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Abstract The standard uncertainty relations (UR) in quantum mechanics are typi-
cally used for unbounded operators (like the canonical pair). This implies the need for
the control of the domain problems. On the other hand, the use of (possibly bounded)
functions of basic observables usually leads to more complex and less readily inter-
pretable relations. In addition, UR may turn trivial for certain states if the commutator
of observables is not proportional to a positive operator. In this letter we consider a
generalization of standard UR resulting from the use of two, instead of one, vector
states. The possibility to link these states to each other in various ways adds additional
flexibility to UR, which may compensate some of the above-mentioned drawbacks.
We discuss applications of the general scheme, leading not only to technical improve-
ments, but also to interesting new insight.
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660 A. Herdegen, P. Ziobro

1 Introduction

In popular textbook terms, the quantum-mechanical UR states that if any three observ-
ables A, B,C satisfy the commutation relation

[A, B] = iC, (1)

then in any normalized quantum state ψ there is

�ψ(A)�ψ(B) ≥ 1
2 |〈C〉ψ |, (2)

where 〈A〉ψ = (ψ, Aψ) is the mean value of the probability distribution of A in the
state ψ and �ψ(A) = ‖(A − 〈A〉ψ)ψ‖ is the standard deviation of this distribution
(see, e.g., [3]). This formulation follows the extension of the original Heisenberg
relation [5] given by Robertson [13].

Quantum-mechanical observables are self-adjoint operators, which usually are not
bounded (as is the case with the most prominent example of the canonical pair).
Therefore, amoremathematically conscious formulationofURhas to take into account
domain restrictions (see, e.g., [4]). ByD(A) ⊆ Hwe denote the domain of an operator
A acting in a Hilbert space H. For any self-adjoint operators A, B, the relation (1)
defines a symmetric operator C on the domain

D(C) = D(AB) ∩ D(BA). (3)

It is now a simple mathematical theorem that the relation (2) is satisfied for any
normalized vector ψ ∈ D(C).

The question that now arises is this: is D(C) “sufficiently large” for the relation to
be of use? In the worst possible case it could happen that D(C) would not be dense
in H, which would leave outside the range of the relation the whole closed subspace
D(C)⊥ ⊆ H. This case is of little use, so we assume from now on that D(C) = H
(bar denoting the closure). Even with this restriction, we are still left with a few open
problems:

(i) If ψ is not inD(A), then �ψ(A) may be regarded as infinite; the relation tells us
then nothing on the spread of distribution of B in the state ψ .

(ii) If ψ ∈ D(A) ∩ D(B), then the product of uncertainties is finite. It may happen
that also C extends to this larger domain, but UR need not extend to this case.

(iii) The restrictions of A and B to D(C) need not determine self-adjoint operators
A and B uniquely (i.e., in technical terms, D(C) need not be a core for A and
B), so that the UR does not admit all states crucial for the determination of the
observables A and B themselves.

(iv) In general, if C is not strictly positive, it may have vanishing expectation value
〈C〉 in the state ψ under consideration. The relation has no nontrivial content in
this case.

123



Generalized uncertainty relations 661

Standard examples of the difficulties (ii) and (iii) occur for the ‘angle–angular
momentum’ pair. Let �, L be the operators in H = L2(〈0, 2π〉) defined by:

D(�) = H, D(L) = {ψ ∈ H | ψ ′ ∈ H, ψ(0) = ψ(2π)}
(�ψ)(ϕ) = ϕψ(ϕ), (Lψ)(ϕ) = −iψ ′(ϕ),

(whereψ ′ is ameasurable derivative function ofψ).With these domains both operators
are self-adjoint. The UR (2) on the domain (3) holds then with Cψ = ψ on

D(C) = {ψ ∈ H | ψ ′ ∈ H, ψ(0) = ψ(2π) = 0},

so that on this domain, which may be shown to be dense: D(C) = H, one has for
normalized ψ :

�ψ(�)�ψ(L) ≥ 1
2 .

