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Abstract The problem of providing data-driven models for sediment transport in a
pre-Alpine stream in Italy is addressed. This study is based on a large set of measure-
ments collected from real pebbles, traced along the stream through radio-frequency
identification tags after precipitation events. Two classes of data-driven models based
on machine learning and functional geostatistics approaches are proposed and evalu-
ated to predict the probability of movement of single pebbles within the stream. The
first class built upon gradient-boosting decision trees allows one to estimate the prob-
ability of movement of a pebble based on the pebbles’ geometrical features, river flow
rate, location, and subdomain types. The second class is built upon functional kriging,
a recent geostatistical technique that allows one to predict a functional profile—that
is, the movement probability of a pebble, as a function of the pebbles’ geometrical
features or the stream’s flow rate—at unsampled locations in the study area. Although
grounded in different perspectives, both models aim to account for two main sources
of uncertainty, namely, (1) the complexity of a river’s morphological structure and
(2) the highly nonlinear dependence between probability of movement, pebble size
and shape, and the stream’s flow rate. The performance of the two methods is exten-
sively compared in terms of classification accuracy. The analyses show that despite
the different perspectives, the overall performance is adequate and consistent, which
suggests that both approaches can provide modeling frameworks for sediment trans-
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port. These data-driven approaches are also compared with physics-based ones that
are classically used in the hydrological literature. Finally, the use of the developed
models in a bottom-up strategy, which starts with the prediction/classification of a sin-
gle pebble and then integrates the results into a forecast of the grain-size distribution
of mobilized sediments, is discussed.

Keywords Bed-load transport · Pebble tracking · Functional Kriging ·
Gradient-boosting decision trees

1 Introduction

Bed-load transport has been recognized as a phenomenon that plays a significant role
in a range of applications with non-negligible environmental and societal impacts,
including agriculture (Haddadchi et al. 2014), reservoir siltation (de Miranda and
Mauad 2015; Longoni et al. 2016b), urban planning (Dotterweich 2008), riverine
species’ habitats (Wharton et al. 2017), river–structure interactions (Pizarro et al.
2020), and flood risk management (Radice et al. 2016; Mazzorana et al. 2013). Bed-
load transport studies have demonstrated that the dynamics of the process are largely
dependent on the hydraulic parameters of the stream (e.g., Hassan and Bradley 2017;
Vázquez-Tarrío et al. 2019), while the effects of sediment transport are particularly
prominent in mountain streams due to the abundance of sediment material and the
swift time of concentration leading to significant sediment mobility, even for events of
short duration, such as several tens of hours (Sear et al. 1995; Stover andMontgomery
2001; Lane et al. 2007; Longoni et al. 2016a).

Individual pebble tracing has been outlined as an innovative method that allows
for the collection of bed-load transport field data, which could provide insights into
the dynamics of the process at various temporal and spatial scales. Radio-frequency
identification (RFID) transponders (a.k.a. passive integrated transponders or PIT tags)
have been used as sediment tracers and deployed in field and flume experiments to
understand particle transport. Both active and passive tracers have been used by a
number of authors for pebble tracking (e.g., Cassel et al. 2017). While the former
feature higher detection ranges and thus a lower loss rate, the latter are significantly
less expensive; thus, a larger sample of tracer-equipped pebbles could be created.
Recent reviews on passive tag pebble tracking can be found in Hassan and Bradley
(2017), Vázquez-Tarrío et al. (2019), and Ivanov et al. (2020a). The ability to monitor
a sample with a desired frequency permits the correlation of quantities such as pebble
mobility, displacement, and velocity with river discharge and meteorological event
parameters.

Pebble-tracing data are generally processed to analyze trends in traveled distance,
virtual velocity, and proportion ofmobile pebbles. Those control parameters are related
to variables considered key drivers of sediment transport, such as river discharge, as
well as predisposing factors such as pebbles dimensions or, less commonly, the local
morphological conditions (e.g., Ferguson et al. 2017; Vázquez-Tarrío et al. 2019; Cain
and MacVicar 2020; Ivanov et al. 2020a). The proportion of mobile pebbles within
the period of observation provides an indication of the mobilizing capacity of a stream
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during a given event. This parameter was analyzed in the work of Papangelakis and
Hassan (2016), who established a linearly increasing trend with respect to the total
excess flow energy expenditure over an entire season with a good fit (R2 = 0.78 and
R2 = 0.72 for two investigated reaches), while its relation to the peak flow discharge
demonstrated a weaker relationship. No dependency was established between the
proportion of mobile pebbles and their size. Further, Ferguson et al. (2017) report a
weakly increasing trend of pebble mobility with increasing peak flow rate, observed
at the event scale for six events. By contrast, Ivanov et al. (2020a) did not find a
correlation between the dimensionless peak flow rate and the ratio of mobile particles
for a data set including 18 event observations. This difference in results from studies
conducted at different timescales highlights the intermittency of the process, as well as
the multifaceted nature of sediment mobilization, where factors such as sediment size
and morphology hinder the establishment of a clear trend at the event-scale level. The
discrepancies between results obtained by different authors suggest that the dynamics
of the process can vary substantiallywhen pebble-tracing data are analyzed at the event
scale. It is likely that the multifaceted nature of pebble mobility renders it difficult
to describe with simple regression methods that are typically used to relate pebble-
tracking data to control variables. More complex nonlinear models could therefore be
able to incorporate the variety of factors affecting the mobility of pebbles at the event
scale.

Advanced analytical approaches that may enable modeling of the complex phe-
nomena occurring in sediment transport may be grouped into two classes: (1) purely
physics-based approaches and (2) highly nonlinear, data-driven approaches. In the
former case, systems of partial differential equations (PDE) are used to model the
dynamics of the flow and to consistently assess sediment transport (see, e.g., Vetsch
et al. 2017; Bonaventura et al. 2021). In this case, field data can be used to calibrate
the PDE, both in terms of providing sensible input parameters (e.g., Bakke et al. 2017;
Gatti et al. 2020) and to validate the model outputs (e.g., Brambilla et al. 2020). Criti-
cal points of this class of methods typically lie in the numerical complexity of solving
the PDEs, in the data assimilation process, and in the uncertainty quantification of the
model, which often require the development of ad hoc techniques. In this work, the
focus is on the latter approach. Data-driven methods can be used to build empirical
models for sediment transport, in which data are used directly to infer the connection
between sediment transport and the stream/bed-load characteristics, without relying
on the physical laws governing the system. Data-driven models have the advantage of
often being naturally suitable to effectively perform uncertainty quantification (e.g.,
via resampling methods, Friedman et al. 2001); in some cases, they are also char-
acterized by a lower number of input parameters to be calibrated (hereafter called
hyperparameters).

