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Abstract. In integrable quantum field theories, the large volume spectrum is given by the
Bethe Ansatz. The leading corrections, due to virtual particles circulating around the cyl-
inder, are encoded in so-called Liischer corrections. In order to apply these techniques to
the AdS/CFT correspondence, one has to generalize these corrections to the case of generic
dispersion relations and to multiparticle states. We review these various generalizations and
the applications of Liischer’s corrections to the study of the worldsheet QFT of the super-
string in AdSs x $3 and, consequently, to anomalous dimensions of operators in AN =4
SYM theory.
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1. Introduction

For many integrable systems, the main question that one is interested in is the
understanding of the energy spectrum for the system of a given size L. The size
of the system in question may be discrete, like the number of sites of a spin chain
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or other kind of lattice system, or continuous, like the circumference of a cylinder
on which a given integrable field theory is defined.

The first answer to this question for a wide variety of integrable systems is
generically given in terms of Bethe equations. These are equations for a set of
(complex) numbers p; of the form

N
lzeinL H S(P],pk) (11)
k:k#j
Once a solution {p;};—1
formula

y 1s found, the energy is obtained through an additive

.....

N
E=Y"E(p)) (1.2)
j=1

where E(p) and S(p, p’) are (known) functions characterizing the given integra-
ble system. In practice, for generic integrable systems, these equations become the
more complicated nested Bethe equations, with a system of equations instead of
(1.1), with additional auxiliary unknowns appearing in (1.1) but not in the energy
formula (1.2). All this is described in detail in two other chapters of this review
[1,2].

Bethe equations of the type described above appear both in the case of discrete
integrable spin chains and continuous two-dimensional integrable quantum field
theories. Moreover, they also appear as equations for the anomalous dimensions
of single trace operators in the A'=4 four-dimensional SYM theory and in vari-
ous other contexts.

Now comes the fundamental difference between the various classes of integrable
systems. For integrable spin chains, like the Heisenberg XXX, XXZ etc. models,
the Bethe ansatz equations are exact and the energies given by (1.2) are the exact
eigenvalues of the spin chain hamiltonian. On the other hand, for two-dimensional
integrable quantum field theories, the answer provided by (1.1) and (1.2) is only
valid for asymptotically large sizes of the cylinder L. There are corrections which
arise due to the quantum field theoretical nature of the system, namely virtual
particles circulating around the cylinder and their interaction with the physical
particles forming a given energy state. For a single particle in a relativistic QFT,
Liischer derived formulas [3] for the leading corrections. The goal of this chapter
is to review the subsequent generalizations and applications of Liischer corrections
within the AdS/CFT correspondence. Let us note in passing that there may be also
some intermediate cases like the Hubbard model as considered in [4], where the
situation is not so clear.

Once one goes beyond these leading corrections by say decreasing the size of
the system, one has to include the effects of multiple virtual corrections which
becomes quite complicated, and have never been attempted so far. Fortunately,
for integrable quantum field theories, there exists a technique of Thermodynamic
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Bethe Ansatz — TBA [5] (and/or nonlinear integral equations — NLIE [6,7]), which
allows for finding the exact energy spectrum and thus effectively resuming all these
virtual corrections. This is, however, technically very involved, so even for the cases
where it is known, Liischer corrections remain an efficient calculational tool. These
exact treatments are described in the chapters [8] and [9] of this review.

As a final note, let us mention that for anomalous dimensions in the N =4
SYM theory, the Bethe equations break down due to so-called wrapping inter-
actions. This will be discussed in more detail in Section 3 (see also the chapter
[10]). Since according to the AdS/CFT correspondence anomalous dimensions are
exactly equal to the energies of string states in AdSs x S°, which are just the energy
levels of the two-dimensional integrable worldsheet quantum field theory, this vio-
lation of Bethe ansatz equations is in fact quite natural and can be quantitatively
described using the formalism of Liischer corrections for two-dimensional QFT.

The plan of this chapter is as follows. First, after introducing Liischer’s original
formulas, we will describe the various derivations of (generalized versions of) these
formulas — a diagrammatic one, through a large volume expansion of TBA equa-
tions and through a Poisson resummation of quadratic fluctuations. Then we will
review recent applications of generalized Liischer corrections within the context of
the AdS/CFT correspondence.