Both sides of this inequality are meaningful and finite forψ ∈ D(�)∩D(L) = D(L),
but the inequality does not extend to this larger domain: take any eigenstate of L to
find 0 ≥ 1, which illustrates difficulty (ii). The explanation of this seeming paradox
is that for Lψ = mψ there is no sequence of vectors ψn ∈ D(C) which converges to
ψ , and at the same time satisfies �ψn (L) → �ψ(L).

Even more disturbing is the fact that the domain D(C) is not sufficient to uniquely
identify the self-adjoint operator L taking part in the above relation (i.e., D(C) is
not a core for L). To see this it is sufficient to note that for each complex ω with
|ω| = 1 one has a self-adjoint operator Lω defined as L , but on a different domain
D(Lω) = {ψ ∈ H | ψ ′ ∈ H, ψ(2π) = ω ψ(0)} (see, e.g., [12]). Each of these
operatorsmay replace L in the aboveUR,with no change ofC orD(C). This illustrates
difficulty (iii).

Difficulty (iv) occurs in the well-known case of three-dimensional angular momen-
tum operators; see below.

In the rest of this articlewepropose a simple extension of theminimization argument
leading to UR. Our generalized UR are given in Sect. 2, Proposition 1. Applications
of the general scheme to a few cases of particular physical interest are discussed in
Sect. 3. Our use of the result of Proposition 1 is closely related to the mathemat-
ical and physical problem of the original formulation of UR: find optimal bounds
on spreads of probability distributions defined by a given state for two incompati-
ble observables.1 We do not touch upon various other problems broadly related to
‘uncertainty’ in quantum mechanics, which recently draw considerable attention in
physical literature (entropic uncertainty, error-disturbance problem, parameter esti-
mation, etc.).

1 A different generalization of UR has been recently proposed in [9].
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662 A. Herdegen, P. Ziobro

2 Generalized uncertainty relation

We consider general normal operators. We recall that (see, e.g., [14]):

(i) A is called normal if it is densely defined, closed and satisfies A∗A = AA∗.
(ii) For normal A there is D(A∗) = D(A) and ‖A∗χ‖ = ‖Aχ‖ for all vectors

χ ∈ D(A).
(iii) All functions of self-adjoint operators are normal operators.
(iv) All normal operators satisfy the spectral theorem, A = ∫

σ(A)
z dE A

z , where σ(A)

is the spectrum of A—a closed subset of C, and E A

 is its spectral family. For

each normalized vectorψ , the mapping
 
→ (ψ, E A

ψ) is a probability measure

on Borel sets 
 ⊆ σ(A), with the mean value 〈A〉ψ = (ψ, Aψ) ∈ C and the
standard deviation �ψ(A) = ‖(A − 〈A〉ψ)ψ‖.

Let A and B be normal operators with the domains D(A) and D(B), respectively.
Then we define a sesquilinear form

qA,B(ϕ, χ) = (A∗ϕ, Bχ) − (B∗ϕ, Aχ)

with the domain ϕ, χ ∈ D(qA,B) ≡ D(A) ∩D(B) (an example of a recent use of this
‘weak commutator’may be found in [15]). In special casewhenχ ∈ D(AB)∩D(BA),
this weak commutator becomes the ordinary one, qA,B(ϕ, χ) = (ϕ, [A, B]χ). More-
over, for any complex numbers a, b, we denote Aa = A − a1, Bb = B − b1, which
are also normal operators.

