with similar notation) see, e.g., [16,
Section 2.4.2].

Illustration 1 (a) The Poisson manifold (g∗, πg) carries a canonical, complete Pois-
son spray Vg, whose flow (under the identification T ∗g∗ = g × g∗) is given by:

φt : T ∗g∗ −→ T ∗g∗, (x, ξ) �→ (x, e−tad∗
x ξ).

(b) Let O(g) ⊂ g be the subspace where the Lie-theoretic exponential map exp :
g → G is a local diffeomorphism. Then the closed two-form:

Ωg :=
∫ 1

0
φ∗
t ωcandt ∈ Ω2(T ∗g∗)

is symplectic exactly on O(g) × g∗ ⊂ T ∗g∗, and gives rise to the full dual pair:

(g∗, πg) (O(g) × g∗,Ωg)
pr1��

expVg �� (g∗,−πg)

Explicitly:

Ωg((x, ξ), (y, η))(x0,ξ0) = ξ(Ξx0 y) − η(Ξx0x) + ξ0
([

Ξx0x, Ξx0 y
])

, (10)
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where Ξx0 is the linear endomorphism of g given by:

Ξx0(x) =
∫ 1

0
e−tadx0 (x)dt = e−adx0 − Idg

−adx0
(x).

(c) X ⊂ g∗ is a Poisson transversal if and only if, for every λ ∈ X, the two-form
λ ◦ [·, ·] is nondegenerate on the annihilator of TλX. Moreover, under the identi-
fication N∗X = ⋃

λ∈X N∗
λ X × {λ} ⊂ g× X, we have a Poisson diffeomorphism

in a neighborhood of X given by:

expVg
: (N∗X, π

−Ωg|N∗X
X ) → (g∗, πg) (x, λ) �→ e−ad∗

xλ;

(d) If f : g → h is a Lie algebra map, and Y ⊂ h∗ is a Poisson transversal, then
X := ( f ∗)−1Y ⊂ g∗ is a Poisson transversal, and f induces a bundle map F
fitting into the commutative diagram of Poisson maps:

(h∗, πh)
f ∗

�� (g∗, πg)

(N∗Y, π
−Ωh|N∗Y
Y )

expVg

��

F
�� (N∗X, π

−Ωg|N∗X
X )

expVh

��

Proof (of Illustration 1) (a) The flow φt in the statement has infinitesimal generator
the vector field Vg ∈ X1(g × g∗) given by:

Vg,(x,ξ) := (0,−ad∗
xξ) = (0, π�

g,ξ x) ∈ g × g∗ = Txg × Tξg
∗,

where adx y = −[x, y] since we use right invariant vector fields to define the Lie
bracket, and this is clearly a spray.

(b) Since trajectories φt (x, ξ) of Vg are cotangent paths, they can be integrated to
elements in the Lie groupoid, yielding a groupoid exponential map:

ExpVg
: T ∗g∗ −→ G � g∗, (x, ξ) �→ (exp(x), ξ),

where exp : g → G denotes the Lie-theoretic exponential map.
On the other hand, the spray exponential map expVg

, i.e., the composition of φ1

with the bundle projection T ∗g∗ → g∗, becomes ExpVg
composed with the target

map:

expVg
(x, ξ) = e−ad∗

x ξ.

Now, the pullback by ExpVg
of the symplectic structure ΩG of (9) is given by

the formula in Theorem A (see [4] for details); hence, the general considerations
above imply that the two-form Ωg is given by:
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Ωg = (ExpVg
)∗ΩG . (11)

This implies thatΩg is nondegenerate exactly onO(g)×g∗, and that the following
is a commutative diagram of Poisson maps:

(G × g∗,ΩG)

s

�����
���

���
��� t

����
���

���
���

�

(g∗, πg) (O(g) × g∗,Ωg)pr1
��

expVg

��

exp×Idg∗
��

(g∗,−πg)

(12)

The explicit formula (10) for Ωg is obtained by pulling back ΩG from (9), and
we conclude with the observation that the linear endomorphism Ξx0 : g → g is
the left translation of the differential of exp : g → G at x0, and therefore it is
invertible precisely on O(g).

