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Abstract We exhibit three inequalities involving quantummeasurement, all of which
are sharp and state independent. The first inequality bounds the performance of joint
measurement. The second quantifies the trade-off between the measurement quality
and the disturbance caused on the measured system. Finally, the third inequality pro-
vides a sharp lower bound on the amount of decoherence in terms of the measurement
quality. This gives a unified description of both the Heisenberg uncertainty principle
and the collapse of the wave function.
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1 Introduction

Initial Remark Modulo minor modifications, this manuscript has been on the ArXiv
since 2006, under the identifier quant-ph/0606093. Since that time, several
results have found their way into the literature [17–20,24,25]. This convinced me
to submit the manuscript for publication.

In quantum mechanics, observables are modelled by self-adjoint operators A on a
Hilbert spaceH , and a quantummechanical system is described by the von Neumann
algebra A generated by its observables. A normal state ρ ∈ S (A ) on A induces
a probability measure on the spectrum Spec(A) of an observable A, and it is the
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1558 B. Janssens

objective of a quantum measurement to portray this probability measure as faithfully
as possible.

For the more detailed results of Sects. 5 and 6, we will assume thatA is the algebra
B(H ) of all bounded operators on a separable Hilbert spaceH , an assumption which
is justified for quantum systems consisting of finitely many particles. In this case, all
normal states onA are of the form ρ(A) := tr(r A), where r ∈ T1,+(H ) is a positive
normalized trace class operator on H , the density operator.

According to the uncertainty relation σXσY ≥ 1
2 |ρ([X,Y ])|, (see [5,14,26]), there

is an inherent variance in the quantum state. Furthermore, quantum theory puts severe
restrictions on the performance of measurement. These restrictions, which come on
top of the measurement restrictions implied by the above uncertainty relation, fall into
three distinct classes.

(I) The impossibility of perfect joint measurement. It is not possible to perform a
simultaneous measurement of two noncommuting observables in such a way that
both measurements have perfect quality.

(II) TheHeisenberg Principle, (see [5]). In this paper, this means that quantum infor-
mation cannot be extracted from a system without disturbing that system. (There
are various other formulations of the Heisenberg Principle in the literature, but
throughout the paper, it will exclusively have the above meaning.)

(III) The collapse of thewave function.When information is extracted from a quantum
system, a so-called decoherence is experimentally known to occur on this system.

We will see that this collapse of the wave function is a mathematical consequence of
information extraction. In the process, II and III will be clearly exhibited as two sides
of the same coin.

The subject of uncertainty relations in quantum measurement is already endowed
with an extensive literature. For example, the Heisenberg Principle and the impossi-
bility of joint measurement are quantitatively illustrated in [2,4,8,22].

However, the inequalities in these papers depend on the state ρ, which somewhat
limits their practical use. Indeed, the bound on the measurement quality can only be
calculated if the state ρ is known, in which case there is no need for a measurement
in the first place.

Our state-independent figures of merit (Sects. 2, 3) will lead us quite naturally to
state-independent bounds on the performance of measurement. In order to illustrate
their practical use, we will give some applications. We investigate the beamsplitter,
resonance fluorescence and nondestructive qubit measurement.

In Sect. 4, we will prove a sharp, state-independent bound on the performance
of jointly unbiased measurement. This generalizes the impossibility of perfect joint
measurement.

In Sect. 5, we will prove a sharp, state-independent bound on the performance of a
measurement in terms of the maximal disturbance that it causes. This generalizes the
Heisenberg Principle.

In contrast to the Heisenberg Principle and its abundance of inequalities, the phe-
nomenon of decoherence has mainly been investigated in specific examples (see, e.g.
[6,11,32]). Although there are some bounds on the remaining coherence in terms of
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Unifying decoherence and the Heisenberg Principle 1559

the measurement quality (see [10,27]), a sharp, information-theoretic inequality does
not yet appear to exist.

We will provide such an inequality in Sect. 6, where we will prove a sharp upper
bound on the amount of coherence which can survive information transfer. Not only
does this generalize the collapse of the wave function, it also shows that no informa-
tion can be extracted if all coherence is left perfectly intact. It is therefore a unified
description of both the Heisenberg Principle and the collapse of the wave function.

2 Information transfer

In quantummechanics, a system is described by a vonNeumann algebraA of bounded
operators on a Hilbert spaceH . The spaceS (A ) of normal states of the system A
is formed by the linear functionals ρ : A → C which are positive (i.e. ρ(A†A) ≥ 0
for A ∈ A ), normalized (i.e. ρ(1) = 1) and normal (i.e. weakly continuous on the
unit ball A1). If A is the algebra B(H ) of all bounded operators on a separable
Hilbert space H , then every normal state on A is of the form ρ(A) := tr(r A), with
r ∈ T1,+(H ) a positive normalized (tr(r) = 1) trace class operator on H (cf. [13,
Ch. 7]), the density operator. With the system in state ρ ∈ S (A ), observation of an
(Hermitean) observable A ∈ A is postulated to yield the average value ρ(A).

Definition 1 Let A and B be von Neumann algebras. A map T : B → A is called
Completely Positive (or CP for short) if it is linear, normalized (i.e. T (1) = 1), positive
(i.e. T (X†X) ≥ 0 for all X ∈ B) and if, moreover, the extension idn⊗T : Mn⊗B →
Mn ⊗A is positive for all n ∈ N, where Mn is the algebra of complex n×n-matrices.
In this paper, we will require CP-maps to be weakly continuous on the unit ball B1
unless specified otherwise.

Its dual T ∗ : S (A ) → S (B), defined by T ∗(ρ) := ρ ◦ T , has a direct physical
interpretation as an operation between quantum systems. First of all, due to positivity
and normalization of T , each state ρ ∈ S (A ) is again mapped to a state T ∗(ρ) ∈
S (B). Secondly, linearity implies that T ∗ satisfies

pT ∗(ρ1) + (1− p)T ∗(ρ2) = T ∗(pρ1 + (1− p)ρ2)

for all p ∈ [0, 1], ρ1, ρ2 ∈ S (A ). This expresses the stochastic equivalence princi-
ple: a system which is in state ρ1 with probability p and in state ρ2 with probability
(1− p) cannot be distinguished from a system in state pρ1 + (1− p)ρ2. Finally, it is
possible to extend the systemsA andB under consideration with another system Mn ,
onwhich the operation acts trivially. Due to complete positivity, states inS (Mn ⊗A )

are once again mapped to states in S (Mn ⊗B). Incidentally, any CP-map T auto-
matically satisfies T (X†) = T (X)† and ‖T (X)‖ ≤ ‖X‖ for all X ∈ B.