Proposition 1 (Generalized Uncertainty Relation). For any normal operators A, B
and unit vectors ϕ, χ ∈ D(qA,B), the following inequality holds

|qA,B(ϕ, χ)| ≤ inf
a,b∈C

(
‖(Aaϕ‖‖Bbχ‖ + ‖Bbϕ‖‖Aaχ‖

)

= inf
λ1, λ2 ∈ 〈0, 1〉
λ1 + λ2 = 1

{√
�2

ϕ(A) + |δ〈A〉|2λ21
√

�2
χ (B) + |δ〈B〉|2λ22

+
√

�2
ϕ(B) + |δ〈B〉|2λ21

√
�2

χ (A) + |δ〈A〉|2λ22
}

, (4)

where δ〈A〉 = 〈A〉ϕ − 〈A〉χ , δ〈B〉 = 〈B〉ϕ − 〈B〉χ .

Proof We first note that qAa ,Bb = qA,B . Therefore, the successive use of the triangle
and the Schwarz inequalities (and property (ii) above) gives

|qA,B(ϕ, χ)| ≤ ‖Aaϕ‖‖Bbχ‖ + ‖Bbϕ‖‖Aaχ‖. (5)

Thus, using the arbitrariness of a and b, we arrive at the first relation (inequality) in (4).
The rhs of (5) is a real function F(a, ā, b, b̄), nondecreasing for |a| or |b| sufficiently
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Generalized uncertainty relations 663

large and tending to +∞. Therefore, it reaches its infimum at one of its stationary
points, which are the solutions of the set of equations ∂F/∂ ā = 0, ∂F/∂ b̄ = 0, i.e.,

γ2
(
a − 〈A〉ϕ

) + γ1
(
a − 〈A〉χ

) = 0,

γ2
(
b − 〈B〉ϕ

) + γ1
(
b − 〈B〉χ

) = 0,

γ1 = ‖Aaϕ‖ ‖Bbϕ‖, γ2 = ‖Aaχ‖ ‖Bbχ‖.

Solving the first two of these equations for a and b in terms of λi ≡ γi/(γ1 + γ2)

(i = 1, 2), one obtains a = λ2〈A〉ϕ + λ1〈A〉χ , b = λ2〈B〉ϕ + λ1〈B〉χ . Setting these
values into (5), one obtains the second relation (equality) in (4). The condition for
stationary points is now reduced to the condition on λi : γ1λ2 = γ2λ1, i.e.,

(
�2

ϕ(A) + |δ〈A〉|2λ21
)(

�2
ϕ(B) + |δ〈B〉|2λ21

)
λ22

=
(
�2

χ (A) + |δ〈A〉|2λ22
)(

�2
χ (B) + |δ〈B〉|2λ22

)
λ21, (6)

where λ1, λ2 ∈ 〈0, 1〉, λ1 + λ2 = 1. This condition, when expressed in terms of one
unknown, is an algebraic equation of the fifth order, which is not algebraically solvable
in general. Thus, we postpone its solution to more special cases. ��

The simplest special case of Proposition 1 is obtained for ϕ = χ , ‖χ‖ = 1. Relation
(4) then immediately takes the form

1
2 |qA,B(χ, χ)| ≤ �χ(A)�χ(B), χ ∈ D(A) ∩ D(B). (7)

The UR in this form was applied by Kraus [8] to the above-mentioned case of
angle–angular momentum pair. Integrating by parts one finds that qL ,�(χ, χ) =
i(2π |χ(2π)|2 − 1), hence

1
2

∣
∣1 − 2π |χ(2π)|2∣∣ ≤ �χ(L)�χ(�), χ ∈ D(L).

This yields correct 0 ≤ 0 for Lχ = mχ , but a drawback of this relation is that beside
uncertainties it needs the value of χ at a particular point.

Relation (7) reduces to the standard form (2) for χ ∈ D(C).
The extended flexibility of the relation (4) relies on the possibility to assume more

general relations between ϕ and χ , than equality. Before discussing some special
examples in the next section, we illustrate this with a simple proof of a property,
which may also be proved without the use of Proposition 1, although with much more
effort.