2. Liischer Formulas

Liischer derived universal formulas for the leading large L mass shift (w.r.t. the
particle mass in infinite volume) of a single particle state when the theory is put
on a cylinder of size L. The universality means that the value of the leading
correction is determined completely by the infinite volume S-matrix of the the-
ory. This relation does not depend on integrability at all, and is even valid for
arbitrary QFT’s in higher number of dimensions, however it is most useful for
two-dimensional integrable field theories for which we very often know the exact
analytical expression for the S-matrix.
The leading mass correction is given as a sum of two terms — the F-term

oo

_ do —mL cosh 6 ab T

Amp(L)=—m / 7€ coshGZ(Sab (Q—HE)—I) (2.1
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and the p-term
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quoted here, for simplicity, for a two-dimensional theory with particles of the
same mass [11]. SZZ () is the (infinite volume) S-matrix element, and M . =1 if
¢ is a bound state of a and b and zero otherwise. These two terms have a dis-
tinct spacetime interpretation depicted in Figure 1. The F-term corresponds to the
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Figure 1. Spacetime interpretation of Liischer’s formulas — p-term (left) and F-term
(right).

interaction of the physical particle with a virtual particle circulating around the
cylinder, while the u-term corresponds to the splitting of the particle into two oth-
ers which will then recombine after circulating around the cylinder.

In order to apply the above formulas to the case of the worldsheet QFT of the
superstring in AdSs x S° (in generalized light cone gauge — see [12] for a detailed
review), one has to generalize Liischer’s original formulas in two directions.

Firstly, the worldsheet QFT is not relativistic. The dispersion relation for ele-
mentary excitations is

E(p)=./1+16g> sinzg (2.3)

and moreover, there is no analog of a Lorentz symmetry, which brings about the
fact that the S-matrix is a nontrivial function of two independent momenta instead
of just the rapidity difference 6§ =6; — 6, as in the case of relativistic theories.
Secondly, due to the level matching condition of the string, the physical states,
corresponding to operators in A'=4 SYM, have vanishing total momentum (or
a multiple of 2m). Since single particle states with p =0 are protected by super-
symmetry, all states interesting from the point of view of gauge theory are neces-
sarily multiparticle states.

Consequently, one has to generalize Liischer corrections to theories with quite
generic dispersion relations and also to multiparticle states.

We will describe these generalizations at the same time showing how Liischer
corrections can be derived in many different and apparently unrelated ways.

2.1. DIAGRAMMATIC DERIVATION

The diagrammatic derivation was the original one used by Liischer [3]. Its advan-
tage is that it is the most general, does not assume integrability and is even valid
in any number of dimensions. Its drawback, however, is that it is very difficult to
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generalize to multiparticle states or higher orders. On the other hand, it is easy to
extend to theories with generic dispersion relations which was done in [13]. We will
present a sketch of this derivation here applicable to a theory with the dispersion
relation

E?=¢*(p) (2.4)

which encompasses both the relativistic dispersion relation £2(p) =m?+ p?, as well
as the AdS one 2(p) =1+ 16g> sin® p/2.

The starting point is the observation that the dispersion relation is encoded, as
the mass shell condition, in the pole structure of the Green’s function. Hence to
find the leading large L corrections, one has to evaluate how the Green’s function
is modified at finite volume. It is convenient to translate the problem into a mod-
ification of the I-particle irreducible (1PI) self energy defined by

G(p)'=eg+eX(p)—ZL(p) (2.5)

The renormalization scheme is fixed by requiring that the self energy and its first
derivatives vanish on-shell (at infinite volume). The shift of the energy, following
from (2.5) becomes

1
88L=_W17)2L(p) (2.6)

The propagator in a theory at fixed circumference can be obtained from the infi-
nite volume one through averaging over translations x — x +nL. In momentum
space, this will correspond to distributing factors of 'L over all lines. In the
next step, we assume, following [3,11], that the dominant corrections at large L
will be those graphs which have only a single such factor with n ==+1. Picking
n=—1 for definiteness, any such graph belongs to one of the three classes shown
in Figure 2. Thus

XL =%(Z Iubc+zJabc+zKub) (27)
bc bc b

Now, one has to shift the contour of integration over the loop spatial momentum
into the complex plane. Due to the exponent e’iplL, the integral over the shifted
contour will be negligible and the main contribution will come from crossing a
pole of a Green’s function in one of the graphs of Figure 2. This is the crucial
point for arriving at Lischer’s corrections. Taking the residue effectively puts the
line in question on-shell, thus reducing the two-dimensional loop integral to a sin-
gle dimensional one. It is very convenient to eliminate the spatial momentum using
the mass shell condition, and leave the last integral over Euclidean energy which
we denote by ¢g. The on-shell condition becomes