2.1 General, unbiased and perfect information transfer

Suppose that we are interested in the distribution of the observable A ∈ A , with the
systemA in some unknown state ρ. We perform the operation T ∗ : S (A ) → S (B)
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1560 B. Janssens

and then observe the ‘pointer’ B in B in order to obtain information on A. One may
(see [4]) take the position that any CP-map T : B → A is an information transfer
from any observable A ∈ A to any pointer B ∈ B. The following is a figure of
demerit for the quality of such an information transfer.

Definition 2 Let T : B → A be a CP-map. Its measurement infidelity δ in transfer-
ring information from A to the pointer B is defined as

δ := sup
S

‖1S(A) − T (1S(B))‖,

where S runs over the Borel subsets of R.

It measures how accurately probability distributions on the measured observable A
are copied to the pointer B.

The initial state ρ defines a probability distribution Pi on the spectrum of A by
Pi (S) := ρ(1S(A)), where 1S(A) denotes the spectral projection of A associated
with the set S. Similarly, the final state T ∗(ρ) defines a probability distribution P f

on the spectrum of B. δ is now the maximum distance between Pi and P f , where the
maximum is taken over all initial states ρ. That is, δ = supρ D(Pi ,P f ).

The trace distance (a.k.a. variational distance or Kolmogorov distance) is defined
as

D(P f ,Pi ) := sup
S
{|Pi (S) − P f (S)|},

the difference between the probability that the event S occurs in the distribution Pi

and the probability that it occurs in the distribution P f , for the worst-case Borel set
S. Writing out this definition, we see that indeed

sup
ρ

D(Pi ,P f ) = sup
ρ,S

|ρ(1S(A)) − ρ(T (1S(B)))|
= sup

S
‖1S(A) − T (1S(B))‖,

which equals δ. Themeasurement infidelity δ is thus precisely theworst-case difference
between input and output probabilities.

In this paper, we will devote considerable attention to the class of unbiased infor-
mation transfers.

Definition 3 ACP-map T : B → A is called an unbiased information transfer from
the Hermitean observable A ∈ A to a Hermitean B ∈ B if T (B) = A.

Recall that we are interested in the distribution of A, with the system A in some
unknown state ρ ∈ S (A ). We perform the operation T ∗ : S (A ) → S (B) and
then observe the ‘pointer’ B in B. Since T ∗(ρ)(B) = ρ(T (B)) by definition of
the dual, and ρ(T (B)) = ρ(A) by definition of unbiased information transfer, the
expectation value of B in the final state T ∗(ρ) is the same as that of A in the initial
state ρ. We conclude that the expectation of A was transferred to B.
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Unifying decoherence and the Heisenberg Principle 1561

Definition 4 An information transfer T : B → A from A ∈ A to B ∈ B is called
perfect if δ = 0. Equivalently, it is perfect if T (B) = A, and if the restriction of T to
B ′′, the von Neumann algebra generated by B, is a ∗-homomorphism B ′′ → A′′.

The entire probability distribution of A is then transferred to B, rather than merely its
average value. Indeed, for all moments ρ(An), we have T ∗(ρ)(Bn) = ρ(T (Bn)) =
ρ(T (B)n) = ρ(An). Everything there is to know about A in the initial state ρ can be
obtained by observing the ‘pointer’ B in the final state T ∗(ρ).

Between the different kinds of information transfer (IT), the following relations
hold:

{General IT} ⊃ {Unbiased IT} ⊃ {Perfect IT}.

2.2 Example: von Neumann qubit measurement

LetΩ := {+1,−1}. Denote byC (Ω) the (commutative) algebra ofC-valued random
variables onΩ . A state onC (Ω) is precisely the expectation valueEw.r.t. a probability
distribution P on Ω , in which context ρ( f ) is denoted E( f ). Define the probability
distributions P± to assign probability 1 to ±1.

The von Neumann measurement T : M2 ⊗ C (Ω) → M2 on a qubit (described by
the algebra M2 of complex 2× 2 matrices) is defined as

T (X ⊗ f ) := f (+1)P+X P+ + f (−1)P−X P−,

with P+ = |↑ 〉〈 ↑ | and P− = |↓ 〉〈 ↓ |. Then T ∗ : S (M2) → S (M2) ⊗S (C (Ω))

is given by

T ∗(ρ) = ρ(P+)|↑ 〉〈 ↑| ⊗ P+ + ρ(P−)|↓ 〉〈 ↓| ⊗ P−.

In words: with probability ρ(P+), the output+1 occurs and the qubit is left in state
|↑ 〉. With probability ρ(P−), the output−1 occurs, leaving the qubit in state |↓ 〉. The
von Neumann measurement T is a perfect (and thus unbiased) information transfer
from σz ∈ M2 to the pointer 1⊗ (δ+1 − δ−1) ∈ M2 ⊗ C (Ω).

2.3 CP-maps and POVMs

Quantum measurements are often (e.g. [4,7]) modelled by positive operator-valued
measures or POVMs. From the above CP-map T , we may distil the POVM
μ : Ω → M2 by μ(ω) := T (1⊗ δω), i.e. μ(+1) = P+ and μ(−1) = P−.

This procedure is fully general: given a CP-map T : B → A and a ‘pointer’
B ∈ B, we obtain an A -valued POVM μB,T on Spec(B) by μT,B(S) := T (1S).
(This is why we require CP-maps to be weakly continuous on the unit ball B1.)
Conversely, anyA -valuedPOVMμ onΩ gives rise to theCP-map Tμ : L∞(Ω) → A
by integration, Tμ( f ) = ∫

Ω
f (ω)μ(dω).
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1562 B. Janssens

ACP-map can thus be seen as an extension of a POVMthat keeps track of the system
output as well as the measurement output. Since we will be interested in disturbance
of the system, it is imperative that we consider the full CP-map rather than merely its
POVM.

3 Maximal added variance

For unbiased information transfer, there exists a figure of demerit more attractive
than δ. Consider the variance Var(B, T ∗(ρ)) of the output, where the variance of X
in the state ρ is defined as

Var(X, ρ) := ρ(X†X) − ρ(X)∗ρ(X).

The output variance can be split into two parts. One part Var(A, ρ) is the variance of
the input, which is intrinsic to the quantum state ρ. The other part Var(B, T ∗(ρ)) −
Var(A, ρ) ≥ 0 is added by the measurement procedure. This second part determines
how well the measurement performs.

The maximal added variance (where the maximum is taken over the input states ρ)
will be our figure of demerit. For example, perfect information transfer from A to
B satisfies Var(B, T ∗(ρ)) = Var(A, ρ), so that the maximal added variance is 0.
There is uncertainty in the measurement outcome, but all uncertainty ‘comes from’
the quantum state, and none is added by the measurement procedure.

Definition 5 The maximal added variance of an unbiased information transfer T is
defined as

Σ2 := sup
ρ∈S (A )

Var(B, T ∗(ρ)) − Var(A, ρ).