Proposition 2 Let H =
N⊕

i=1

Hi , χ =
N∑

i=1

χi , χi ∈ Hi , ‖χ‖ = 1.
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664 A. Herdegen, P. Ziobro

If Aχi , Bχi ∈ Hi for i = 1, . . . , N (in particular, if allHi are invariant under A and
B) then

1
2

N∑

i=1

|qA,B(χi , χi )| ≤ �χ(A)�χ(B).

Proof Setϕ =
N∑

i=1

qA,B(χi , χi )

|qA,B(χi , χi )| χi and use relation (4). Themeans and uncertainties

of A and B in the states χ and ϕ coincide, while 1
2 |qA,B(ϕ, χ)| is equal to the lhs of

the above inequality. ��

3 Applications of the generalized relation

We start with a few remarks on unitary operators and one-parameter groups. If V is a
unitary operator onH, then it is normal, with the spectrum on the unit circle, and with
�2

ψ(V ) = ‖(V − 〈V 〉ψ)ψ‖2 = 1 − |〈V 〉ψ |2 ≤ 1. In this case we shall denote

δψ(V ) ≡ �ψ(V )
[
1 − �2

ψ(V )
]1/2 =

[
1 − |〈V 〉ψ |2]1/2

|〈V 〉ψ | .

This parameter is an increasing function of the deviation, for small spread δψ(V ) ≈
�ψ(V ), while for �ψ(V ) → 1 (maximal spread) it tends to infinity.

If V (s) = exp[−isX ] is a one-parameter unitary group with the self-adjoint gen-
erator X , then 〈V (s)〉ψ = ∫

σ(X)
e−isxdμψ(x), where dμψ(x) is the spectral measure

of X in the state ψ . Using this representation and its conjugate one finds

�2
ψ(V (s)) = 2

∫

σ(X)×σ(X)

sin2
[ 1
2 s(x − x ′)

]
dμψ(x)dμψ(x ′).

Therefore, if ψ ∈ D(X), the finite limit exists

lim
s→0

�2
ψ(V (s))

s2
= 1

2

∫
(x − x ′)2 dμψ(x)dμψ(x ′) = �2

ψ(X),

which is also equal to lims→0 s
−2δ2ψ(V (s)) (if ψ /∈ D(X) the limit is +∞).

3.1 A Weyl pair

Proposition 3 Let U and W be unitary operators onH, such that

WU = ωUW,
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Generalized uncertainty relations 665

with some complex number ω, |ω| = 1—we shall call any such system a Weyl pair.
Then for each normalized vector ψ ∈ H the following inequality holds

1
2 |ω − 1| ≤ δψ(W ) δψ(U ). (8)

Proof We consider relation (4) with the substitutions A = W , B = U , ϕ = Uψ ,
χ = W ∗ψ . Then using the relation UW ∗ = ωW ∗U one finds qW,U (ϕ, χ) = ω − 1,
so the lhs of (4) is |ω − 1|. In addition, algebraic relations give 〈W 〉ϕ = ω〈W 〉ψ ,
〈W 〉χ = 〈W 〉ψ , 〈U 〉ϕ = 〈U 〉ψ , 〈U 〉χ = ω〈U 〉ψ .We set thesemeans into the stationary
point condition (6). After some simple algebra this condition is reduced to the form

(
[δψ(W )δψ(U )]2 − [4λ1λ2ε2]2

)
(λ1 − λ2) = 0,

wherewe have introduced ε = 1
2 |ω−1| ∈ 〈0, 1〉. For the stationary point λ1 = λ2 = 1

2
the relation (4) implies

ε ≤
√

�2
ψ(W ) + |〈W 〉ψ |2ε2

√
�2

ψ(U ) + |〈U 〉ψ |2ε2.