Zounemat-Kermani et al. (2021) presented a review on the use of ensemblemachine
learning in a variety of hydrological applications—including the estimation of sus-
pended sediment transport—reporting that a superiority of ensemblemachine learning
compared to ordinary learning had been claimed in many literature studies. Bhat-
tacharya et al. (2007) used artificial neural networks (ANNs) and model trees (MTs)
to predict bed load and total sediment fluxes; they found that the machine-learning
approach performed better than several commonly used empirical equations (with ref-

123



Math Geosci

erence to a prior compilation of laboratory and field data)—with similar performance
for ANNs and MTs. The authors, however, acknowledged that prior knowledge about
the process was used to select appropriate input and output variables. In line with pre-
vious work, Azamathulla et al. (2010) used support vector machines (SVMs) to model
the total load of three Malaysian rivers and found that SVMs produced largely better
estimates than traditional equations. Sahraei et al. (2018) used a machine-learning
and meta-heuristic approach to predict bed-load concentration with reference to an
extensive data set available in the literature, obtaining better estimates than traditional
equations. Kitsikoudis et al. (2014) used data-driven approaches to predict the sedi-
ment transport rate in gravel-bed creeks in Idaho. Consistent with previous work, they
found that machine-learning tools enable better performance than commonly used
empirical equations. Tayfur (2002) compared the performance of ANNs and physics-
basedmodels for the prediction of sheet flows and found that ANNs performed equally
well and sometimes better than physics-based models.

Amongst the data-driven approaches available in the literature, this work considers
two perspectives of the problem of predicting the probability of pebble movement,
namely, (i) a machine-learning approach based on boosting methods and (b) a func-
tional geostatistics framework. In the first case, a model for the probability of pebble
movement is built based on iteratively applied decision trees in the framework of
gradient-boosting decision trees (see, e.g., Friedman et al. 2001). Note that the iter-
ative construction of the trees enables one to build a highly nonlinear model of the
relation between the probability of movement of single pebbles and the characteristics
of the pebbles themselves (e.g., shape, size) and of the stream (e.g., flow, geomor-
phology). In the second case, a functional data analysis (FDA, Ramsay and Silverman
2005) approach is used to reconstruct the nonlinear functional relation between the
probability of pebble movement and pebble characteristics (i.e., shape, size). These
functional forms, which can be estimated only locally, are then predicted at unsampled
locations along the river by relying on the theory of object-oriented spatial statis-
tics (O2S2, Menafoglio and Secchi 2017), a methodological framework to analyze
functional observations distributed in space (e.g., via kriging). These two different
perspectives are compared in terms of the actual error in validation analyses (both in a
cross-validation setting and on an independent data set), and the results are interpreted
from a geomorphological perspective, highlighting the strengths and limitations of
each approach.

This study ultimately aims to investigate whether these two classes of data-driven
approaches can be appropriately used for bed-load transport prediction and to identify
the limitations of these viewpoints. This is done by leveraging themost recent methods
at the cutting edge of the machine learning and geostatistics literature based on a very
unique data set collected in the field.

The rest of this work is organized as follows. Section 2 presents the study area and
the available data in terms of pebble characteristics and position, stream flow, and river
geomorphology. Section 2.2 presents a preliminary analysis of the data set to highlight
its key features and introduce the concept of a typical rainfall event, which will be
instrumental to the application of the data-driven approaches considered in this work.
These characteristics will be introduced in Sect. 3 and applied to the data in Sect. 4.
Section 5 discusses the application of the proposed approaches on an independent data
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set, collecting pre- and post-event granulometric distributions at a number of sites in
the study region, highlighting the critical points of this process. Section 6 presents a
quantitative comparison of the present results to those obtainable by a widely used
physics-based approach to sediment transport analysis (based on the Shields number).
Finally, Sect. 7 provides a discussion and draws conclusions. All the data analyses
were performed using the software R (R Core Team 2020); source code to reproduce
the analyses is freely available at the following link: www.github.com/alexdidkovskyi/
YP_Paper.

2 Field Case

2.1 Data Description

The investigation conducted in this work is based on field data collected in the hydro-
graphic basin of the Caldone River, South Africa. This area was subject to an extensive
study in recent years (Ivanov et al. 2016a, 2017; Papini et al. 2017; Ivanov et al.
2020a, b; Gatti et al. 2020) to assess the hydrogeological instability and hazard within
the region. The data available for the present study come from four main sources,
namely geomorphological characteristics of the domain, sediment information (peb-
ble size, dimension, etc.), pebble location, and river flow information, which are
illustrated in greater detail below. All these sources of information were indepen-
dently measured. Data on domain characteristics and pebble dimensions are the only
static information; the other sources are dynamic and strictly related to the sediment
transport phenomenon.

The domain The hydrographic basin of the Caldone River (Fig. 1) covers an area of
28 km2 and collects an average yearly rainfall of approximately 1,400 mm. The main
stream is 11 km long and drains into Lake Como after its passage through the town
of Lecco. As in most pre-Alpine environments, active geomorphic processes include
colluvial and fluvial transport responsible for the yield and further propagation of
sediment downstream (Ivanov et al. 2016b). The steep slopes characterizing the stream
and the limited time of concentration promote the rapid development of flood waves
that are capable of transporting large amounts of sediment. The gradient of the river
varies in the range of 10–40% in the upstream portion of the basin and 1–5.5% in its
lower part. The channel width is typically less than 10 m. The sediment grain size
distribution extends from fine sand to boulders of metric dimensions. The discharge
at the downstream end of the basin ranges from 0.2 m3/s in normal conditions to
peak values of more than 100 m3/s. The river reach, which is the focus of this work
(henceforth referred to as the domain), extends for approximately 1 km from the
confluence of the Caldone with its main tributary (Fig. 1).

From a geomorphological perspective, the domain is characterized by several sub-
domains. Morphological units identified in the reach are as follows. First, there is
a cascade zone characterized by a swift and shallow tumbling flow, disturbed by the
presence of coarse sediment. Downstream, the channel transitions into a step-and-pool
zone characterized by longitudinal steps composed of large clasts that separate con-
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Fig. 1 The hydrographic catchment of the Caldone River. Monitored domain and subdomains

secutive pools that contain finer-grained sediment. The stream in this zone alternates
from swift over the steps to slow within the pools. Finally, the monitored domain ends
with a plane-bed area that is a flat relatively featureless bed with a lower gradient
that allows for undisturbed flow of the stream. The domain is laterally confined by a
bank zone that is often vegetated, and the stream flow here is rather slow with respect
to the center of the channel. Along the entire monitored reach are longitudinal and
side bars, which effectively represent sediment build-up zones. These zones typically
act both as source and deposition zones during moderate- and high-flow events. The
reach is further characterized by the presence of large boulders of metric dimensions.
The morphological units typically have a compound nature and consist of a set of
disjoint morphological sectors. These morphological sectors are depicted in Fig. 1 as
individual polygons.