7> +e(ph?=0 (2.8)
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(a) (b) ()

Figure 2. The graphs giving a leading finite size correction to the self energy: a I,pc, b Jype,
¢ Kup. The filled circles are the vertex functions I', empty circles represent the 2-point Green’s

. iol P
function. The letter L represents the factor of e~7 L and the letters in italics label the type
of particles.

which in the case of the AdSs x S° superstring theory leads to

V1442

p'=—i2arcsinh i (2.9)

Plugging this back into the exponential factor e=?'L leads to the term which gov-
erns the overall magnitude of the Liischer correction

A/ 1442

. 1
_,plL :e_L'ETBA(q) ZefL-Zarcsth (2.10)

e
We will analyze the physical meaning of this formula in Section 3.

The mass shell condition has also another, equally important, consequence. Since
the line is on-shell, in the integrand we may cut it open thus effectively trans-
forming the graphs of the 2-point 1PI self energy into those of a 4-point forward
Green’s function. Keeping track of all the necessary factors gives

dg i LE
= — e LEBAD N Y G (—p, —q. p, 2.11
. /h o > G =4 ) (2.11)
The p appearing in the argument of G,pgp is the spatial momentum of the phys-
ical particle, while ¢ is the Euclidean energy of the virtual one. In the final step,
one links the 4-point forward Green’s function with the forward S-matrix element
arriving at Liischer’s F-term formula generalized to a generic dispersion relation:

o0

F_ d_q( _s’(P)) L'ETBA(CI). \F ba 3
% = /Zn =20 )¢ Zb:( 1)”(Sba(q,p) 1) (2.12)

with the same conventions for the arguments of & and sz as described below
(2.11). The p-term arises in the process of shifting the contours by localizing on
a residue of the above formula. It is thus given just by the residue of (2.12). For
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further details consult [13]. Let us mention that for relativistic theories one can
perform a more detailed analysis concerning the contribution of p-terms [11]. In
particular, u-terms are expected to contribute only if, in the spacetime diagram
shown in Figure 1, both particles move forward in time (i.e. have positive real part
of the energy). This analysis has not been done rigorously for the AdSsx S° case.

The diagrammatic derivation presented above is very general and does not
require integrability. Moreover, the difference between a theory with diagonal and
non-diagonal scattering is quite trivial. One can go from the simpler case of a
single particle species to the most general case of nondiagonal scattering just by
substituting the scalar S-matrix by an appropriate supertrace of the nondiagonal S-
matrix. Generalizing this property to multiparticle states leads to a simple shortcut
for obtaining multiparticle Liischer corrections — one can first obtain the formulas
for a simple theory with a single particle in the spectrum, and then generalize
to the generic case by trading the product of the scalar S-matrices for a super-
trace of the product of the nondiagonal ones. We will present this derivation in
the following section.

2.2. MULTIPARTICLE LUSCHER CORRECTIONS FROM TBA

In this section, we will show how multiparticle Liischer corrections arise from the
Thermodynamic Bethe Ansatz. Here, we will be able to obtain these more powerful
results using significantly stronger assumptions. Particularly, we will assume that
the theory in question is integrable with diagonal scattering. Then, as explained
above, we will use the expected very universal dependence of Liischer corrections
on the S-matrix to conjecture the general versions valid for any integrable theory
with a nondiagonal S-matrix (for which TBA equations are much more compli-
cated).