Solving this for ε one obtains relation (8). This stationary point is in fact the unique
minimum point of the rhs of our UR (4) in all nontrivial cases, i.e., when ω �= 1.
Indeed, for λ1 �= λ2 there is λ1λ2 < 1

4 , so using inequality (8) we find for ε > 0:

δψ(W )δψ(U ) − 4λ1λ2ε
2 > ε(1 − ε) ≥ 0,

which closes the proof. ��
Remark Relation equivalent to our inequality (8) has been given earlier by Massar
and Spindel [11], and their proof is to be found in the supplementary material to
that reference. Our form of the inequality has more directly visible interpretation.
In addition, our much simpler proof is an application of our general minimization
scheme, showing that the inequality is in a certain sense optimal.

3.2 The canonical pair

The standard canonical pair operators X, P are uniquely (up to unitary equivalence)
defined as being generators of irreducibly represented one-parameter groupsW (α) =
exp[−iαX ], U (β) = exp[−iβP] which satisfy relation

W (α)U (β) = exp[−iαβ]U (β)W (α).

Inequality (8) may be written in the form

∣
∣ sin

( 1
2αβ

)∣∣

|αβ| ≤ δψ(W (α))

|α|
δψ(U (β))

|β| .
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666 A. Herdegen, P. Ziobro

For small α, β quantities on the rhs approximate the standard deviations of X and P ,
but are finite for all ψ . If ψ is in the domain of one of the variables, say ψ ∈ D(X),
then the limit in α results in

1

2
≤ �ψ(X)

δψ(U (β))

|β| ,

and when ψ ∈ D(X)∩D(P), the usual UR is obtained for β → 0, with the guarantee
of its validity on this domain.

3.3 Angle–angular momentum pair

Similarly, the angle–angular momentum operators �, L are uniquely (up to uni-
tary equivalence) defined by irreducibly represented unitary operators W (n) =
exp[−in�], n ∈ Z, and U (β) = exp[−iβL], β ∈ R/mod 2π , which satisfy the
relation

W (n)U (β) = exp[−inβ]U (β)W (n).

The UR now takes the form
∣
∣ sin

( 1
2nβ

)∣∣

|β| ≤ δψ(W (n))
δψ(U (β))

|β| .

For ψ ∈ D(L) this implies

1
2 |n| ≤ δψ(W (n))�ψ(L).

(The latter relation for n = 1 was earlier discussed by Hradil et al. [7]). In particular, if
ψ is an eigenvector of L , then the spread reaches �ψ(W (n)) = 1, the maximal value.

3.4 Unitary transformation

Proposition 4 Let U be a unitary transformation, A a normal operator, and denote
AU = U∗AU. Then for each normalized χ ∈ D(A) ∩ D(AU ) = D(A) ∩ U∗D(A)

there is

|〈AU 〉χ − 〈A〉χ | ≤ δχ (U )
[
�χ(AU ) + �χ(A)

]
. (9)

Proof We set B = U and ϕ = Uχ in Proposition 1. Then the lhs of inequality (4)
becomes |qA,U (Uχ, χ)| = |〈AU 〉χ − 〈A〉χ | ≡ |δ〈A〉|. We also have 〈U 〉ϕ = 〈U 〉χ ,
�ϕ(U ) = �χ(U ) and �ϕ(A) = �χ(AU ). Using these values in the stationary point
condition (6), we find that its solution is given by λ1 = �χ(AU )/(�χ(AU )+�χ(A)),
λ2 = 1 − λ1. With these values, the rhs of inequality (4) is �χ(U )

([�χ(AU ) +
�χ(A)]2 + |δ〈A〉|2)1/2. Solving now the inequality for |δ〈A〉| one obtains (9). ��
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Generalized uncertainty relations 667

3.5 Time evolution

For a quantum system in Heisenberg picture, with the time evolution operatorU (t) =
exp[−i t H ], with H the energy operator, consider Heisenberg normal variable At .
Then At2 = (At1)U (t2−t1) in the notation of the last subsection. Relation (9), for
χ ∈ D(At2) ∩ D(At1), takes now the form

|〈At2〉χ − 〈At1〉χ | ≤ δχ (U (t2 − t1))
[
�χ(At2) + �χ(At1)

]
. (10)