It is straightforward to verify that Σ2 = ‖T (B†B) − T (B)†T (B)‖. This inspires the
following definition.

Definition 6 Let T : B → A be a CP-map. We define the operator-valued sesquilin-
ear form ( · , · ) : B ×B → A by

(X,Y ) := T (X†Y ) − T (X)†T (Y ).

It satisfies (X,Y )† = (Y, X) and is positive semi-definite: (B, B) ≥ 0 for all B ∈ B
(cf. also [12]). This ‘length’ has the physical interpretation ‖(B, B)‖ = Σ2, and there
is even a Cauchy–Schwarz inequality:

Lemma 1 (Cauchy–Schwarz) Let T : B → A be a CP-map, and (X,Y ) :=
T (X†Y ) − T (X)†T (Y ). Then for all X,Y ∈ B:

(X,Y )(Y, X) ≤ ‖(Y,Y )‖(X, X).
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Unifying decoherence and the Heisenberg Principle 1563

Proof By Stinespring’s theorem (see [28]), we may assume without loss of generality
that T is of the form T (X) = V †XV for some contraction V . Writing this out, we
obtain (X,Y ) = V †X†(1 − VV †)YV . Defining g(X) := √

1− VV †XV , we have
(X,Y ) = g(X)†g(Y ). Hence (X,Y )(Y, X) = g(X)†g(Y )g(Y )†g(X), which is less
or equal than ‖g(Y )‖2g(X)†g(X) = ‖(Y,Y )‖(X, X). ��

If an information transfer is perfect, then of course Σ2 = ‖(B, B)‖ = 0. (No
variance is added.) We will now show that the converse also holds: if Σ2 = 0, then T
is a ∗-homomorphism on B ′′. (Compare this with the fact that probability distributions
of zero variance are concentrated in a single point.)

Theorem 1 Let T : B → A be a CP-map, and let B ∈ B be Hermitean. Then
among

1. (B, B) = 0.
2. The restriction of T to B ′′, the von Neumann algebra generated by B, is a

∗-homomorphism B ′′ → T (B)′′.
3. ( f (B), f (B)) = 0 for all measurable functions f on the spectrum of B.
4. T maps the relative commutant B ′ = {X ∈ A ; [X, B] = 0} into T (B)′.

the following relations hold: (1) ⇔ (2) ⇔ (3) ⇒ (4).

Proof For (1) ⇒ (2), useCauchy–Schwarz (Lemma1) tofind T (Bn)−T (B)T (Bn−1)

≤ ‖(B, B)‖(Bn−1, Bn−1) = 0. By induction, we have T (Bn) = T (B)n , and by
linearity T ( f (B)) = f (T (B)) for all polynomials f . Thus, T is a ∗-homomorphism
from the algebra of polynomials on the spectrum of B to that on T (B). Since T
is positive, it is norm continuous, hence extends to a C∗-algebra homomorphism
between the algebras C(Spec(B)) and C(Spec(A)) of continuous functions on the
spectra. Moreover, since we require CP-maps to be continuous in the weak operator
topology on the unit ball and since every measurable function on the spectrum can
be approximated weakly by a uniformly bounded sequence of continuous functions,
the statement even extends to the algebras of measurable functions on the spectra of
B and T (B), isomorphic to B ′′ and T (B)′′, respectively. For (2) ⇒ (3), note that
T ( f (B)2) = T ( f (B))2. For (3) ⇒ (1), take f (x) = x . Finally, we prove (1) ⇒ (4).
Suppose that [A, B] = 0. Then [T (B), T (A)] = T ([A, B]) − [T (A), T (B)] =
(A†, B) − (B†, A) (B is Hermitean). By Cauchy–Schwarz, the last term equals zero
if (B, B) does. ��

We see that the maximal added variance Σ2 equals 0 if and only if T is a perfect
information transfer. We shall take Σ to parametrize the imperfection of unbiased
information transfer.

4 Joint measurement

In a jointly unbiased measurement, information on two observables A and Ã is trans-
ferred to two commuting pointers B and B̃. If A and Ã do not commute, then it is not
possible for both information transfers to be perfect. (See [29,30].) Indeed, the degree
of imperfection is determined by the amount of noncommutativity.
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1564 B. Janssens

Let T : B → A be a CP-map, and let B, B̃ ∈ B be Hermitean observables inB.
Set A := T (B), Ã := T (B̃), Σ2

B := ‖(B, B)‖, and Σ2
B̃
:= ‖(B̃, B̃)‖.

Theorem 2 If B and B̃ commute, then

ΣBΣB̃ ≥ 1
2‖[A, Ã]‖. (1)

Proof Since [B, B̃] = 0, we have [ Ã, A] = T ([B, B̃]) − [T (B), T (B̃)] = (B, B̃) −
(B̃, B). By Cauchy–Schwarz, the latter is at most 2ΣBΣB̃ in norm. ��
Remark 1 The A -valued POVMs μi on Ωi ⊆ R are called jointly measurable (e.g.
[15, §2 and 7]) if there exists a POVMμ onΩ andmeasurable functions Bi : Ω → Ωi

such that μi = μ ◦ B−1
i . If the sets Ωi are bounded, we can apply Theorem 2 to

the CP-map Tμ : L∞(Ω) → A obtained by integrating against μ. Since Σ2
Bi ,Tμ

=
Σ2

x,Tμi
, we find Σx,Tμi

· Σx,Tμ j
≥ 1

2‖[Ai , A j ]‖. Here, Σ2
x,Tμi

= ‖ ∫
Ωi

x2μi (dx) −
(
∫
Ωi

xμi (dx))2‖ is the maximal added variance of Tμi as an unbiased measurement
of Ai :=

∫
Ωi

xμi (dx).

We now show that the bound (1) is sharp in the sense that for all S, S̃ > 0, there
exist T , B, B̃ such that (1) attains equality with ΣB = S, ΣB̃ = S̃.

4.1 Application: The beamsplitter as a joint measurement

A beamsplitter is a device which takes two beams of light as input. A certain fraction
of each incident beam is refracted and the rest is reflected, in such a way that the
refracted part of the first beam coincides with the reflected part of the second and
vice versa (cf. Fig. 1). We will show that the beamsplitter serves as an optimal joint
unbiased measurement.

In cavity QED, a single mode in the field is described by a Hilbert space H
of a harmonic oscillator, with creation and annihilation operators a† and a satis-
fying [a, a†] = 1, as well as x = a+a†√

2
and p = a−a†√

2i
. The coherent states

|α〉 = e−|α|2/2 ∑∞
n=0

αn√
n! |n〉 are dense in H , and satisfy a|α〉 = α|α〉.