As explained in [8], TBA equations are derived by trading the complicated prob-
lem of finding the (ground state) energy of the theory at finite volume for the much
simpler one of computing a thermal partition function of the theory with space
and time interchanged through a double Wick rotation. In the latter case, since
one is dealing with the theory at almost infinite volume, Bethe ansatz is exact and
can be used to evaluate the partition function. Hence, the energies and momenta
in the following are those of the spacetime interchanged one (aka mirror theory)
related to the energy and momentum of the original theory through

The ground state TBA equation for the theory with a single type of particle takes
the form

e(z)=LE(2) + / d—w,(aw log S(w, 2)) log (1+e—8<“”) (2.14)
2wi
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and the ground state energy is obtained from the solution &(z) through

E= —/ a2 7'(z)log (1 +e_£(2)) (2.15)
2

In order to describe excited states, one uses an analytical continuation trick due

to Dorey and Tateo [14] that essentially introduces additional source terms into

(2.14). These source terms are generated by singularities of the integrand 1 +

e~¢(@) =0, which, through integration by parts and an evaluation through residues

give rise to additional source terms on the r.h.s. of (2.14)

e(z)=LE +1og S(z1,z) +1log S(z2, 2)
d
+/ _w (O log S(w, z)) log (1 —l—efe(w)) (2.16)
2mi

and additional contributions to the energy

E=E(Zl)+E(Zz)—/§—;ﬁ/(2)log (1+e’8(1)) (2.17)

where we quote the result with just two additional singularities.

It is quite nontrivial what kind of source terms to introduce for the theory at
hand. If a theory does not have bound states and u-terms, the rule of thumb is
that for each physical particle a single source term has to be included (this happens
in the case of e.g. the sinh-Gordon model). On the other hand, for a theory with
u-terms, like the SLYM, at least two source terms correspond to a single physical
particle (see [14,15]).

Now in order to obtain the Liischer corrections, we have to perform a large vol-
ume expansion of these equations. Solving (2.16) by iteration, neglecting the inte-
gral term and inserting this approximation into the energy formula gives

dz ~ 1
E=E E@)— [ = pe & —o
@)+ E@) /ane S(z1,2)8(z2,2)
d ~
=E(Zl)+E(Z2)—/ﬁe_LE(Q)S(Z,m)S(Z,Zz) (2.18)

We recognize at once an integral of the F-term type (with ¢ =p) in addition to the
sum of energies of the individual particles. There is a subtlety here, namely one has
to dynamically impose the equations for the positions of the singularities

l+e @) =0 (2.19)

If we insert here the same approximation as we have just used in the formula for
the energy, we will recover the Bethe equations

e =S(p1. p2) (2.20)
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However, in Liischer’s corrections we should keep all leading exponential terms.
Therefore, for the quantization condition (2.19), we have to use also the first non-
trivial iteration of (2.16). This will give rise to modifications of the Bethe quanti-
zation conditions. The quantization conditions &(z;) =i becomes

. d ~
0=log{e'LP1 S(22, 21)} +/ % OwSw, 21))S(w, z5) e~ LE®) 2.21)
BY) o
. d i
OZIOg{elL'nZS(ZI, ZZ)}+/ %S(uh Zl)(aws(u},ZZ)) e_LE(w) (222)
BY, o

Since the integrals are exponentially small we may solve these equations in terms
of corrections to the Asymptotic Bethe Ansatz (ABA) giving

OBY OBY
Lsp1+ —L8py+ 1 =0 (2.23)
Ip1 Ip2
OBY- OBY
25p1+ ——8py+ Py =0 (2.24)
Ip1 op2
The final formula for the energy thus takes the form

d ~
A e LEg(z, 21)S(z, 20) (2.25)

E=E(p1)+E(p2)+E'(p1)ép1+ E'(p2)ép2 —/ T

For nondiagonal scattering, we expect that the above formula will get modified
just by exchanging the products of scalar S-matrices by a supertrace of a prod-
uct of real matrix S-matrices. This generalization has been proposed in [39]. In the
F-term integrand we will thus get the transfer matrix (c.f. [9]) or more precisely its
eigenvalue!

e PIPLP) = (1) [5824 (5, p1)SBL(p. pa) ... SB4 (5. pn)] (2.26)

where we also substituted the complex rapidities used earlier by more physical
momenta. The BY condition reads as

2 = BYi(pi. ... pn) + 8@k =prL—ilog | [ | Ses(px. pj) | +5Ps (2.27)
k]

with the correction to these equations given by

o0
dp -
8P =— / 2—p(—1)F [SZfZ(p, Py
T

—00

OSara™ (B, pr)

aja (= —¢&a; (P)L
5 o Sana(Ds pw)} e

(2.28)

Twe present below the case when the physical particles forming the multiparticle state scatter
between themselves diagonally.
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The final correction then reads as

d §BY\ ™!
E(L)=e(p)— Y. 8”””( ") 50,
k

T dpe \ 9p;
Ood~
p N N o~ s
= | 5 22 CDILSEG, pOSELB. p) - Siva(p, pw)] e D
S ajp,...ay

(2.29)

For theories with u-terms, we expect that the corresponding u-terms will be obtained
by localizing the integrals on the poles of the S-matrix.