(c) Consider an affine subspace λ + L passing through a point λ ∈ g∗ and with
direction a linear subspace L ⊂ g∗. Now, λ + L is a Poisson transversal in a
neighborhood of λ if and only if the following condition is satisfied:

g∗ = L ⊕ L◦ · λ, L◦ · λ := {X · λ : X ∈ L◦}; (13)

equivalently:

λ ◦ [·, ·]|L◦×L◦ is a nondegenerate 2-form on L◦. (14)

The remaining claims are immediate.
(d) The dual map f ∗ : (h∗, πh) −→ (g∗, πg) to a Lie algebra map f is a Poisson

map, hence by Lemma 1, f ∗ is transverse to X , Y := ( f ∗)−1(X) is a Poisson
transversal in h∗, and f ∗ restricts to a Poisson map

f ∗|Y : (Y, πY ) −→ (X, πX ).

Moreover, f restricts to a linear isomorphism between the conormal spaces f :
N∗

f ∗(μ)X
∼−→ N∗

μY , for all μ ∈ Y . The inverses

Fμ =
(
f |L◦

f ∗(μ)

)−1 : L◦
μ

∼−→ L◦
f ∗(μ)

can be put together in a vector bundle map F : N∗Y ∼−→ N∗X covering f ∗ :
Y → X , which is fiberwise a linear isomorphism.
We conclude by showing that the diagram in the statement commutes. Let (y, ξ) ∈
N∗Y . Then F(y, ξ) = (x, f ∗(ξ)) ∈ N∗X , where x satisfies y = f (x). For any
z ∈ g, we have:

123



Normal forms for Poisson maps and symplectic groupoids... 729

expVg
(F(y, ξ)) (z) = expVg

((x, f ∗ξ))(z) =
(
e−ad∗

x f ∗ξ
)

(z)

= ξ( f (e−adx z)) = ξ(e−ad f (x) f (z)) = ξ(e−ady f (z))

= f ∗(e−ad∗
y ξ)(z) = f ∗(expVg

(y, ξ))(z),

where we have used that f is a Lie algebra map. Since f ∗ and the vertical maps
are Poisson maps, it follows that also F is Poisson around Y .

��

Our next illustration concerns the specialization of Theorem 6 for Poisson transver-
sals complementary to coadjoint orbits, in the particularly convenient setting where
the coadjoint action is proper at the orbit.

Illustration 2 Let g be a Lie algebra satisfying the following splitting condition at
λ ∈ g∗: there is a decomposition

g = gλ ⊕ c, (15)

where gλ the isotropy Lie algebra at λ, satisfying [gλ, c] ⊂ c. Then:

(a) Along X̃ := λ + g∗
λ, the Poisson tensor πg decomposes as:

(λ + ξ) ◦ πg = ξ ◦ πgλ + (λ + ξ) ◦ πc ∈ ∧2g∗
λ ⊕ ∧2c∗ (16)

where we identify g∗
λ = c◦;

(b) X̃ intersects all coadjoint orbits cleanly and symplectically, and hence inherits
an induced Poisson structure πX̃ ;

(c) πX̃ is globally linearizable through the Poisson isomorphism:

τλ : (g∗
λ, πgλ)

∼−→ (X̃ , πX̃ ), τλ(ξ) = ξ + λ;

(d) The subspace X ⊂ X̃ where X̃ is a Poisson transversal contains λ, and for a
product neighborhood of the origin V × W ⊂ c × g∗

λ, the following map is an
open Poisson embedding onto a neighborhood of λ:

(
V × W, πσλ

gλ

)
↪→ (

g∗, πg

)
, (x, ξ) �→ e−ad∗

x (λ + ξ), (17)

where σλ is the pullback of −Ωg via the map:

c × g∗
λ → g × g∗, (x, ξ) �→ (x, λ + ξ);

(e) If a Lie group G integrating g acts properly at λ, and Gλ denotes the isotropy
group at λ, then, by shrinking W ⊂ g∗

λ if need be, the restriction of the symplectic
groupoid G � g∗ to the image of the map (17) is isomorphic to the product of the
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groupoid Gλ � W ⇒ W with the pair groupoid V × V ⇒ V , with symplectic
structure:

(
V × (Gλ � W ) × V, s∗(σλ) + p∗(ΩGλ

) − t∗(σλ)
)

⇒
(
V × W, π

σλ
gλ

)
, where

s(y, (g, ξ), x) = (x, ξ), p(y, (g, ξ), x) = (g, ξ), t(y, (g, ξ), x) = (y,Ad∗
g−1ξ).