Sediment information Although, in general, complete characterization of the shape
of a pebble may require a complex representation, in our study, this is summarized by
primary and secondary indicators. The primary indicators are the three main dimen-
sions of the pebble (in millimeters) and its weight. These dimensions are computed as
the length of the pebble along its three main axes, referred to as the a-, b-, and c-axis,
these lengths being in decreasing order. The secondary indicators are derived from
the primary ones; they are elongation (b/a), platyness (c/a), sphericity (( c

2

ab )1/3), and
nominal diameter ((abc)1/3). Typically, these indicators are correlated; for instance,
the weight is strongly correlated with the nominal diameter. Thus, summaries, or only
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Fig. 2 Typical pebbles included
in the data set

Table 1 Pebbles’ primary and secondary indicators: summary statistics

Indicator Mean Sd

a-axis 108.57 25.08

b-axis 79.40 17.24

c-axis 53.46 12.49

Nominal diameter 76.60 14.34

Weight 726.66 404.73

Elongation 0.75 0.13

Platyness 0.51 0.12

Sphericity 0.72 0.09

Main dimensions are in (mm), and the weight is in (g)

part of the indicators, can be used for more efficient characterization of the shape and
dimension of the pebbles (see Sect. 2.2). An illustrative example of typical pebbles
belonging to the study is presented in Fig. 2. Table 1 reports the mean and standard
deviation of the primary and secondary indicators for the set of 664 pebbles considered
for this study.

Pebble scattering The minimal cost of RFID tags allowed for their insertion in the
664 pebbles considered in this study. Before deployment into the river, the pebbles
were drilled, equipped with an RFID tag, and finally painted in a bright yellow color
for visual aid as illustrated in Fig. 3. The weight and dimensions (a-, b-, and c-axis)
of each pebble were recorded and associated with the respective RFID unicode. The
deployment in the river (Fig. 1) was performed in several tranches, and the movement
of the pebbles was monitored with a portable antenna after each significant rainfall
event along the timeperiod of 06/2016–09/2018.The successive position of the pebbles
was recorded on a photorealistic model of the reach (Fig. 1). The unicode contained
in each transmitter allowed each pebble to be attributed to a position before and after
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(a) (b)

Fig. 3 Experimental setup: inclusion of RFID and coloring of pebbles

a flood event. A detailed explanation of the experimental procedure can be found in
Papini et al. (2017).

River flow data During the period 2016–2018, the pebble samples were surveyed
after 28 precipitation events. During the events, discharge values at a certain time
were measured at the gauge station just downstream of the monitored reach (see
Fig. 1); these data, however, are not representative of event evolution, as only one
determination is available per event. Ivanov et al. (2020a) conceived a method to
exploit hourly resolution level data from a gauge station located close to the basin
outlet (also pinned in Fig. 1 at Lecco); this work takes advantage of that method to
convert hourly data of water elevation at the downstream gauge station into hourly
data for the flow rate in the test reach. Furthermore, Ivanov et al. (2020a) identified
a dimensionless discharge threshold (depicted in Fig. 4) for sediment mobility in the
test reach on the basis of a subset of the data presented in this work. The threshold was
defined by plotting data of particle displacement against those of peak flow rate and
then extrapolating down to zero displacement. In this work, the conversion, mentioned
above, from water levels downstream into discharges in the test reach, was applied in
an inverse manner to convert the threshold discharge in the test reach into a threshold
water elevation at the downstream gauge station. This allowed for the definition of
event duration as the duration over which the water depth at the downstream gauge
station remained above the threshold value for sediment transport in the test reach.
According to the type of event, the duration can range from 1 h (corresponding to the
measuring interval) to as long as several days. Mobilizing events could be classified as
two general types—high peak discharge and short duration and events with a limited
intensity but a longer duration.

2.2 Data Exploration and Preprocessing

To construct the data set for model training based on the initial raw data, each data
source was preprocessed separately. Data preprocessing consists of (1) data selection
and treatment ofmissing values and (2) dimensionality reduction of the pebble andflow
indicators. Step (1) aims to clean the data set, in particular concerning themanagement
of missing data, as not all the pebbles could be found after the rainfall events (20% of
the pebbles have at least one missing value). For instance, several pebbles were lost
for three consecutive events and then found at their respective initial locations. This
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Fig. 4 River depth during
mobilizing event 15
(27/09/2017–30/09/2017). The
yellow horizontal line at hcp =
35 cm represents the river depth
threshold at the downstream
gauge that corresponds to a
mobilizing event at the test reach
(hcp being the water level
measured at a gauging station
close to the river outlet)

could be due to a temporary increase in water depth (and consequently, in the distance
between a pebble and the antenna during the survey). However, given that their position
did not change, these pebbles can be assumed to have remained still during all these
events when they were lost. Treatment of missing data is thus performed through the
following rules:

1. If a pebble is lost for N ≥ 1 events and then found after the (N +1)-th event at the
same location, it is considered to have remained in the same location throughout
all N + 1 events (thus marked as not moved for all the events).

2. If a pebble is lost for N ≥ 1 events and then found at a different location, the
partial information about this pebble is not used.

3. If a pebble is found upriver, it is interpreted as a positioning error, and the data
point is removed.

Furthermore, to isolate erroneous data, a simple heuristic is used to identify obser-
vations with a potential positioning issue. Note that the domain is characterized by
a slope from upstream to downstream, and, consequently, a downslope-propagating
river flow. Hence, assuming unidirectional flow, the expected pebble displacement is
in the direction of the flow. All observations associated with an upstream movement
and displacement larger that 1 m are thus excluded. This heuristic identified 65 of
2,200 observations with positioning issues.