Quantummechanically, a beamsplitter is described by the unitary operator U on
H ⊗H , given by U = exp(θ(a† ⊗ a − a ⊗ a†)). In terms of the coherent vectors,
we have U |α〉 ⊗ |β〉 = |α cos(θ) + β sin(θ)〉 ⊗ | − α sin(θ) + β cos(θ)〉. Note that

air

glass

Fig. 1 Beamsplitter
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Unifying decoherence and the Heisenberg Principle 1565

U †a ⊗ 1U = cos(θ)a ⊗ 1 + sin(θ)1 ⊗ a and that U †1 ⊗ aU = − sin(θ)a ⊗ 1 +
cos(θ)1⊗ a. (This can be seen by sandwiching both sides between coherent vectors.)
Since the map Y �→ U †YU respects +, · and †, we readily calculate

U †x ⊗ 1U = cos(θ)x ⊗ 1+ sin(θ)1⊗ x,

U †x2 ⊗ 1U = cos2(θ)x2 ⊗ 1+ 2 sin(θ) cos(θ)x ⊗ x + sin2(θ)1⊗ x2,

U †1⊗ pU = − sin(θ)p ⊗ 1+ cos(θ)1⊗ p,

U †1⊗ p2U = sin2(θ)p2 ⊗ 1− 2 cos(θ) sin(θ)p ⊗ p + cos2(θ)1⊗ p2.

Since the von Neumann algebra describing a single mode in the field is B(H ), we
identify the normal state space S (B(H )) with the space T1,+(H ) of positive nor-
malized trace class operators, and we are interested in the map r �→ Ur ⊗ |0〉〈0|U †

from T1,+(H ) to T1,+(H ) ⊗ T1,+(H ). In other words, we feed the beamsplitter
only one beam of light in a state ρr described by the density operator r , the other input
being the vacuum. The dual of this is the CP-map T : B(H ) ⊗B(H ) → B(H )

defined by T (Y ) := id ⊗ φ0(U †YU ), with φ0 the vacuum state φ0(X) = 〈0|X |0〉.
Take B = cos−1(θ)x⊗1 for instance.ThenT (B) = x〈0|1|0〉+tan(θ)1〈0|x |0〉 = x .

Similarly,with B̃ = − sin−1(θ)1⊗p, we have T (B̃) = p. Apparently, splitting a beam
of light in two parts, measuring x⊗1 in the first beam and 1⊗ p in the second, and then
compensating for the loss of intensity provides a simultaneous unbiased measurement
of x and p in the original beam. Since [x, p] = i , we must1 have ΣBΣB̃ ≥ 1

2 .
We now calculate ΣB and ΣB̃ explicitly. From 〈0|x2|0〉 = 1

2 , we see that T (B2) =
x2 + 1

2 tan
2(θ)1. Thus, Σ2

B = ‖(B, B)‖ = 1
2 tan

2(θ). Similarly, Σ2
B̃
= 1

2 tan
−2(θ).

We see thatΣBΣB̃ = 1
2 , so that the beamsplitter is indeed an optimal jointly unbiased

measurement.
By scaling B, optimal joint measurements can be found for arbitrary values of

ΣB and ΣB̃ , which shows the bound in Theorem 2 to be sharp. It may therefore be
used to evaluate joint measurement procedures. For example, it was shown in [9] that
homodyne detection of the spontaneous decay of a two-level atom constitutes a joint
measurement with ΣΣ ′ = 1.056, slightly above the bound ΣΣ ′ ≥ 1 provided by
Theorem 2.

The beamsplitter is an optimal joint measurement in the sense that it minimizes
ΣΣ ′. It also performs well with other figures of merit. For example, if the quality of
joint measurement is judged by the state-dependent cost R(T ) := Var(B, T ∗(ρ)) +
Var(B̃, T ∗(ρ)), then at least for Gaussian ρ, the optimal measurement is again the
above beamsplitter with θ = π/4. (See [7].)

5 The Heisenberg Principle

The Heisenberg Principle may be stated as follows:

1 We neglect the technical complication of x and p being unbounded operators.
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1566 B. Janssens

If all states are left intact, no quantum information can be extracted from a
system.

This alludes to an information transfer from an initial system A to a final system
consisting of two parts: the systemA and an ancillaB, containing the pointer B. We
thus have an information transfer T : A ⊗B → A from A to 1⊗ B.

An initial state ρ ∈ S (A ) gives rise to a final state T ∗(ρ) ∈ S (A ⊗ B).
Restricting this final state to the system A � A ⊗ 1 ⊆ A ⊗B (this is called taking
the partial trace over B) yields a ‘residual’ state R∗(ρ) ∈ S (A ), whereas taking
the partial trace over A yields the final state Q∗(ρ) ∈ S (B) of the ancilla. We
define the CP-maps R : A → A by R(A) := T (A ⊗ 1) and Q : B → A by
Q(B) := T (1⊗ B). The map R describes what happens to A if we forget about the
ancilla B, and Q describes the ancilla, neglecting the original system A .

We wish to find a quantitative version of the Heisenberg Principle, i.e. we want to
relate the imperfection of the extracted quantum information to the amount of state
disturbance.

Definition 7 The maximal disturbance Δ of a map R : A → A is given by

Δ := sup{‖R(P) − P‖ ; P ∈ A , P2 = P† = P}.

The trace distance (or Kolmogorov distance) D(τ, ρ) is the maximal difference
between the probability τ(P) that an event P occurs in the state τ , and the probability
ρ(P) that it occurs in the state ρ, for the worst-case event (projection operator) P . For
short, D(τ, ρ) := supP {|τ(P)− ρ(P)|}. If τ and ρ correspond to density operators t
and r , then D(τ, ρ) = 1

2 tr(|t − r |) (see, e.g. [21]).
The maximal disturbance Δ is now the worst-case distance between the input ρ

and the output R∗(ρ), i.e. Δ = sup{D(ρ, R∗(ρ)); ρ ∈ S (A )}. Indeed,

sup
ρ
{D(ρ, R∗(ρ))} = sup

ρ,P
{ρ(P) − ρ(R(P))},

which equals supP {‖R(P) − P‖} = Δ.

5.1 Heisenberg Principle for unbiased information transfer

We first turn our attention to unbiased information transfer. The imperfection of the
information is then captured in the maximal added variance Σ2.

The Heisenberg Principle only holds for quantum information. Classical observ-
ables are contained in the centre Z = {A ∈ A ; [A, X ] = 0 ∀X ∈ A }, whereas
quantum observables are not. The degree in which an observable A is ‘quantum’ is
given by its distance to the centre d(A,Z ) = inf Z∈Z ‖A − Z‖.

In the rest of the paper, we will take the algebra of observables to be B(H ) for
some separable Hilbert space H .