Remark 3 It was first proved in [17] that the splitting condition (15) implies that the
transverse Poisson structure to the coadjoint orbit at λ is linearizable, see also [23].

Submanifolds which intersect the symplectic leaves cleanly and symplectically, and
for which the induced bivector is smooth, are called Poisson-Dirac [4]. In fact, the
affine submanifold λ+g∗

λ turns out to be a Lie-Dirac submanifold (also called “Dirac
submanifold”), see [24, Example 2.18].

Proof (of Illustration 2) Since [gλ, gλ] ⊂ gλ and [gλ, c] ⊂ c we have that, in the
decomposition:

πg = πgλ + πm + πc,

corresponding to (16), the components satisfy:

πgλ ∈ gλ ⊗ ∧2g∗
λ, πm ∈ c ⊗ (g∗

λ ⊗ c∗), πc ∈ g ⊗ ∧2c∗.

The fact that gλ is precisely the isotropy Lie algebra at λ is equivalent to:

λ ◦ πgλ = λ ◦ πm = 0, λ ◦ πc ∈ ∧2c∗ is nondegenerate. (18)

Hence, on the affine space X̃ = λ + g∗
λ the Poisson bivector takes the form (16). This

proves (a), from which (b) and (c) follow.
The claim in (d) that X ⊂ X̃ contains λ is immediate. Write X = λ +U , where

U :=
{
ξ ∈ g∗

λ : (λ + ξ) ◦ πc ∈ ∧2c∗ is nondegenerate
}

⊂ g∗
λ.

Observe that N∗X = c × X and, by part a), N X = c∗ × X . We thus recognize in
(16) the decomposition (2) of πg along the Poisson transversal X into tangential and
normal components. The remaining claim in d) is the conclusion of TheoremB around
λ, for a product neighborhood V × W ⊂ c × g∗

λ of the origin with W ⊂ U .
As for (e), note that the properness assumption implies that the groupGλ is compact,

that the coadjoint orbit through λ is closed, and that the splitting (15) can be assumed to
beGλ-invariant. This assumption not only implies that the transverse Poisson structure
is linearizable, but also that the Poisson manifold (g∗, πg) is linearizable around the
coadjoint orbit through λ in the sense of [21], see [6, Example 2.7].

By the slice theorem for proper group actions, one can assume (by shrinkingW ⊂ g∗
λ

if need be) that λ + W is Gλ-invariant, and that its saturation is G-equivariantly
diffeomorphic to G ×Gλ W via the map [g, ξ ] �→ Ad∗

g−1(λ + ξ). In particular, this

implies that the restriction of the action groupoid G � g∗ to λ + W is isomorphic to
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the restriction of the action groupoid Gλ � g∗
λ to W . This holds moreover at the level

of symplectic groupoids, and the isomorphism is given by:

(Gλ � W,ΩGλ)
id×τλ ��

�� ��

(G � g∗,ΩG)

�� ��
(W, πgλ) τλ

�� (g∗, πg)

The fact that the restriction of ΩG is ΩGλ can be easily checked using (9) and (18).
A direct application of Theorem 6 now shows that the restriction of the symplectic

groupoidG�g∗ to the image of the map (17) is isomorphic to the symplectic groupoid
from e). ��

Recall that a Lie algebra h is called a Frobenius Lie algebra if the coadjoint orbit
through some λ ∈ h∗ is open.

Illustration 3 Let h be a Frobenius subalgebra of a Lie algebra g, and let H ⊂ G be
connected Lie groups integrating h ⊂ g. Denote by:

r : (g∗, πg) −→ (h∗, πh)

the Poisson submersion dual to the inclusion, and by S ⊂ (h∗, πh) the (open) sym-
plectic leaf through λ ∈ h∗.