Step (2) (i.e., dimensionality reduction)was performed separately on the pebble and
flow indicators. Focusing on pebble dimensions, we consider the primary indicators
(a-axis, b-axis, c-axis) and perform principal component analysis (PCA) to filter out
redundancy within this set of information. For the same purpose, secondary indicators
are not considered further for the analysis, as they are strongly correlated with the
primary indicators. The first PC (hereinafter PC1) is responsible for 77% of the
variance in the data, while the second PC (hereinafter PC2) explains an additional
13% of the variance. Interpretation of the loading of PC1 (e1 = (0.84, 0.48, 0.24)T )
suggests a strong association of PC1 with overall pebble size (the higher the score,
the larger the pebble). In turn, PC2 is associated with the elongation of the pebble
(e2 = (0.54,−0.71,−0.44)T )—the higher the score, the more elongated the pebble
is. The weight of the pebbles appears to be strongly correlated with PC1 (correlation:
ρ = 0.87) and is thus excluded from the predictors to avoid collinearity.
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(b)(a)

Fig. 5 Rainfall events clustering. Events 5, 24, 25, and 26 are short intense (SI, red symbols in panel (b));
events 19 and 22 are long mild (LM, green symbols in panel (b)); all other events are typical (T, black
symbols in panel (b))

Concerning flow data, exploration of the data set suggests the presence of three
macrogroups of mobilizing events: typical (T) events, short intense (SI) events, and
long mild (LM) events. These clusters are clearly evidenced when applying hierarchi-
cal clustering; see, e.g., the results obtained with Euclidean distance andWard linkage
reported in Fig. 5. Here, groups T, SI, and LM are represented by black, red, and green
symbols, respectively; SI events are identified as those with ameanwater depth greater
than 65 (cm), LM events as those with a duration greater than 250 h, and T events are
the remaining ones. Notably, the T events share a good degree of similarity in terms of
river flow data, besides representing 22 of 28 rainfall events (corresponding to 1,594
of the 1,989 pebble observations).

Dimensionality reduction of the river flow data is based on PCA of the scaled val-
ues of (i) mobilizing event duration (h), (ii) average river depth (cm), and (iii) average
water flow (m3/h), when all the groups of events are considered together. These vari-
ables were scaled using min-max normalization (i.e., they were separately scaled to a
range of [0, 1] ). The first PC of the flow data, named PC1 f low, explains 71% of the
variability and is interpreted as a contrast between duration and flow characteristics
(v1 = (0.11,−0.69,−0.71)T )—high scores are associated with SI events, low scores
are associated with long and less intense events. The second PC, PC2 f low, is respon-
sible for an additional 28% of the variance and is strongly associated with duration
(v2 = (0.99, 0.01, 0.01)T )—high scores being representative of longer duration.

In the following, only preprocessed data are considered in our analyses, each obser-
vation being built of the following set of variables: PCs of pebble dimensions, PCs of
flow data (for each event), pebble locations (after each event), and associated geomor-
phological domain. Pebble locations are used to compute displacement after an event
as the Euclidean distance between positions before and after the event. The measured
displacement di j of the i-th pebble after the j-th event is then used to classify pebbles
as moved (di j > 0) or not moved (di j = 0).
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3 Methods

This section describes the two classes of methods considered for the classification
problem on sediment transport data. Results of the data analysis are reported in Sect. 4.

3.1 XGBoost: Estimating the Probability of Pebble Movement

The forecasting of sediment transport during multiple mobilizing events can be con-
sidered a classification problem for a set of single pebbles, the target classes being
moved (M) and not moved (NM). It is thus natural to frame this problem in the con-
text of two-class classification methods that allow one to estimate the probability of
movement of single pebbles based on pebble characteristics, location, and flow data.
Denote by (x1, y1), ..., (xn, yn) the set of n available observations, where yi is a target
variable and xi is a vector of features linked to observation i . In this case, yi ∈ {0, 1}
(NM or M) and xi ∈ Rp, where p is the number of features.

The training process of the classifier is typically based on minimization of the cost
function J (θ) over a set of parameters θ , in a parameter space Θ . In the context of
gradient boosting (Chen and Guestrin 2016; Ke et al. 2017), the objective functional
is written as J (θ) = L(θ) + Ω(θ), where L(θ) is a training loss and Ω(θ) is a
regularization term that constrains the model complexity and prevents overfitting. In
the case of two-class classification, logistic loss can be selected as the training loss

L(θ) =
∑

i

[−yi log( p̂i (θ)) − (1 − yi ) log(1 − p̂i (θ)
)],

where p̂i (θ) is the predicted probability for observation i given the parameters θ ∈ Θ ,
and log(·) is the natural logarithm. Note that to express the probability of movement
for each pebble as a function of the available predictors, one may consider a very
general functional, characterized by the desired degree of complexity.

Training GBdt Gradient-boosting decision trees (GBdt) are amongst the most com-
mon approaches to train nonlinear classifiers based on a set of features. This approach
allows the nonlinear dependencies of the classifier to be broken down into an extensive
set of binomial rules, represented as binary decision trees. Various implementations
of GBdt exist (e.g., XGBoost, Chen and Guestrin 2016, LightGBM Ke et al. 2017),
the main difference being in the way the decision trees are built.

This work focuses on XGBoost, which is amongst the most commonly used boost-
ing methods, particularly to address relatively small data sets with a moderate number
of categorical variables. XGBoost consists of creating a set of weak classifiers ft (x1),
each ft belonging to a space of binary decision trees F . Given the (t − 1)-th tree, the
t-th tree is built upon the residuals of the prediction from the previous tree, that is

ŷi
t =

t∑

k=1

fk(xi ) = ŷi
(t−1) + ft (xi ).
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At step t , the objective function J (θ) is thus decomposed as

J (t) =
n∑

i=1

l
(
yi , ŷ

(t)
i

)
+

t∑

i=1

Ω ( fi )

=
n∑

i=1

l
(
yi , ŷ

(t−1)
i + ft (xi )

)
+ Ω ( ft ) + const, (1)

where l
(
yi , ŷ

(t)
i

)
is the value of the loss function for the i-th prediction at the t-th step

and const = ∑t−1
i=1 Ω( fi ). Note that the term

∑t−1
i=1 Ω( fi ) in (1) is constant because

at step t , (t − 1) trees have already been elaborated, and they are kept fixed in the
construction of the t-th tree. Note that in (1), the dependence of ŷ(t−1)

i , ft and J (t) on
θ was dropped for notational simplicity.

In the case of two-class classification, the predicted probability p̂i is typically
obtained using a sigmoid (i.e., logistic) function, that is, p̂i = S(ŷi ) = 1

1+e−ŷi
.

Consistently, the predicted probability at step t is obtained as p̂ti = S(ŷt−1 + ft (xi )).
Minimization of the cost functional J (t), for t = 1, 2, ..., then yields the construction
of a cascade of trees, which jointly build the predicted probabilities and, ultimately,
the classifier—obtained by appropriate thresholding of the predicted probability p̂.