If χ ∈ ⋂
τ∈(t−ε,t+ε) D(Aτ )∩D(H) and such that ‖Aτ χ − Atχ‖ → 0 for τ → t , one

can recover the well-known relation

1
2

∣
∣
∣
d〈At 〉χ
dt

∣
∣
∣ ≤ �χ(H)�χ(At ). (11)

It is well known that there is no self-adjoint time operator which would be translated
by time evolution as U (t)∗TU (t) = T + t (see, e.g., [2]).2 Formula (11) may be
interpreted as a substitute for time–energy relation, in the following sense [10]. Let
d〈At 〉χ/dt ≈ const. in some interval of t , then A may be rescaled so that in fact
d〈At 〉χ/dt ≈ 1. Then 〈At 〉χ describes correctly the flow of time in this interval. The
product of uncertainties is then bounded by 1/2 from below.

The full formula (10) tells us more. Suppose 〈At 〉χ is an increasing function of
time, say, for simplicity, proportional to t . For this quantity to be a good measure
of time we demand that the deviation �χ(At ) stays bounded by a constant. This is
then possible only if |〈U (t)〉χ | = |(χ, χt )| decreases at least as 1/t with time—the
Schrödinger evolution of the state has to bring it sufficiently fast away from the initial
state.3

3.6 Angular momentum

Let H be a representation space of the usual angular momentum operators Ji , either
bosonic: exp(i2π J3) = 1, or fermionic: exp(i2π J3) = −1. For ϕ, χ ∈ D(

√
J 2)

the weak commutator of Ji and J j is equal to the strong one, that is qJ1,J2(ϕ, χ) =
i(ϕ, J3χ) (and permuted relations). This is easily seen by differentiating the identity

(
e−iα J1ϕ, eiβ J2χ

)
−

(
e−iβ J2ϕ, eiα J1χ

)
=

(
e−iα J1ϕ,

[
eiβ J2 − eiβ(cosα J2+sin α J3)

]
χ

)

with respect to β, setting β = 0, and then performing the same operation with respect
to α. Therefore, for such vectors and any real numbers j1, j2 we obtain

|(ϕ, J3χ)| ≤ ‖(J1 − j1)ϕ‖ ‖(J2 − j2)χ‖ + ‖(J2 − j2)ϕ‖ ‖(J1 − j1)χ‖. (12)

2 We insist on self-adjointness; non-self-adjoint ‘time operators’ considered in the literature (a recent
example is [6]) do not have spectral decompositions, thus the probabilistic interpretation does not apply in
standard form.
3 On other state decay estimates—in context of non-self-adjoint time operators—see [1].
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668 A. Herdegen, P. Ziobro

There are now a few possible choices of ϕ. The standard choice ϕ = χ and minimiza-
tion with respect to j1, j2 gives the standard relation

1
2 |〈J3〉χ | ≤ �χ(J1)�χ(J2), χ ∈ D

(√
J 2

)
,

on the maximal possible domain. Aweak point of this relation is that J3 is not positive,
so the mean on the lhs may take arbitrarily small value for certain states, including
zero.

Our second choice is ϕ = J3χ/‖J3χ‖ for χ ∈ D(J 2). We denote by S the positive
operator such that J 2 = S(S + 1), and choose ji = 〈Ji 〉χ . Then the lhs of (12) is
‖J3χ‖, and on the rhs we have ‖(Ji − ji )ϕ‖ ≤ ‖Jiϕ‖+|〈Ji 〉χ | ≤ ‖Sϕ‖+〈S〉χ . Using
this in (12) we find

‖J3χ‖ ≤
(‖SJ3χ‖

‖J3χ‖ + 〈S〉χ
)

(
�(J1) + �(J2)

)
, χ ∈ D(J 2). (13)

In particular, if the spectrum of J 2 is bounded, say4 ‖S‖ = j , then it follows that

‖J3χ‖ ≤ 2 j
(
�χ(J1) + �χ(J2)