The centre is then simplyC1. Since normal states ρ ∈ S (B(H )) are given by density
operators r ∈ T1,+ as ρ(A) = tr(r A), the dual T ∗ : S (B(H )) → S (B(H ′)) of
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a CP-map T : B(H ′) → B(H ) yields a map T1,+(H ) → T1,+(H ′), which we
denote by T∗. We then have

T ∗(ρ)(A) = tr(rT (A)) = tr(T∗(r)A).

Theorem 3 Let T : B(H ) ⊗ B → B(H ) be a CP-map, let B ∈ B be Her-
mitean. Define A := T (1 ⊗ B), and Σ2 := ‖(1 ⊗ B, 1 ⊗ B)‖. Further, define
Δ := supP {‖R(P) − P‖}, with R the restriction of T to B(H ) ⊗ 1. Then

Σ ≥ d(A,Z )

1
2 − Δ√

Δ(1− Δ)
. (2)

This bound is sharp in the sense that for all Δ ∈ [
0, 1

2

]
, there exist T and A for which

(2) attains equality.

Proof For the sharpness, see Sect. 6.5. As for the bound, wemay assumeΔ < 1
2 , since

inequality (2) is trivially satisfied otherwise. Denote the spectrum of A by Spec(A).
Let x := sup(Spec(A)) and y := inf(Spec(A)), so that d(A,Z ) = x−y

2 .Without loss
of generality, assume that there exist normalized eigenvectors ψx and ψy satisfying
Aψx = xψx and Aψy = yψy . (If this is not the case, choose x ′ and y′ in Spec(A)

arbitrarily close to x and y and complete the proof using approximate eigenvectors.)
Define ψ− := 1√

2
(ψx + ψy), B̃ := |ψ−〉〈ψ−| and Ã := T (B̃ ⊗ 1).

We thus have ‖[A, B̃]‖ = d(A,Z ). Since ‖ Ã− B̃‖ ≤ Δ, we have ‖[A, Ã − B̃]‖ ≤
2Δd(A,Z ). Then by the triangle inequality,

‖[T (1⊗ B), T (B̃ ⊗ 1)]‖ = ‖[A, B̃] + [A, Ã − B̃]‖ ≥ d(A,Z )(1− 2Δ),

which brings us in a position to apply Theorem 2 to the commuting pointers B̃ ⊗ 1
and 1⊗ B. This yields

2Σ
√
‖(B̃ ⊗ 1, B̃ ⊗ 1)‖ ≥ d(A,Z )(1− 2Δ). (3)

In order to estimate ‖(B̃ ⊗ 1, B̃ ⊗ 1)‖, we first prove that Spec( Ã) ⊆ [0,Δ] ∪
[(1− Δ), 1]. Let a ∈ Spec( Ã). Since T is a contraction and 0 ≤ B̃ ≤ 1, we have 0 ≤
a ≤ 1. Without loss of generality, assume that there exists a normalized eigenvector
ψa such that Ãψa = aψa . (Again, if this is not the case, one may use approximate
eigenvectors.) Decompose ψa over the eigenspaces of B̃, i.e., write ψa = χ1 + χ0,
with χ1 ⊥ χ0, B̃χ1 = χ1 and B̃χ0 = 0. Then, we have

( Ã − B̃)ψa = (a − 1)χ1 + aχ0.

Since ‖χ1‖2 + ‖χ0‖2 = 1, the inequality

Δ2 ≥ ‖( Ã − B̃)ψa‖2 = (a − 1)2‖χ1‖2 + a2‖χ0‖2
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Fig. 2 Combinations (Δ, Σ)

below the curve are forbidden,
those above are allowed. (With
d(A,Z ) = 1.)
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implies that either |1− a| ≤ Δ or a ≤ Δ. Thus Spec( Ã) ⊆ [0,Δ] ∪ [(1− Δ), 1], as
desired. From this, it follows that Spec( Ã− Ã2) ⊆ [0,Δ(1−Δ)]. Since B̃2 = B̃, we
may estimate

‖(B̃ ⊗ 1, B̃ ⊗ 1)‖ = ‖T (B̃ ⊗ 1) − T (B̃ ⊗ 1)2‖ = ‖ Ã − Ã2‖ ≤ Δ(1− Δ).

Combining this with inequality (3) yields 2Σ
√

Δ(1− Δ) ≥ d(A,Z )(1−2Δ), which
was to be demonstrated. ��
In the case of no disturbance, Δ = 0, we see that Σ → ∞. No information transfer
from A is allowed if all states on A are left intact. This is Werner’s (see [31])
formulation of the Heisenberg Principle. In the opposite case of perfect information
transfer, Σ = 0, inequality 2 shows that Δ must equal at least one half. We shall see
in Sect. 6 that this corresponds with a so-called collapse of the wave function.

These two extreme situations are connected by Theorem 3 in a continuous fashion,
as indicated in Fig. 2. The upper left corner of the curve illustrates the Heisenberg
Principle. In Sect. 6, we will see that the lower right corner represents the collapse of
the wave function.

5.2 Heisenberg Principle for general information transfer

We now prove a version of the Heisenberg Principle for general information transfer.
Let T : B(H ) ⊗ B → B(H ) be a CP-map, and let A ∈ B(H ) and B ∈ B
be Hermitean, with A /∈ Z = C1. Define Δ := supP {‖R(P) − P‖}, with R the
restriction of T to B(H ) ⊗ 1. Define δ := supS{‖T (1⊗ 1S(B)) − 1S(A)‖}. In this
setting, we find:

Corollary 1 For δ and Δ in
[
0, 1

2

]
, we have

( 1
2 − δ

)2 + ( 1
2 − Δ

)2 ≤ 1
4 . (4)

This bound is sharp; for all Δ ∈ [
0, 1

2

]
, there exists a T for which (4) attains equality.
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Fig. 3 Combinations (Δ, δ)
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Proof Choose a nontrivial measurable subset S of Spec(A), and put P := 1⊗ 1S(B).
Since ‖T (P) − 1S(A)‖ ≤ δ and Spec(1S(A)) = {0, 1}, we find that Spec(T (P)) ⊆
[0, δ]∪[1−δ, 1] (cf. the proof of Theorem3). ThusΣ2 = ‖T (P)−T (P)2‖ ≤ δ(1−δ).
Similarly, d(T (P),Z ) ≥ 1

2 − δ since Spec(T (P)) contains points in both [0, δ] and
[1− δ, 1]. Applying Theorem 3 to the pointer P , we obtain

√
δ(1− δ) ≥ ( 1

2 − δ
)( 1

2 − Δ
)
/
√

Δ(1− Δ),

or equivalently
( 1
2 − δ

)2 + ( 1
2 − Δ

)2 ≤ 1
4 . For sharpness, see Sect. 6.5. ��

A measurement that does not disturb any state (Δ = 0) cannot yield information
(δ ≥ 1

2 ). This is the Heisenberg Principle. On the other hand, perfect information
(δ = 0) implies full disturbance (Δ ≥ 1

2 ), corresponding to the collapse of the
wave function. Both extremes are connected in a continuous fashion, as depicted in
Fig. 3.