Hyperparameter optimization The XGBoost model has a number of hyperparame-
ters that control, for example, the proportion of features or observations used at the
t-th step, the depth of the trees, and the learning rate. Here, finding the global optimum
for the loss function is extremely difficult, as the objective functional is highly non-
linear and nonconvex. To increase the model accuracy, one can consider fine-tuning
of hyperparameters or their Bayesian optimization (Akiba et al. 2019), which are
time-consuming processes.

In the following, the focus is on optimization of the parameter max _depth, which
controls the maximum depth of the tree (i.e., the maximum number of steps between
a root of the tree and any tree node). The selection of max _depth is performed
using B = 7 repeated K-fold cross-validation (CV) procedures (Rodriguez et al.
2009). B repetitions are used to stabilize the result with respect to possible artifacts
due to the splitting of the data set into folds (see also Sect. 3). Optimization on a
larger set of hyperparameters (“lambda,” “alpha,” “subsample,” “colsample_bytree,”
“max_depth,” “min_child_weight,” “eta,” “gamma,” “grow_policy”) was performed
without substantial improvement in performance w.r.t. the model being presented (see
Sect. 4).

3.2 Functional Kriging: Forecasting Pebble Movement from a Functional
Perspective

This section considers a different perspective of the problem of forecasting the prob-
ability of movement of pebbles along the stream based on the theory of functional
geostatistics. The approach is based on the assumption that the dependency between
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pebble dimensions, river flow data, pebble location, and probabilities of movement
can be modeled as a continuous function. Thus, one may consider the data as obser-
vations from a continuous functional surface, relating the value of the features x to
the probability of movement p(x). Note that such surface may be evolving along
the stream domain D (i.e., p(x) = p(x; s)) because of its composite nature. The
ability to reconstruct the surfaces p(x; si ) for the observation sites si in domain D
could thus potentially lead to a data set of functional observations to be projected over
unsampled locations along the stream in a (functional) kriging setting. Inference on
p(x) = p(x; s) could be of a particular interest from the application perspective, as it
would allow one to provide a direct and interpretable characterization of the bed-load
drivers and predisposing conditions for sediment transport. The following sections
discuss the operational steps that are followed to realize this idea in the following
analyses.

Reconstruction of functional profiles In general, the estimation of the multidimen-
sional surface p(x; si ) could require an enormous quantity of data. This work copes
with the complexity of this estimation problem by (i) reducing the dimensionality
of the vector of inputs xi and (ii) using the local neighborhood N (si ) of location si
to build the estimate p̂(x; si ). Note that both steps could be partially avoided in the
presence of a larger database, in terms of events and pebbles. For step (i), the vector
x of features is reduced by considering only the first PC of the pebble characteristics
(PC1) and by averaging the effect of the flow over typical mobilizing events only
(events T , see Sect. 2.2). This approach allows us to simplify the problem into the
analysis of univariate functional profiles p(PC1; s), indexed by the spatial index s in
D. Note that summarizing the information of the pebble characteristic through PC1 is
justified by virtue of the high proportion of variance explained by this PC, whereas the
second choice is motivated by the observation that typical mobilizing events appear
similar from the flow perspective (see Sect. 2.2). Further justification of this choice is
provided in Sect. 4.1.

For step (ii), a local estimate of p̂(x; si ) is considered based on the spatial neigh-
borhood of si . Note that these probability curves must be estimated from sparse
observations, the term sparsity referring both to the spatial dimension and to the
variable PC1. In fact, focusing on a single pebble (i.e., on a single value for PC1),
data are realizations of Bernoulli random variables, for which a limited number of
realizations (i.e., events) are observed. Similarly, when focusing on a single location
si , no more than three observations are typically available. To estimate p̂(PC1; si ),
not only do we use the observations related to the location si , but also those from a
neighboring zone N (si ), where N (si ) is a circle of radius r > 0 centered at si—the
hyperparameter r > 0 being fixed by CV in a range of candidates (r ∈ {3, 5, 7} m).
Note that such neighborhoods are also constrained to belong to the same geomorpho-
logical subdomain as si to preserve the domains’ characteristic through the estimation
procedure. To reduce the estimation bias induced by the consideration of neighboring
data, only locations si with at least nmin = 12 observations in N (si ) are consid-
ered. Moreover, whenever the neighborhood N (si ) contains more than nmax = 30
observations, the estimate p̂(PC1; si ) is built upon the nmax closest observations.
This approach enables a balance of the bias–variance trade-off affecting the esti-
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(a) (b)

Fig. 6 Constructionof functional profiles p̂(PC1, si ) from rawpebble data.aPebble locations are indicated
as gray points; the location si is indicated as a blue point, the blue circle being the boundary of N (si ). b
Black symbols indicate the binary observations (0 for NM, 1 for M); the solid lines indicate the estimated
curve p̂(PC1, si )

mate of p(PC1; si ), adjusting for the different spatial density of the observations.
The parameters nmin, nmax were both selected by CV within a range of candidates
(nmin ∈ {5, 7, 10, 12}, nmax ∈ {15, 20, 25, 30, 35}).

Figure 6 is an illustration of the curve generation process, highlighting a location
si = (9.24, 45.87) (marked by a blue point in Fig. 6a), the neighborhood N (si )
considered for the estimate (marked as a blue circle in Fig. 6b), and the associated
estimate of p̂(PC1; si ) (black curve in Fig. 6b). This latter curve was obtained by
Nadaraya–Watson kernel regression (Nadaraya 1964; Watson 1964) using a Gaussian
kernel K with bandwidth parameter h, that is

p̂(PC1 = x, si ) =
∑

j :s j∈N (si ) Kh(x − x j )y j
∑

j :s j∈N (si ) Kh(x − x j )

where the x j ’s are the values of PC1 for the observed pebbles in N (si ), and the y j ’s
are their associated binary outcomes (0 for NM, 1 for M; black symbols in Fig. 6b).
The kernel bandwidth is set to h = 20 to balance the roughness of the curve with
its capability to adapt to the data. For the estimation of p(PC1, si ), i = 1, ..., n, a
common support I is defined as the range of values of PC1 in the training data, that is,
I = [PC1min, PC1max]. Only the curves observed on the whole interval I are used
during the training procedure.