2.3. POISSON RESUMMATION OF FLUCTUATIONS

In this section we will present a simple, very physical, derivation of Lischer’s
F-term formula from a summation over quadratic fluctuations. Although this
approach requires the most restrictive assumptions, it is quite intuitive and gives
a new perspective on the origin of Liischer’s corrections.

For simplicity, we will just present the derivation for a particle with vanish-
ing momentum, analogous to Liischer’s original formulas. A more general case is
treated” in [16].

Consider a soliton at rest which is put on a very large cylinder, so large that we
may neglect the effect of the deformation of the solution. Now a small fluctuation
very far from the soliton will just be an excitation of the vacuum, so can be treated
as another soliton® (more precisely a single particle state). This small ‘fluctuation’
soliton will scatter on the stationary one and will get a phase shift expressible in
terms of the S-matrix (which we assume here to be diagonal)

SPa (k, p) =e'dbak:p) (2.30)

Due to the finite size of the cylinder, the momentum of the ‘fluctuation’ soliton
will have to be quantized giving

2rn 8p(ky)
kn= - + — (2.31)
We now have to perform a summation over the energies of the fluctuations
1 oo
Senaive = 5 ; > D (et — k™)) (2.32)
n=—00

where the energies of fluctuations around the vacuum (with k,(f)) =2mn/L) have
been subtracted out.

’In Ref. [16], a minus sign will have to be included in the second term in Equation (13) there.
Here we use ‘soliton’ as a generic term which includes e.g. ‘breathers’ in the sine-Gordon
model.
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The key result of [16] is that Liischer’s corrections are exactly the leading expo-
nential terms (m ==+1) in the Poisson resummation

e 2nn L & o .
Z F(T)zﬁ Z /F(t)e—”"“dt (2.33)
m=—00 _ g

n=—0oo

of (2.32). The relevant terms will be

3s=iRe/eiL’(s(k(t))—g(t))dt (2.34)
47

where k(t) =t +8(k(t))/L is the quantization condition, the solution of which we
do not need explicitly. Now, after a sequence of integration by parts and a simple
change of variables (see [16] for details) we can rewrite (2.34) as

+00

1 , ,
58=mRe/e—th(etS(k)_l)g/(k)dk
—0
1 +oo
= Re / e 'Lk (Sha (k, p) — e’ (k) dk (2.35)
—0

which is essentially Liischer’s F-term but evaluated on the physical line. We should
now shift the contour to ensure that the exponent is strictly real and decreasing
at infinity giving rise to Liischer’s corrections. Here the boundary terms require
a case by case analysis. Also u-terms may be generated when in the process of
shifting the contour we would encounter bound state poles. The above derivation
shows that evaluating Liischer F-term contributions is equivalent to computing
directly 1-loop energy shifts around the corresponding classical solution. Although
one has to be careful in this interpretation when one evaluates the phase shifts
(2.30) exactly and not only semiclassically.

3. Applications of Generalized Liischer’s Corrections in the AdS/CFT
Correspondence

In this section, we will briefly review various applications of generalized Liischer’s
corrections in the context of the integrable worldsheet QFT of the superstring in
AdSs x S°. Due to the AdS/CFT correspondence, the energy levels of this theory
(energies of string states) are identified with the anomalous dimensions of the cor-
responding gauge theory operators. In this way, the intrinsically two-dimensional
methods may be applied to the four-dimensional N'=4 SYM theory.

Before we review the obtained results, let us first discuss the generic magnitude
of Liischer corrections in this context.
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As we saw from the derivations, the order of magnitude of the F-term formula
is essentially governed by the exponential factor [17]

e LED) 3.1)

where E and jp=gq are the energy and momentum of a theory with a double Wick
rotation exchanging space and time — called ‘mirror theory’ [18]. For the case at
hand we have

A/ 0%+4%

e—L~2 arcsinh v (32)

where Q =1 corresponds to the fundamental particle (magnon) and Q > 1 labels
the bound states of the theory.
In the strong coupling limit, this expression becomes

2nL

L o
k|, = (33)

which is the typical finite size fluctuation effect observed for spinning strings
[19,20]. We also see that at strong coupling, the contribution of bound states is
exponentially suppressed, so one can just consider the fundamental magnons cir-
culating around the cylinder.