5.3 Application: Resonance fluorescence

Corollary 1maybe used to determine theminimumamount of disturbance if the quality
of the measurement is known. Alternatively, if the system is only mildly disturbed,
one may find a bound on the attainable measurement quality. Let us concentrate on
the latter option.

We investigate the radiation emission of a laser-driven two-level atom. The emitted
EM radiation yields information on the atom. A two-level atom (i.e. a qubit) only
has three independent observables: σx , σy and σz . There are various ways to probe
the EM field: photon counting, homodyne detection, heterodyne detection, etc. For
a strong (Ω � 1) resonant (ωlaser = ωatom) laser, we will use Corollary 1 to prove
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Fig. 4 Lower bound on δ in
terms of t (in units of λ−2)
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that any EM measurement of σx , σy or σz will have a measurement infidelity of
at least

δ ≥ 1
2 − 1

2

√

1− e− 3
2λ2t ,

with λ the coupling constant. For a measurement with two outcomes, δ is the maximal
probability of getting the wrong outcome. (Cf. Fig. 4.)

5.3.1 Unitary evolution on the closed system

The atom is modelled by the Hilbert space C
2 (only two energy levels are deemed

relevant). In the field, we discern a forward and a side channel, each described by a
bosonic Fock spaceF . The laser is put on the forward channel,which is thus initially in
the coherent statewith frequencyω and strengthΩ , describedby thedensitymatrixφΩ .
(The field strength is parametrized by the frequency of the induced Rabi oscillations).
The side channel starts in the vacuum state, described by the density matrix φ0. If the
two-level atom starts in the state described by the density matrix r , then the state at
time t is given by the density matrix

Tt∗(r) = U (t)(r ⊗ φΩ ⊗ φ0)U
†(t)

with time evolution

d

dt
Ut = −i(HS + HF + λHI )Ut ,

where HS ∈ B(C2) is the Hamiltonian of the two-level atom, HF ∈ B(F ⊗F ) that
of the field, and λHI ∈ B(C2) ⊗ B(F ⊗F ) is the interaction Hamiltonian. Define
the interaction picture time evolution by
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T̂t∗(r) := U1(t)
†U2(t)

†Tt∗(r)U2(t)U1(t),

where U1(t) := e−i HSt and U2(t) := e−i HF t form the ‘unperturbed’ time evolution.
We now investigate T̂t instead of Tt . Indeed, we are looking for a bound on the

measurement infidelity δ = supS{‖T (1⊗1S(B))−1S(A)‖} of T . Yet if B̂ := U †
2 BU2,

then T̂ (1S(B̂)) = T (1S(B)), so that

δ̂ = sup
S
{‖T̂ (1⊗ 1S(B̂)) − 1S(A)‖} = δ.

If we find the interaction picture disturbance Δ̂, Corollary 1 will yield a bound on δ̂

and thus on δ.
In the weak coupling limit λ ↓ 0, T̂t is given by

T̂t∗(ρ) = Û (t/λ2)(ρ ⊗ φΩ ⊗ φ0)Û
†(t/λ2),

where the evolution of the unitary cocycle t �→ Ût is described (see [1]) by a quantum
stochastic differential equation or QSDE. Explicitly calculating the maximal added
variances Σ2 by solving the QSDE is in general rather nontrivial, if possible at all.
(See [9] for the case of spontaneous decay, i.e. Ω = 0, with the map T̂t restricted to
the commutative algebra of homodyne measurement results.)

5.3.2 Master equation for the open system

Fortunately, in contrast to the somewhat complicated time evolution T̂t of the com-
bined system, the evolution restricted to the two-level system is both well known
and uncomplicated. If we use λ−2 as a unit of time, then the restricted evolution
R̂t∗(r) := trF⊗F T̂t∗(r) of the two-level system is known (see [3]) to satisfy the
Master equation

d

dt
R̂t∗(r) = L(R̂t∗(r)), (5)

with the Liouvillian L(r) := 1
2 iΩ[e−i(ω−E)t V+ei(ω−E)t V †, r ]− 1

2 {V †V, r}+VrV †.
In this expression, E is the energy spacing of the two-level atomandV † = σ+,V = σ−
are its raising and lowering operators. In the case ω = E of resonance fluorescence,
we obtain

L(r) = 1
2 iΩ[V + V †, r ] − 1

2 {V †V, r} + VrV †.

If we parametrize a state by its Bloch vector R̂∗
t (r) = 1

2 (1 + xσx + yσy + zσz),
then Eq. (5) is simply the following differential equation on R

3:

d

dt

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
− 1

2 0 0
0 − 1

2 Ω

0 −Ω −1

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ −
⎛

⎝
0
0
1

⎞

⎠ .
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This can be solved explicitly. For Ω � 1, the solution approaches

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎜
⎝
e−

1
2 t 0 0

0 e− 3
4 t cos(Ωt) e− 3

4 t sin(Ωt)

0 −e− 3
4 t sin(Ωt) e− 3

4 t cos(Ωt)

⎞

⎟
⎠

⎛

⎝
x0
y0
z0

⎞

⎠ .

If we move to the interaction picture once more to counteract the Rabi oscillations,

i.e. with U1(t) = e
i
2Ωtσx and U2 = 1, we see that the time evolution is transformed

to

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎜
⎝
e−

1
2 t 0 0

0 e− 3
4 t 0

0 0 e− 3
4 t

⎞

⎟
⎠

⎛

⎝
x0
y0
z0

⎞

⎠ .

Since the trace distance D(ρ, τ ) is exactly half the Euclidean distance between the
Bloch vectors of ρ and τ , (see [21]), we see that Δ = 1

2 (1 − e−3t/4). For any mea-

surement of σx , σy or σz , we therefore have δ ≥ 1
2 − 1

2

√
1− e−3t/2 by Corollary 1

(remember that t is in units of λ−2).

6 Collapse of the wave function

The ‘collapse of the wave function’ may be seen as the flip side of the Heisenberg
Principle. It states that if information is extracted from a system, then its states undergo
a very specific kind of perturbation, called decoherence.

6.1 Collapse for unbiased information transfer

We start out by investigating unbiased information transfer. We prove a sharp upper
bound on the amount of remaining coherence in terms of the measurement quality. Let
T : A ⊗B → A be a CP-map. Let B ∈ B be Hermitian, and define A := T (1⊗ B).