Functional geostatistics for probability curves From a mathematical perspective,
the (estimated) relation p̂(PC1, si ) between the probability of movement of a pebble
in si and its PC1 can be interpreted as a functional data point and analyzed in the
framework of object-oriented spatial statistics (O2S2, Menafoglio and Secchi 2017).
Similarly as in scalar geostatistics (Cressie 2015), in O2S2, the set of functional data
p̂(PC1, si ), i = 1, ..., n, is modeled as a partial observation of a functional random
field { p̂(PC1, s), s ∈ D}. Here, typical goals are modeling of the spatial dependence
and spatial prediction (i.e., kriging). Given that the probability curves p̂(PC1, si ) are
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constrained in their values in [0, 1], the following logit transformation of these curves
shall be considered as data

χsi = log
p̃(PC1, si )

1 − p̃(PC1, si )
= logit p̃(PC1, si ),

where p̃(PC1, si ) = 1−ε if p̂(PC1, si ) = 1 and p̃(PC1, si ) = ε if p̂(PC1, si ) = 0,
where ε is a small threshold allowing for the definition of the logit function when
p̂(PC1, si ) = 0 or p̂(PC1, si ) = 1.

For a location s in D, consider χs as a random element of the functional space L2

of square integrable functions and decompose χs into the sum of a linear drift term
ms and a second-order stationary residual δs , such that (Menafoglio et al. 2013)

χs = ms + δs,

ms = E[χs] =
L∑

l=0

al · fl(s),

δs s.t. E[δs] = 0; Cov(δs1 , δs2) = E[〈δs1 , δs2〉L2 ] = C(s1 − s2). (2)

In (2), the parameters al are functional coefficients in L2, fl represents known spatial
regressors, and C(·) is the (stationary) trace-covariogram of the residual field, which
represents the functional counterpart of the classical covariance function (Cressie
2015). In this work, the spatial regressors that are considered are the binary variables
dk , indicatingwhether the location si belongs to the k-th geomorphological subdomain
(dk(si ) = 1) or not (dk(si ) = 0).

In this setting, our goal is to build an optimal prediction χ∗
s0 of the function χs0 at

the unobserved location s0 based on the available data. This would ultimately allow
one to (i) obtain a prediction p∗(PC1; s0) for the probability curve p(PC1; s0) as
p∗(PC1; s0) = logit−1(χ∗

s0), and (i i) yielding a classification for pebble movement
in the river domain, e.g., by thresholding p∗(PC1; s0). To this end, one may formulate
a functional kriging (FK) predictor, that is, the best linear unbiased combination of the
observed data, χ∗

so = ∑n
i=1 λ∗

i χsi . Here, the λ∗
i ’s are scalar coefficients that minimize

the variance of prediction error under unbiasedness, that is

minλ1,...,λn E
[‖χ∗

s0 − χs0‖2
]

s. t. E
[
χ∗
s0 − χs0

] = 0.
(3)

Similarly as in scalar geostatistics, problem (3) admits a unique solution that can be
obtained by solving a linear system depending on the covariance between elements of
the random field—as determined by the trace-covariogram—and on the regressors fl
(see, e.g., Menafoglio et al. 2013). Methods and algorithms for an effective estimation
of these quantities have been extensively studied in the literature; the reader is referred
to Menafoglio et al. (2013, 2016) and Menafoglio and Secchi (2017).
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3.3 Error Metrics and Model Validation

This section introduces the methodology used to compare the performance of the two
proposed perspectives when used for inference in the sediment transport classification
problem.

Error metrics The error metrics that will be used in the following are accuracy, preci-
sion, recall, F1-score, and AUC (Powers 2011)—their definitions are provided below.
All these metrics are widely used to evaluate and compare classification methods.
Denote by P (positive) the number of pebbles that moved and by N (negative) those
that did not move. In the set of pebbles predicted to move, call TP (true positive)
the number of pebbles that actually moved and FP (false positive) those that did not
move. In the set of pebbles predicted not to move, call TN (true negative) those that
actually stayed still and FN (false negative) those that moved. The error metrics are
then defined as follows:

• Accuracy: T P+T N
T P+FP+T N+FN ;

• Precision: T P
T P+FP ;

• Recall: T P
T P+FN ;

• Fβ -score:
(1+β2)∗precision∗recall

β2 precision+recall
(typically β = 1 and the score is called F1-score

(Dice 1945; Sørensen 1948)).

AUC, defined as the area under the ROC curve, compares the true positive rate with
the false positive rate when varying the threshold used to build the classification from
the predicted probability (see, e.g., Friedman et al. 2001).

Threshold setting The outcome of both the proposed approaches is the probability of
movement p∗(x; s) during a rainfall event for a particular pebble at a given location s.
Hence, part of the models’ post-processing is to select, in an optimal way, a threshold
α such that the pebble is classified as M (moved) for p(x; s) ≥ α or NM (not moved)
for p∗(x; s) < α. This threshold can be set via cross-validation using the F1-score
defined above as the optimality criterion (i.e., selecting the α that maximizes F1(α)

(Dice 1945; Sørensen 1948)). Alternatively, one can consider the maximization of
Youden’s J criterion based on the index J = T P

T P+FN + T N
T N+FP − 1 (Youden 1950).

Given that balancing precision and recall is task-specific, in the following, we consider
the results for optimal values of the threshold α set using both Youden’s J and the
F1-score.

Validation of the XGBoost approach To validate the machine-learning approach
based on XGBoost presented in Sect. 3.1, K-fold CV is considered based on the
following scheme:

0. Initialize the hyperparameters: XGBoost hyperparameters (particularly the depth
of the trees max _depth) and the set Iα of candidate thresholds α.

1. Split the pebbles into K folds.
2. Perform CV iteration. For k = 1, ..., K .

(a) Split the data into training and test sets, the test set being the kth fold.
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(b) Build the XGBoost classifier based on the vectors of features xi , i =
1, ..., ntrain , of the data within the training set.

(c) Obtain p∗(x j ; s j ), j = 1, ..., ntest , for the pebbles in the test set based on their
actual features x j and location s j .

Result of the CV iteration: p∗(xi ; si ), for i = 1, ..., n (each estimated when the
i th observation is left out of the training sample).

3. Select the optimal threshold αb within Iα:
(a) Based on the results at step 2, for each α ∈ Iα , classify the pebbles as M or

NM by thresholding p∗(PC1i , si ), i = 1, ..., n, through α.
(b) Select the optimal αb ∈ Iα , (i.e., the one that is associated with the optimal

score (F1 or Youden’s J)).
4. Calculate the errormetrics from the set of classifications at step 3(a), for the optimal

value αb.
5. Repeat steps 1–4 for B = 7 different splits in K folds.

The threshold α∗ used for the final classifier is selected as the average of the thresholds
αb obtained for the B = 7 repetitions of the CV. This CV procedure is also used to
set the hyperparameters of the method, as illustrated in Sect. 3.1.