The p-term, which arises from the F-term by taking residues also appears at
strong coupling. It’s magnitude at strong coupling for a single magnon can be esti-
mated to be

2nJ

e Vini (3.4)

where p is the momentum of the physical magnon. We see that the exponential
term gives a stronger suppression than the F-term, however, the terms differ in the
scaling of the prefactor with the coupling. The F-term is associated with quantum
effects, while the u-term appears already in the classical contribution hence the
F-term is suppressed by a factor of +/A w.r.t. the u-term. Let us note that the link
between u-terms and classical solutions is still to a large extent not understood.
We may get another qualitative estimate from the formula (3.4) for classical finite-
gap solutions which may be considered to arise in the worldsheet theory as a state
of very many particles, each of which will presumably have a very small momen-
tum. Then (3.4) suggests that the u-term should be completely negligible for such
states.
At weak coupling, we obtain a quite different formula

H g2L
(Q*+gHE
Firstly, we see that the effect of the virtual corrections only starts at a certain
loop order, from the point of view of gauge theory perturbative expansion. Up to

(3.5)
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this order the Bethe equations are in fact exact. Such a behaviour is wholly due
to the nonstandard AdS dispersion relation (2.3). The loop order at which these
corrections start to contribute is related to the size of the gauge theory opera-
tor in question. This is very good, as just at that order we expect a new class of
Feynman graphs to appear in the perturbative computation. These are the so-
called ‘wrapping corrections’ and are given by graphs where, in the computation
of a two point function relevant for extracting anomalous dimensions, at least one
propagator crosses all vertical legs. From the very start [21] (see also [22]), these
graphs were expected not to be described by the ABA. Their identification with
(possibly multiple) Liischer corrections was first proposed in [17].

Secondly, we see that at weak coupling, all bound states contribute at the same
order. This makes the computation of wrapping effects at weak coupling more
complicated, but at the same time more interesting, as they are sensitive to much
finer details of the worldsheet QFT than at strong coupling.

The corrections to Liischer formulas are very difficult to quantify. Even in the
relativistic case there are no formulas for the leading corrections. These would be
multiple wrapping graphs and hence a Oth order estimate of their relative magni-
tude would be another exponential term. At strong coupling we would thus prob-
ably see a mixture of the first double wrapping graphs for magnons with ordinary
single wrapping graphs for the first Q =2 bound states. At weak coupling, the next
wrapping correction would generically have a relative magnitude of g~ although
there might also be factors of g coming from the prefactor which we do not con-
trol so the loop order for subleading multiple wrapping corrections is not precisely
determined.

Let us finish this section with a brief note on the elusive nature of u-terms.
Physical arguments based on the relativistic spacetime picture of the u-term dia-
gram, amounting to the requirement that the produced virtual particles propagate
forward in time suggests that at weak coupling u-terms should not appear since
the bound state is heavier than the fundamental magnon. Explicit computations
for the Konishi operator and twist-2 operators (see Section 3.2 below) confirm this
intuition. Yet, at strong coupling the u-term definitely contributes to the giant ma-
gnon finite size dispersion relation. It is still not understood how and when does
this occur, especially in terms of the proposed exact TBA formulations.

3.1. STRONG COUPLING RESULTS

An excitation of the worldsheet theory with momentum p~ O (1) has an energy
which scales as v/A characteristic of a classical string solution. Such a solution has
been found in [23] and is called the ‘giant magnon’. Subsequently, corrections to its
energy were found when the excitation was considered on a cylinder of finite size
J. The resulting correction was evaluated from the deformed classical solution in
[24,25] to be
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o4 -y 16 ~az?
6Estring=_§'—~51n3§-e ﬁs‘“gz—g~e—-51n3£-e giny (3.6)

In [13], the above expression was recovered from Liischer’s corrections. The expo-
nential term is different from the one appearing in the F-term formula, however,
it turns out that it is exactly the term appearing in the u-term, when we find the
residue of the F-term expression at the bound state pole.