Theorem 4 Suppose that ψx and ψy are eigenvectors of A with different eigenvalues
x and y, respectively. Define R : A → A to be the restriction of T to A ⊗ 1, and
put Σ2 := ‖(B, B)‖. Then for all α, β ∈ C with |α|2 + |β|2 = 1, we have

D
(
R∗

(|αψx + βψy〉〈αψx + βψy |
)
, R∗

(|α|2|ψx 〉〈ψx | + |β|2|ψy〉〈ψy |
))

≤ Σ/|x − y|
√
1+ 4 (Σ/|x − y|)2

. (6)

This bound is sharp in the sense that for all values of Σ/|x − y|, there exist T , ψx ,
ψy , α and β for which (6) attains equality.
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Proof For sharpness of the bound, see Sect. 6.5. To prove (6), note that the l.h.s. equals

sup{ᾱβ〈ψx , R(P)ψy〉 + c.c. | P ∈ A , P2 = P† = P}.

Furthermore, 2|α||β| ≤ 1, so that it suffices to bound the ‘coherence’ 〈ψx , R(P)ψy〉on
all projections P . Now (x−y)〈ψx , R(P)ψy〉 = 〈ψx , [A, R(P)]ψy〉, and [A, R(P)] =
(P ⊗ 1, 1⊗ B) − (1⊗ B, P ⊗ 1). Thus,

(x − y)〈ψx , R(P)ψy〉 = 〈ψx , (P ⊗ 1, 1⊗ B)ψy〉 − 〈ψx , (1⊗ B, P ⊗ 1)ψy〉, (7)

and we will bound these last two terms. In the notation of Lemma 1, we have Σ =
‖g(1⊗ B)‖. Therefore,

〈ψx , (P ⊗ 1, 1⊗ B)ψy〉 = 〈g(P ⊗ 1)ψx , g(1⊗ B)ψy〉
≤ ‖g(P ⊗ 1)ψx‖‖g(1⊗ B)ψy‖
≤ Σ

√〈ψx , (P ⊗ 1, P ⊗ 1)ψx 〉.

We will bound 〈ψx , (T (P2 ⊗ 1) − T (P ⊗ 1)2)ψx 〉 = 〈ψx , (R(P) − R(P)2)ψx 〉 in
terms of the coherence. For brevity, denote Xxx ′ := 〈ψx , Xψx ′ 〉. Since ψx ⊥ ψy , we
have

(R(P)2)xx ≥ |R(P)xx |2 + |R(P)xy |2,

so that

(R(P) − R(P)2)xx ≤ R(P)xx (1− R(P)xx ) − |R(P)xy |2.

Since x(1 − x) ≤ 1
4 for all x ∈ R, this is at most 1

4 − |R(P)xy |2. All in all, we have
obtained

(P ⊗ 1, 1⊗ B)xy ≤ Σ

√
1
4 − |R(P)xy |2,

and of course the same for x ↔ y. Plugging these into Eq. (7) yields

|x − y||R(P)xy | ≤ 2Σ
√

1
4 − |R(P)xy |2,

or equivalently |R(P)xy | ≤ Σ/|x−y|√
1+4(Σ/|x−y|)2 , which was to be proven. ��

Consider the ideal case of perfect (Σ = 0) information transfer. Suppose that the
systemA is initially in the coherent state |αψx +βψy〉〈αψx +βψy |. Then, Theorem
4 says that, after the information transfer to the ancilla B, the system A cannot be
distinguished from one that started out in the ‘incoherent’ state

|α|2|ψx 〉〈ψx | + |β|2|ψy〉〈ψy |.
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Fig. 5 Bound on the coherence
as a function of Σ/|x − y|. All
points above this curve are
forbidden; all points below are
allowed
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As far as the behaviour of A is concerned, it is therefore completely harmless to
assume that a collapse

|αψx + βψy〉〈αψx + βψy | �→ |α|2|ψx 〉〈ψx | + |β|2|ψy〉〈ψy |

has occurred at the start of the procedure.
Now consider the other extreme of a measurement which leaves all states intact,

i.e. R∗(ρ) = ρ for all ρ. Then there exist states for which the l.h.s. of Eq. (6) equals
1
2 , forcing Σ → ∞; no information can be obtained. This is Werner’s formulation of
the Heisenberg Principle [31].

Theorem 4 thus unifies the Heisenberg Principle and the collapse of the wave
function. For Σ = 0, we have a full decoherence, whereas if all states are left intact,
we haveΣ → ∞. For all intermediate cases, the bound (6) on the remaining coherence
is an increasing function of Σ/|x − y| (Fig. 5).

This agrees with physical intuition: decoherence between ψx and ψy is expected
to occur in case the information transfer is able to distinguish between the two. This
is the case if the variance is small w.r.t. the differences in mean.

6.2 Application: Perfect qubit measurement

In Sect. 2, we have encountered the von Neumann Qubit measurement. Now consider
any perfect measurement T of σz with pointer 1 ⊗ (δ+ − δ−) which leaves | ↑ 〉〈 ↑ |
and |↓ 〉〈 ↓| in place, i.e. R∗(|↑ 〉〈 ↑|) = |↑ 〉〈 ↑| and R∗(|↓ 〉〈 ↓|) = |↓ 〉〈 ↓|. (Such
a measurement is called nondestructive.) Theorem 4 then reads

R∗(|α ↑ +β ↓〉〈α ↑ +β ↓ |) = |α|2|↑ 〉〈 ↑| + |β|2|↓ 〉〈 ↓|,

illustrated in Fig. 6.
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Fig. 6 Collapse on the Bloch
sphere for perfect measurement z

x

y

Incidentally, the trace distance between the centre of theBloch sphere and its surface
is 1

2 , so that we read offΔ = sup{D(R∗(ρ), ρ); ρ ∈ S (M2)} = 1
2 . This was predicted

by Theorem 3.

6.3 Collapse of the wave function for general measurement

We will prove a sharp bound on the remaining coherence in general information
transfer. For technical convenience,wewill focus attention on nondestructivemeasure-
ments. A measurement of A is called ‘nondestructive’ (or ‘conserving’ or ‘quantum
nondemolition’) if it leaves the eigenstates of A intact, so that repetition of the mea-
surement will yield the same result. For example, the measurement in Sect. 2.2 is
nondestructive, the one in Sect. 5.3 is destructive. Restriction to nondestructive mea-
surements is quite common in quantum measurement theory (see [23]).

Let T : B(H ) ⊗ B → B(H ) be a CP-map, let A ∈ B(H ) and B ∈ B
be Hermitean and suppose that {ψi } is an orthogonal basis of eigenvectors of A,
with eigenvalues ai . Define the measurement infidelity δ := supS{‖T (1⊗ 1S(B)) −
1S(A)‖}.
Corollary 2 Suppose that T is nondestructive, i.e. R∗(|ψi 〉〈ψi |) = |ψi 〉〈ψi | for all
ψi , with R the restriction of T to B(H ) ⊗ 1. Then if δ ∈ [

0, 1
2

]
, and ai  = a j ,

D
(
R∗

(|αψi + βψ j 〉〈αψi + βψ j |
)
,
(|α|2|ψi 〉〈ψi | + |β|2|ψ j 〉〈ψ j |

))

≤ √
δ(1− δ). (8)

This bound is sharp in the sense that for all δ ∈ [
0, 1

2

]
, there exist T , ψi , ψ j , α and β

for which (8) attains equality.