)
, (14)

but note that this form may become much weaker for some states and large j .
We go to our third choice of ϕ, explained below. We denote by Pm the projection

operator onto the eigensubspace Ker(J3 − m1). Let μ be a spectral value of J3 such
that μ − 1 ≤ 0 ≤ μ (thus in fermionic case μ = 1/2, while in bosonic case μ = 0 or
μ = 1). We introduce further self-adjoint projection operators and an involution:

P = Pμ + Pμ−1, E+ =
∑

m≥μ

Pm, E− = 1 − E+, E = E+ − E−,

so that J3 = E |J3|. We choose now ϕ = Eχ and ji = 〈Ji 〉χ .
Proposition 5 In standing notation, for χ ∈ D(

√
J 2), there is

(χ, |J3|χ) ≤ 2�χ(J1)�χ(J2) +
∥
∥
∥
∥

[
J 2 + 1

4δ
]1/2

Pχ

∥
∥
∥
∥

(
�χ(J1) + �χ(J2)

)
,

(15)

where δ = 0 (δ = 1) in bosonic (fermionic) case, respectively.

Proof Expressing operators Ji (i = 1, 2) in terms of J± one shows that E Ji E − Ji =
−2P Ji P ≡ Wi , and furthermore, W 2

i = (
J 2 + μ(1 − μ)

)
P = (J 2 + 1

4δ)P , with

4 Note that we do not assume that H is an eigenspace of J2.
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Generalized uncertainty relations 669

δ defined in the thesis. It follows that |Wi | = [J 2 + 1
4δ]1/2P . Setting now ϕ = Eχ ,

ji = 〈Ji 〉χ we note that

‖(Ji − ji )Eχ‖ = ‖(E Ji E − ji )χ‖ ≤ ‖(Ji − ji )χ‖ + ‖Wiχ‖,

which gives the thesis when used in (12). ��

In particular, if Pχ = 0 (that is, P0χ = P+1χ = 0 or P0χ = P−1χ = 0 in bosonic
case, or P−1/2χ = P+1/2χ = 0 in fermionic case), then

1
2 〈|J3|〉χ ≤ �χ(J1)�χ(J2).

This fact follows also more directly from Proposition 2: set H = H+ ⊕ H−, H± =
E±H, χ = χ+ + χ−, χ± ∈ H±. Then ϕ = χ+ − χ− and the relation immediately
follows.

Discussion In the present subsection, instead of minimizing the rhs of the inequality
(12) with respect to j1 and j2 (in the spirit of Proposition 1), we have chosen specific
values ji = 〈Ji 〉χ : minimization does not seem to be algebraically solvable, in gen-
eral. In addition, some norm inequalities employed in the derivation could possibly
be replaced by other arguments leading to more stringent conditions. Therefore, the
inequalities (13) and (15) need not be optimal and may be improved in special cases.

We illustrate this in the special case of spin 1/2 operators. In this case j = 1/2 and
J 2i = (1/4)1 and one easily finds that inequalities (14) and (15) take in this case the
form

1
2 ≤ �χ(J1) + �χ(J2) and 1

2 ≤ 2�χ(J1)�χ(J2) + �χ(J1) + �χ(J2),

respectively. Both of these restrictions are weaker than the inequality

1
4 ≤ �2

χ (J1) + �2
χ (J2), (16)

which is a consequence of the standard uncertainty relation for J1 and J3, due to the
sequence5 �χ(J1)2 ≥ 4�χ(J3)2�χ(J1)2 ≥ 〈J2〉2χ = (1/4)−�χ(J2)2, or by the use
of the explicit Pauli matrices representation.