(a) There is an open neighborhood U of 0 in h such that the two-form on h

ωλ,x0(x, y) = −λ
([Ξx0x, Ξx0 y]

)
,

is nondegenerate on U , and the map:

(U , ω−1
λ ) −→ (h∗, πh), x �→ e−ad∗

xλ (19)

is a Poisson diffeomorphism onto a neighborhood of λ in h∗;
(b) Around the Poisson transversal Xλ := r−1(λ) there is a globalWeinstein splitting

of πg given by the commutative diagram of Poisson maps:

(U × Xλ, ω
−1
λ + πXλ)

(x,ξ) �→e−ad∗x ξ ��

pr1 ��

(g∗, πg)

r
��

(U , ω−1
λ )

x �→e−ad∗x λ �� (h∗, πh)

(20)

(c) Theorem 6 for Xλ implies that the restriction of the symplectic groupoid (G �

g∗,ΩG) to the image of (20) is isomorphic to the product of the symplectic
groupoid (G � g∗,ΩG)|Xλ and the symplectic pair groupoid (U × U , pr∗1ωλ −
pr∗2ωλ);
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(d) The Lie-theoretic exponential of H, exp : h → H, induces a factorization of
diagram (20) through the commutative diagram of Poisson maps:

(H × Xλ, d̃λ−1 + πXλ)/Hλ

[h,ξ ]�→Ad∗
h−1 ξ

��

pr1
��

(g∗|S, πg)

r
��

(H, d̃λ−1)/Hλ

[h]�→Ad∗
h−1λ

�� (S, πh)

(21)

where λ̃ ∈ Ω1(H) is the left-invariant one-form extending λ, Hλ is the stabilizer
of λ, and the horizontal arrows are H-equivariant Poisson diffeomorphisms.

Part (d) gives a global description of the Poisson structure on the open g∗|S , which
implies the following:

Corollary 1 The Poisson structure on g∗|S is horizontally nondegenerate for the sub-
mersion:

r : (g∗|S, πg) −→ (S, πh). (22)

The corresponding Vorobjev triple (see, e.g., [21]) satisfies the following properties:

(1) The horizontal distribution is involutive, and is given by the tangent bundle to the
H-orbits;

(2) The horizontal two-form is the pullback of the symplectic form on the leaf S;
(3) In the decomposition πg|r−1(S) = πv + πh into vertical and horizontal compo-

nents, we have that both bivectors are Poisson and commute.

Remark 4 Note that, in general, the open set g∗|S is not saturated; for example, if h is
the diagonal subalgebra in g = aff(1) ⊕ aff(1).

We note also the following surprising property:

Corollary 2 The induced Poisson structure πXμ on the Poisson transversal Xμ is at
most quadratic for the canonical h◦-affine space structure on Xμ.

Remark 5 A special case of this corollary appeared in [19] when considering the
transverse Poisson structure to the coadjoint orbit through an element ξ ∈ g∗ for
which the isotropy Lie algebra gξ has a complement h which is also a Lie algebra. In
this case, note that by (14) h is a Frobenius algebra whose orbit through λ := ξ |h is
open, and Xλ := ξ+h◦ is a Poisson transversal to the coadjoint orbit of complementary
dimension. Thus the corollary implies the main result of [19].

Proof Note that {λ} is itself a Poisson transversal, with conormal bundle h× {λ}, and
that the pullback of Ωh under ih×{λ} : h → h×{λ}, x �→ (x, λ) is given by ωλ. Thus,
Theorem B specializes to the diffeomorphism claimed in (a).
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The conormal bundle of Xλ is N∗Xλ = h×Xλ, and the relevant two-form restricted
to this space, σ := −Ωg|h×Xλ

, is given by

σ((x, ξ), (y, η))(x0,ξ0) = η(Ξx0x) − ξ(Ξx0 y) − ξ0([Ξx0x, Ξx0 y])
= −λ([Ξx0x, Ξx0 y]),

where we have used that T Xλ = h◦ × Xλ, that ξ0|h = λ and that Ξx0(h) ⊂ h. Hence,
σ = pr∗1(ωλ), and (20) becomes Theorem 4 for the Poisson map r and the canonical
sprays. This proves (b) in a neighborhood of {0} × Xλ, respectively, {0}. We will
conclude that (b) holds on the entire U × Xλ after we prove part (d).