Validation of the functional approach To validate the functional approach presented
in Sect. 3.2, K-fold CV is considered, similar to that discussed above, based on the
following scheme:

0. Initialize the hyperparameters: the bandwidth h of the N-W kernel, the radius r of
the neighborhood, the tolerance ε, the set Iα of candidate thresholds α.

1. Split the pebbles into K folds.
2. Perform CV iteration. For k = 1, ..., K :

(a) Split the data into training and test sets, the test set being the kth fold.
(b) Generate the curves p̂(PC1i , si ), i = 1, ..., ntrain (from the training subset

data only).
(c) Perform the geostatistical analysis; and build the prediction p∗(PC1 j , s j ),

j = 1, ..., ntest , for the pebbles in the test set, based on their actual values
PC1 j and location s j .

Result of the CV iteration: p∗(xi ; si ), for i = 1, ..., n (each estimated when the
i th observation is left out of the training sample).

3. Select the optimal threshold αb within Iα:
(a) For each α ∈ Iα , classify the pebbles as M or NM by thresholding

p∗(PC1i , si ), i = 1, ..., n through α.
(b) Select the optimal αb ∈ Iα , (i.e., the one that is associated with the optimal

score (F1 or Youden’s J)).
4. Calculate the errormetrics from the set of classifications at step 3(a), for the optimal

value αb.
5. Repeat the steps 1–4 for B = 7 different splits in K folds.

The threshold α∗ used for the final classifier is again selected as the average of the
thresholds αb obtained for the B = 7 repetitions of the CV. Given that during a CV
iteration, the curves p̂(PC1, s) are generated from the training set only, the value of
PC1i for an observation in the test set may be outside of the support of p∗(PC1, si ).
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In this case, the probability is calculated as the p∗(x∗, si ), where x∗ is the nearest
value of PC1 within the support (x∗ = PCmin if PC1i < PCmin or x∗ = PCmax if
PC1i > PCmax). Note that the random split into the training and test set in the CV
procedure is made consistently in the validation of XGBoost and FK, meaning that
when compared to each other, the two classes of models are always calibrated on the
same training sets and applied on the same test sets.

4 Results

In this section, the results of the data analyses performed according to the methodolo-
gies described in Sect. 3 are illustrated. First, the approaches are applied separately;
then, their results are compared. The limitations of both models are highlighted in
terms of precision and recall, with particular reference to the morphological zones
where one model outperforms the other.

4.1 Results for XGBoost

The aim of this subsection is twofold. First, it aims to show the results and performance
of XGBoost for the problem at hand. Second, it aims to verify the impact of dimen-
sionality reduction—through the PCA presented in Sect. 2—on the performance of
the classifier. To do so, the results are distinguished in terms of (i) the type of rainfall
event (all events or typical events T) and (ii) the dimensionality of the feature vec-
tor. In the latter case, the focus is on two options, obtained by including within the
model (i) all the pebble features, their locations, and flow data (named all features) or
(ii) only the pebble locations and the data PCs (named PCs): PC1, PC2, PC1 f low,
PC2 f low (see Sect. 2). This set of analyses also serves as a support to the dimen-
sionality reduction needed to develop the functional approach discussed in Sect. 4.2.
All the results presented in this section were obtained using the R package fdagstat
(Grujic and Menafoglio 2017).

All events Based on afivefoldCVanalysis repeated B = 7 times, themaximumdepth
of the trees is set to max _depth = 7 when all the features are used andmax _depth =
6 when PCs are used instead.

The error metrics for XGBoost are presented in Table 2. Tables 3 and 4 report the
average confusion matrices of the XGBoost model based on all the features (Table 3)
or only the PCs (Table 4). Here, the threshold α for the classification was built by
optimization of the F1 metric (see Sect. 3.3)—the average being α∗ = 0.643 for
the case of all the features and α∗ = 0.544 for the PCs only. Notably, the PCs case
appears to be associated with a higher accuracy and precision. In general, the all-
features case presents a lower number of FPs but a higher number of FNs, thus yielding
a general slight overestimation of the sediment transport w.r.t. the PCs case. These
analyses suggest that representing the features through the PCs only does not result in
a significant loss of information for the purpose of classification. Note that the average
CV accuracy of amodel when optimizing a set of eight hyperparameters is 0.87, which
is substantially equivalent to the values reported in Table 2.
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Table 2 Results of XGBoost when all the rainfall events are considered

AUC ACC Precision Recall F1-score

All features 0.94 0.859 0.755 0.858 0.803

Only PCs 0.939 0.87 0.803 0.81 0.806

The optimal threshold for classification was set by optimization of the F1-score

Table 3 All features: average
confusion matrix across CV
repetitions

Actual

Not-moved Moved

Predicted Not moved 570.3 185.4

Moved 94.7 1138.6

Table 4 PCs: average confusion
matrix across CV repetitions

Actual

Not moved Moved

Predicted Not moved 538.7 132.4

Moved 126.3 1191.6

Typical events The aim is now to study the impact of the flow data (PC1 f low and
PC2 f low) on XGBoost models when calibration is based on typical events only. Note
that typical events appear to be similar in terms of flow (see Sect. 2). Therefore, one
may argue that it is reasonable to suppose that, in this setting, exclusion of PC1 f low

and PC2 f low should not significantly affect the prediction power of the models. Two
models are compared, one obtained by training XGBoost either on PCs data (PC1,
PC2, PC1 f low, and PC2 f low) and the other trained on PC1 only, with both models
considering the location and the subdomain binary features (i.e., dk(s)).

Similarly as in the previous paragraph, the optimal depth of both models was
selected using B = 7 repetitions of K-fold CV with K = 5. The results of the
procedure are max _depth = 6 for the model trained on PCs and max _depth = 5 in
the second case. The F1 thresholds estimated for the two models are, in both cases,
α∗ = 0.663, suggesting that the balance between FP and FN is preserved. The error
metrics of both models are reported in Table 5. Notably, the model based on PCs
attains better results, although the difference in performance is limited compared to
the significant reduction in the input dimensionality. The main source of the improve-
ment in accuracy for the first model is the number of FNs. According to Tables 6 and
7, the average absolute difference between FNs (ΔFN = 277.1 − 188 = 89.1) in
the two models is more than 3.5 times larger than the absolute difference in terms of
FPs (ΔFP = 96.1 − 70.7 = 25.4). Reducing the dimensionality of the inputs thus
results in overestimation of the incidence of the NM class (i.e., the model tends to
underestimate the amount of mobilized sediment). This tendency is confirmed by the
results of the functional approach, which are discussed in the next section.
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Table 5 Results of XGBoost when typical rainfall events are considered