The prefactor comes from evaluating the residue of the (super)trace of the for-
ward S-matrix at the bound state pole. A very curious feature of the above expres-
sion is the contribution of the dressing factor, which, at strong coupling, has an
expansion (see [26])

o

1

02=6Xp<g XAFS+XHL+Z g1 X”) oo
n=2

Naively, one may expect that only the first two terms would give a contribution,
however it turns out that due to the special kinematics of the bound state pole, al/
Xx2n contribute. The evaluation of this contribution is quite nontrivial with a diver-
gent series appearing, which can be resumed using Borel resummation. The result
exactly reproduces (3.0).

Among further developments, finite size contributions to dyonic giant magnons
were analyzed [27], quantum fluctuations were linked with the F-term [16,28], sim-
ilar computations were also done for giant magnons and dyonic magnons in the
ABIM theory [29-33]. In addition finite size corrections were evaluated for open
strings (which corresponds to Liischer corrections in a boundary integrable field
theory [34]) [35,36].

One can also analyze Lischer corrections for classical spinning strings. There
the picture is quite different from the giant magnons. The spinning string solutions
arise as a superposition of very many excitations, all with very small momenta. So
the u-term exponential factor will be very much suppressed and the dominant cor-
rection will arise from the F-term. The F-term integrand can be evaluated in terms
of the transfer matrix directly in terms of the Bethe root distributions describing
the spinning string in question. Alternatively, an analysis of these issues have been
done from the algebraic curve perspective in [37].

3.2. WEAK COUPLING RESULTS

Liischer’s corrections are particularly interesting when applied in the weak cou-
pling regime corresponding to perturbative gauge theory. There, they provide the
only calculational method to compute wrapping corrections apart from a direct
perturbative computation which usually is prohibitively complicated (see [10]). Cal-
culations based on generalized Liischer’s corrections are typically much simpler
and allow to obtain 4- and 5-loop gauge theory results which cannot be obtained
using other means.
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From a more theoretical perspective, the agreement of Liischer corrections with
perturbative gauge theory results is interesting as it gives a nontrivial quantitative
test of the AdS/CFT correspondence, as well as of our understanding of the fine
details of the worldsheet QFT of the AdSs x S° superstring. Moreover, it is very
interesting to realize that the breakdown of the ABA for anomalous dimensions
in the four-dimensional gauge theory occurs exactly in a way characteristic of a
two-dimensional quantum field theory (and thus characteristic of string theory).

A natural testing ground for these methods is the Konishi operator tr CDl.Z (or
equivalently tr XZXZ —tr X272, tr DZDZ — tr ZD?Z), which is the shortest oper-
ator not protected by supersymmetry.

From the string perspective, it corresponds to a two particle state in the world-
sheet QFT on a cylinder of size J =2. Despite the fact that J is so small, we may
expect to get an exact answer from Liischer corrections at least at 4- and 5-loop
level due to the estimate (3.5). Since at weak coupling all bound states contrib-
ute at the same order, we have to perform a summation over all bound states and
their polarization states and use the bound state-fundamental magnon S-matrix.
There is a further subtlety here, which does not appear in relativistic systems. In
the physical theory, the bound states discovered in [38] are in the symmetric rep-
resentation, while states in the antisymmetric representation are unstable. On the
other hand, in the mirror theory, the physical bound states are in the antisymmet-
ric representation [18], and in fact it is these antisymmetric bound states which
have to be considered when computing Liischer’s corrections.

Performing the computation yields the result for the 4-loop wrapping correction
to the anomalous dimension of the Konishi operator [39]:

A®) =324 4 864¢(3) — 1440¢ (5) (3.8)

which is in exact agreement with direct perturbative computations using both
supergraph techniques [40,41] and component Feynman graphs [42]. The string
computation is much simpler as it involves evaluating just the single graph shown
in Figure 3.

In another development, wrapping corrections for twist two operators

tr ZDM Z + permutations (3.9

were computed. Here, the main motivation for performing this computation was
the fact there are stringent analytical constraints on the structure of the anomalous
dimensions A(M) as a function of M. In fact the disagreement, at 4 loops, between
the behaviour of the Bethe Ansatz A(M) for M =—1+w and gauge theory con-
straints from the BFKL (Balitsky—Fadin—Kuraev-Lipatov) and NLO BFKL equa-
tions describing high energy scattering in the Regge limit [43-45] were the first
quantitative indication that the ABA breaks down [46].