Part (c) is a direct consequence of Theorem 6.
The stabilizer group Hλ of λ is discrete, and therefore, themap h �→ h ·λ = Ad∗

h−1λ

is a local diffeomorphism from H to S, inducing the diffeomorphism H/Hλ
∼= S. Note

also that by (9) −ΩH |H×λ = d̃λ, where λ̃ is the left-invariant one-form extending λ.
Therefore, restricting the right side of (12) to H ×{λ}, respectively h×{λ}, we obtain
the following commutative diagram of local symplectomorphisms:

(H, d̃λ)
h �→Ad∗

h−1λ

�����
����

���

(O(h), ωλ)

exp

��

x �→e−ad∗x λ�� (S, πh|−1
S )

(23)

In particular, this shows that U ⊂ O(h). Also, this implies that we have an induced
symplectomorphism:

ψ : (H, d̃λ)/Hλ
∼−→ (S, πh|−1

S ).

Since r is H -equivariant, it follows that g∗|S is H -invariant. Moreover, since S is the
λ-orbit of H , it follows easily that themap H×Xλ → g∗|S , (h, ξ) �→ Ad∗

h−1ξ induces
an H -equivariant diffeomorphism:

Ψ : H ×Hλ Xλ
∼−→ g∗|S,

which satisfies r ◦ Ψ = ψ ◦ pr1. To prove that Ψ is indeed a Poisson isomorphism,
note that both Poisson structures are H -invariant, and Ψ is H -equivariant. Therefore,
it suffices to check that Ψ is a Poisson map in a neighborhood of (Hλ × Xλ)/Hλ, and
this follows from the commutativity of diagram (23), and that of diagram (20) around
{0} × Xλ. On the other hand, we can now reverse the argument: having proven that
(21) is a commutative diagram of Poisson maps, it follows that (20) is a Poisson map
on the entire U × Xλ, respectively, U , and hence (b) holds. Hence the factorization
from (d) holds:
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(U × Xλ, ω
−1
λ + πXλ)

exp×Id/Hλ��

pr1 ��

(H × Xλ, d̃λ−1 + πXλ)/Hλ
Ψ ��

pr1
��

(g∗|S, πg)

r
��

(U , ω−1
λ )

exp /Hλ �� (H, d̃λ−1)/Hλ

ψ �� (S, πh)

and this concludes the proof. ��
Proof (of Corollary 1) By Lemma 1, each fiber Xμ := r−1(μ), μ ∈ S, is a Poisson
transversal; or equivalently, πg is horizontally nondegenerate for the map (22).

For μ ∈ S, we have that N∗Xμ = h × Xμ. Therefore, the normal bundle is given
by the tangent space to the h-orbits:

Nξ Xμ = π
�
g(N

∗
ξ Xμ) = π

�
g(h × {ξ}) = {ad∗

xξ : x ∈ h}. (24)

Since the horizontal distribution is precisely the canonical normal bundle to the fibers,
this implies (1).

Diagram (21) implies that the Poisson structure on g∗|S decomposes as a sum of two
commuting Poisson structures πg|r−1(S) = Ψ∗(πXλ) + Ψ∗(d̃λ−1), and since Ψ∗(πXλ)

is tangent to the fibers of r , and Ψ∗(d̃λ−1) is tangent to the H -orbits, it follows that
this is precisely the decomposition into vertical plus horizontal bivectors:

πv := Ψ∗(πXλ), πh := Ψ∗(d̃λ−1),

which proves (3). Since r is a Poisson map, it follows that πh projects to πh, and
therefore, the inverse of πh|S (i.e., the symplectic structure on S) pulls back to the
inverse of πh restricted to annihilator of the fibers (i.e., the horizontal two-form). This
implies (2) (see also [20, Proposition 3.6]). ��
Proof (of Corollary 2) By (24) it follows that the horizontal lift of the corresponding
Ehresmann connection is given by:

horξ : TμS −→ Nξ Xμ, horξ (ad
∗
xμ) = ad∗

xξ, ξ ∈ Xμ,

and so

πXμ,ξ = πg,ξ − πh
ξ = πg,ξ − (∧2horξ )(πh,μ), ξ ∈ Xμ.

The claim now follows from the fact that the horizontal lift has an affine dependence
on ξ ∈ Xμ. ��
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