Proof For sharpness, see Sect. 6.5. Choose a set S such that ai ∈ S and a j /∈ S. T is
an unbiased measurement of T (1 ⊗ 1S(B)) with pointer 1S(B) and maximal added
variance Σ2 ≤ δ(1− δ) (cf. the proof of Corollary 1). We will prove that ψi and ψ j

are eigenvectors of T (1⊗1S(B))with eigenvalues x and y which differ at least 1−2δ.
Let Pi := |ψi 〉〈ψi |. Since T is nondestructive, we have 〈ψ j , R(Pi )ψ j 〉 =

〈ψ j , Pi ψ j 〉 for all j . Apparently, R(Pi ) has only one nonzero diagonal element, a 1 at
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Fig. 7 Bound on the coherence
in terms of δ. All points above
the curve are forbidden; all
points below are allowed
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position (i, i). Since R(Pi ) ≥ 0, this implies R(Pi ) = Pi . Then (Pi ⊗ 1, Pi ⊗ 1) = 0,
so that by Cauchy–Schwarz (Pi ⊗1, 1⊗1S(B)) = 0. Since Pi = T (Pi ⊗1), we have

[T (1⊗ 1S(B)), Pi ] = (Pi ⊗ 1, 1⊗ 1S(B)) − (1⊗ 1S(B), Pi ⊗ 1) = 0.

Therefore, ψi is an eigenvector of T (1⊗ 1S(B)), with eigenvalue x , say. By a similar
reasoning, ψ j is also an eigenvector, denote its eigenvalue by y.

Since ‖T (1⊗ 1S(B)) − 1S(A)‖ ≤ δ, we have in particular

‖(T (1⊗ 1S(B)) − 1S(A))ψi‖ = |x − 1| ≤ δ,

‖(T (1⊗ 1S(B)) − 1S(A))ψ j‖ = |y| ≤ δ,

so that |x − y| ≥ 1 − 2δ. We can now apply Theorem 4. On the l.h.s. of the bound
(6), we may substitute

R∗(|α|2|ψi 〉〈ψi | + |β|2|ψ j 〉〈ψ j |) = |α|2|ψi 〉〈ψi | + |β|2|ψ j 〉〈ψ j |

on account of T being nondestructive. On the r.h.s., we substitute Σ = √
δ(1− δ)

and |x − y| = (1− 2δ). Strikingly enough, this yields the bound

(√
δ(1− δ)/(1− 2δ)

)
/

√
1+ 4

(
δ(1− δ)/(1− 2δ)2

) = √
δ(1− δ).

��
For perfect measurement (δ = 0), this yields

R∗(|αψi + βψ j 〉〈αψi + βψ j |) = |α|2|ψi 〉〈ψi | + |β|2|ψ j 〉〈ψ j |,

all coherence between ψi and ψ j must vanish. This collapse of the wave function is
illustrated in the lower left corner of Fig. 7. On the other hand, if all states are left
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intact so that R∗ = id, then we must have δ = 1
2 ; no information can be gained. This

is illustrated in the upper right corner of Fig. 7. Corollary 2 is a unified description of
the Heisenberg Principle and the collapse of the wave function.

6.4 Application: Nondestructive qubit measurement

In quantum information theory, a σz-measurement is often taken to yield output +1
or −1, according to whether the input was |↑ 〉 or |↓ 〉. It is nondestructive if it leaves
the states |↑ 〉 and |↓ 〉 intact, yet it is only unbiased if it is perfect. Corollary 2 shows
that in the nondestructive case, the Bloch sphere collapses to the cigar-shaped region
depicted in Fig. 8.

Current single-qubit read-out technology is now in the regime where the bound (8)
becomes significant; in [16], a nondestructive measurement of a SQUID-qubit was
described, with experimentally determined measurement infidelity δ = 0.13. The
bound then equals 0.336.

6.5 Sharpness of the bounds

We have yet to prove sharpness of all bounds. Let

V+ :=
(√

1− p 0
0

√
p

)

, V− :=
(√

p 0
0

√
1− p

)

,

and define T : M2⊗C (Ω) → M2 by T (X⊗ f ) := f (+1)V+XV++ f (−1)V−XV−.
For p = 0, this is the vonNeumannmeasurement. As ameasurement ofσz with pointer
B := (δ+ − δ−)/(1− 2p), we have δ = p. This yields bounds on the disturbance and
on the coherence. Corollary 1 and Theorem 3 yield Δ ≥ 1

2 −
√
p(1− p), corollary 2

and Theorem 4 yield

D
(
R∗

(|α ↑ +β ↓ 〉〈α ↑ +β ↓|), (|α|2|↑ 〉〈 ↑| + |β|2|↓ 〉〈 ↓|)) ≤ √
p(1− p).

Fig. 8 Collapse on the Bloch
sphere with δ = 0.01 z

x

y
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We now explicitly calculate the restriction of T to M2 and find

R∗(r) =
(

r11 2
√
p(1− p)r12

2
√
p(1− p)r21 r22

)

.

The maximal remaining coherence occurs for α = β = 1/
√
2, for which it equals√

p(1− p). The maximal disturbance equals Δ = 1
2 − √

p(1− p). This shows all
bounds to be sharp.

7 Conclusion

Our investigation of joint measurement, the Heisenberg Principle and decoherence
has yielded the following results.

(I) Theorem 2 provides a sharp, state-independent bound on the performance of
unbiased joint measurement of noncommuting observables. In the case of per-
fect (Σ = 0) measurement of one observable, it implies that no information
whatsoever (Σ ′ = ∞) can be gained on the other.

(II) Theorem 3 (for unbiased information transfer) and Corollary 1 (for general infor-
mation transfer) provide a sharp, state-independent bound on the performance
of a measurement in terms of the maximal disturbance that it causes. In the case
of zero disturbance, when all states are left intact, it follows that no information
can be obtained. This is the Heisenberg Principle.

(III) Theorem 4 (for unbiased information transfer) and Corollary 2 (for general infor-
mation transfer) provide a sharp upper bound on the amount of coherence which
can survive information transfer. For perfect information transfer, all coherence
vanishes. This clearly proves that decoherence on a system is a mathematical
consequence of information transfer out of this system. If, on the other hand, all
states are left intact, then it follows that no information can be obtained. This is the
Heisenberg Principle. Theorem 4 and Corollary 2 connect these two extremes in
a continuous fashion; they form a unified description of the Heisenberg Principle
and the collapse of the wave function.
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