In [47], the anomalous dimensions of twist two operators were evaluated at
4-loop level using Liischer corrections for an M-particle state. The wrapping
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Figure 3. The single Liischer graph entering the computation of the four loop Konishi anom-
alous dimension.

correction was found to exactly compensate the mismatch between the Bethe Ansatz
and BFKL expectations.

Subsequently, the leading wrapping corrections for the lowest lying twist-three
operators were also determined from Lischer corrections [48]. These occur at
S-loop level. Another class of operators which was considered were single particle
states [49] and the Konishi operator [50] in the B deformed theory. These results
agree with direct field theoretical computations when available [51,52].

In all the above computations of the leading wrapping corrections, there were
significant simplifications. Firstly, the wrapping modifications of the Bethe
Ansatz quantization condition did not appear. Secondly, the dressing factor of the
S-matrix also did not contribute.

Once one moves to subleading perturbative wrapping order (5-loop for Konishi
and twist two, and 6-loop for twist three), both of these effects start to play a role.
The modification of the Bethe Ansatz quantization is particularly interesting, as it
is only in its derivation that the convolution terms in TBA equations contribute. In
contrast to the simple single component TBA equation presented here, the struc-
ture of the TBA equations proposed for the AdSs x §° system is very complicated
[53-57]. So Liischer corrections may be a nontrivial cross-check for these propos-
als. In addition, due to the kinematics of the scattering between the physical par-
ticle and the mirror particle, it turns out that already at 5 loops, an infinite set of
coefficients of the BES/BHL dressing phase contributes to the answer.

A key difficulty in performing such a computation is the possibility of test-
ing the answer. Fortunately, we have at our disposal two independent consistency
checks. Firstly, at weak coupling we do not expect the appearance of pu-terms
which implies that a sum over residues of certain dynamical poles in the
integrand has to cancel after summing over all bound states. Secondly, the tran-
scendental structure of the final answer should be quite simple, while the subex-
pressions involve very complicated expressions which should cancel out in the final
answer. In addition, for the case of twist two operators, one can use the numerous
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stringent constraints on the analytic structure coming from BFKL, NLO BFKL,
reciprocity etc.

In [58], the 5-loop wrapping correction to the Konishi anomalous dimension was
derived

A0 = 11340 +2592¢(3) — 51847 (3) — 11520 (5) + 30240¢ (7) (3.10)

while in [59] a tour-de-force computation was performed for twist two operators
at 5-loops. Subsequently twist three operators were also considered at subleading
wrapping order in [60].

Recently, the 5-loop result coming from Liischer corrections was confirmed by
expanding the exact TBA equations at large volume first numerically [61], and then
analytically [62,63]. Finally, subsubleading (6-loop) wrapping corrections were con-
sidered for single impurity operators in the 8 deformed theory [64].

4. Summary and Outlook

Liischer’s corrections situate themselves in the middle ground between Bethe
Ansatz and a full fledged solution of two-dimensional integrable quantum field
theories in the guise of Thermodynamic Bethe Ansatz or nonlinear integral equa-
tions. They encode effects of an explicitly quantum field theoretical nature, namely
virtual corrections associated with the topology of a cylinder. In this way, Liischer’s
corrections may be seen to differentiate between spin chain like systems, where the
Bethe Ansatz is exact and quantum field theories, for which the Bethe Ansatz is
only a large volume approximation.

In this review, we have presented various ways of arriving at Liischer’s correc-
tions, some of them more or less rigorous, others more conjectural. The fact that
the methods are quite different one from the other serves as an important cross
check of these results. It would be, however, quite interesting to extend some of
these methods in various directions e.g. the diagrammatic calculations to multi-
particle states and subleading wrapping. Recently, the multiparticle Liischer cor-
rections proposed in [39] were tested in [61-63,65,66]. It would be interesting
to obtain some kind of universal understanding how the structure necessary for
Liischer corrections is encoded in the very complicated nondiagonal TBA systems.

With respect to the concrete applications of Liischer corrections in the AdS/CFT
correspondence there are still some loose ends like the rather mysterious formula
for the finite size corrections of the giant magnon in the B8 deformed theory [67].
Apart from that, the agreement between the computations based on Liischer cor-
rections, which typically involve a single graph, and the very complicated 4-loop
gauge theory computations involving hundreds or even many thousands of graphs
suggests that there is some very nontrivial hidden structure in the perturbative
expansion. It would be very interesting to understand whether it could be under-
stood in any explicit way.
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