However, in spin 1/2 case the minimization given by Proposition 1 may be effec-
tively carried out. In this case the choice of vector ϕ coincides in the two cases
leading to (14) and (15): ϕ = J3χ/‖J3χ‖ = Eχ . Moreover, here E Ji E = −Ji ,
so 〈Ji 〉ϕ = −〈Ji 〉χ and �ϕ(Ji ) = �χ(Ji ), and the relation (4) takes the form

5 We are grateful to the Referee for bringing this, and similar sequences for higher j , to our attention,
which led us to the addition of the present discussion.
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1
2 ≤ inf

λ1, λ2 ∈ 〈0, 1〉
λ1 + λ2 = 1

{√
�2

χ (J1) + 4〈J1〉2χλ21

√
�2

χ (J2) + 4〈J2〉2χλ22

+
√

�2
χ (J2) + 4〈J2〉2χλ21

√
�2

χ (J1) + 4〈J1〉2χλ22

}

.

Now take into account that here �2
χ (Ji ) = 1/4 − 〈Ji 〉2χ , set λ1 = (1 + s)/2, λ2 =

(1− s)/2, s ∈ 〈−1, 1〉, and expand the rhs in s. The straightforward calculation gives

1
2 ≤ inf

s∈〈−1,1〉

{
1
2 + (〈J1〉2χ + 〈J2〉2χ

)[
1 − 4

(〈J1〉2χ + 〈J2〉2χ
)]
s2 + O(s4)

}
.

Therefore, we find that 1/4 ≥ 〈J1〉2χ + 〈J2〉2χ , which is equivalent to (16). Of course,
this is not the simplest way to arrive at this result in this special case. However, in
general the standard uncertainty relation alone does not seem to lead to analogous
improvements of relations (13) or (15).

Finally, to illustrate further applications of our method we obtain another relation,
which results from the combination of the standard one with the relation (13). Namely,
for χ ∈ D(

√
J 2) we have a sequence

‖J2χ‖2 − �2
χ (J2) = 〈J2〉2χ ≤ 4�2

χ (J3)�
2
χ (J1) ≤ 4‖J3χ‖2�2

χ (J1)

and another one with indices 1 and 2 interchanged. Adding these inequalities side by
side and using ‖√J 2χ‖2 = ∑

k ‖Jkχ‖2 one obtains

‖
√
J 2χ‖2 ≤ ‖J3χ‖2 + (4‖J3χ‖2 + 1)

(
�2(J1) + �2(J2)

)
, χ ∈ D(

√
J 2).

(17)

We can now further estimate the rhs with the use of inequality (13), or (14) in the
bounded spectrum case. We assume for simplicity that ‖J 2‖ = j ( j + 1) (again, we
do not need to assume that H is an eigenspace of J 2) and then we obtain

〈J 2〉χ ≤ �2
χ (J1) + �2

χ (J2) + 4 j2
(
�χ(J1) + �χ(J2)

)2(1 + 4�2
χ (J1) + 4�2

χ (J2)
)
.

Estimating
(
�χ(J1) + �χ(J2)

)2 ≤ 2
(
�2

χ (J1) + �2
χ (J2)

)
and solving the above

inequality for �2
χ (J1) + �2

χ (J2) we find

�2
χ (J1) + �2

χ (J2) ≥ 2〈J 2〉χ√
(8 j2 + 1)2 + 128 j2〈J 2〉χ + 8 j2 + 1

.

The rhs is further bounded by 2〈J 2〉χ/c( j), where c( j) results from the replacement
of 〈J 2〉χ by j ( j+1) in the denominator. One shows that j ( j+1)/c( j) is a decreasing
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function of j for j ≥ 1/2, thus it is bounded from below by its limit value. In this
way, we find

�2
χ (J1) + �2

χ (J2) ≥ 1

4(
√
3 + 1)

〈J 2〉χ
j ( j + 1)

.

These relations may be compared with a three-observable relation6

�2
χ (J1) + �2

χ (J2) + �2
χ (J3) ≥ ‖√J 2χ‖2

1 + 2‖√J 2χ‖2 , χ ∈ D(
√
J 2),

obtained by summing relation (17) with its two cyclically permuted versions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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