AUC Accuracy Precision Recall F1-score

PCs 0.925 0.838 0.739 0.891 0.808

Only PC1 0.873 0.766 0.652 0.842 0.733

The optimal threshold for classification was set by optimization of the F1-score

Table 6 PCs: average confusion
matrix across CV repetitions

Actual

Not moved Moved

Predicted Not moved 538.3 188

Moved 70.7 797

Table 7 PC1: average
confusion matrix across CV
repetitions

Actual

Not moved Moved

Predicted Not moved 512.9 277.1

Moved 96.1 707.9

4.2 Results for the Functional Case

In this subsection, the results of the analyses based on the functional perspective
described in Sect. 3.2 are presented. Recall that the functional approach is based on
the consideration of just the feature PC1 and the observations related to typical (T)
events. Moreover, the main hyperparameters for the method are (see also Sect. 3.2)
the minimum/maximum number of points to generate a curve, set to nmin = 12;
nmax = 30; the support of the curves, set to [PC1min; PC1max] = [−50, 50]; the
tolerance, set to ε = 0.01; and the kernel bandwidth, set to h = 20. Moreover, in the
following, a Bessel model for the calibration of the variogram is considered. All the
results presented in this section were obtained using the R package “fdagstat” (Grujic
and Menafoglio 2017).

A fivefold CV analysis run as described in Sect. 3.3 indicates that the radius of the
neighborhoods should be set to r = 5. This parameter setting allowed us to estimate
the curves p̂(PC1; si ) for the sample location si , i = 1, ..., n. A subset of this data set
of functional profiles is reported in Fig. 7. One may observe notable variability in the
shape of the curves, suggesting a highly nonlinear dependence between the probability
of movement and the pebble characteristics, which varies over space in a nontrivial
fashion. Figure 7b displays the means p(PC1; Dk) of the probability curves within
the geomorphological subdomains Dk , k = 1, ..., 7.More precisely, these curves were
computed by back-transforming the sample mean of the logit transformations of the
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(b)(a)

Fig. 7 Estimated probability curves: data and mean within groups. In panel (b), the scale on the y-axis is
set to [0.6, 1] to better appreciate the difference in p(PC1; Dk ) between groups

Table 8 Results for the functional approach when setting the optimal threshold according to the F1-score

AUC ACC Precision Recall F1-score

All features 0.844 0.756 0.654 0.773 0.708

curves p̂(PC1; si ), that is

p(PC1; Dk) = logit−1

⎛

⎝1

n

∑

si∈Dk

logit p̃(PC1; si )
⎞

⎠ ,

the transformation logit and p̃(PC1, si ) being defined as in Sect. 3.2. Such curves are
thus representative of the mean values ms assumed by the object χs = logi t ( p̃(·; s))
within the subdomains. One may note relatively high variability across groups, which
suggests consideration of the binary variables dk(s) (dk(s) = 1 if s ∈ Dk , dk(s) = 0
otherwise) in the model for the drift term. However, CV analyses suggest that slightly
better performance is obtained when using a stationary approach instead, which is
discussed later. For the sake of completeness, Fig. 8 reports the variograms of the
residuals (estimated as described in Sect. 3.2) when these refer to a stationary drift term
(i.e.,ms is spatially constant; Fig. 8a) or to a drift dependent on the geomorphological
subdomains through the variables dk(s)’s (Fig. 8b). Both variograms are compatible
with the residuals’ stationarity; selection of the stationary model is thus based on the
CV results.

Table 9 reports the confusion matrix of the method (averaged over the CV repeti-
tions), which suggests that the classifier built via the functional approach tends to be
associated with a higher number of false positives (FPs: 250 of 1,594 pebbles), which
is consistent with those associated with XGBoost based on PC1 for typical events, as
discussed in Sect. 4.1. The next section provides further discussion and comparison
between these approaches.
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(a) (b)

Fig. 8 Estimated variograms of the residuals for two different forms of the drift term: a spatially constant
and b spatially nonconstant

Table 9 Results of the
functional approach: average
confusion matrix across CV
repetitions

Actual

Not moved Moved

Predicted Not moved 470.7 250.1

Moved 138.3 734.9

Table 10 Results for the functional approach and XGBoost when setting the optimal threshold according
to the F1-score or Youden’s J

AUC Accuracy Precision Recall F1

FK F1 0.844 0.756 0.654 0.773 0.708

J 0.759 0.659 0.769 0.709

XGBoost F1 0.873 0.766 0.652 0.842 0.733

J 0.767 0.654 0.842 0.734

4.3 Comparison of the Two Perspectives

A comparative analysis between XGBoost and FK results is presented herein. For
the purpose of coherency between the information used for training, the XGBoost
model trained on typical events only (as presented in Sect. 4.1) is compared with the
FK model calibrated on the same data (see Sect. 4.2). The CV folds that are used to
estimate the error metrics are the same for both the XGBoost and FK models.

First, a comparison of the models is performed based on PC1 only, which is rep-
resentative of the performance of the methods based on similar inputs. The first two
lines of Table 10 report the classification performance, assessed by B = 7 repetitions
of fivefold CV, of the functional predictor. Here, the first line corresponds to a thresh-
old α∗ set by optimization of the F1 criterion (α∗ = 0.613), whereas the second line
refers to the optimization of Youden’s J (α∗ = 0.604). The last two lines of Table 10
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refer to the analogous quantities related to the XGBoost model trained on PC1 only,
which are associated with a threshold α∗ = 0.663 (approximately the same α∗ set for
both Youden’s J and F1 criteria). The results in Table 10 suggest that all four settings
are practically equivalent in terms of accuracy (approximately 76%) and precision
(approximately 65%). The main differences are related to the AUC, which is slightly
better in the XGBoost case (87%) than in FK (84%), indicating an overall better order-
ing of probabilities. Moreover, recall is higher in XGBoost than in FK (84% vs. 77%),
indicating better performance for the former in terms of FPs, which is also observed
in Tables 7, and 9. A comparison of the performance by subdomains is presented in
Table 11. XGBoost has better performance overall, e.g., in the bars zone, although FK
proves better in a number of subdomains, e.g., within the step/pool zone. Notably, the
number of pebble locations in the bars zone is more than twice that in the step/pool
zones, consistent with the observed differences in the absolute values of the FPs and
FNs.

Finally, the methods are compared in terms of local CV errors in Figs. 9 and 10.
Both figures display visualizations of the results of seven-repetition CV. Figure 9
represents the CV results for each pebble separately; the colors are associated with the
number of times a single pebble was correctly classified along the B = 7 repetitions
of the fivefold CV. Figure 9 displays the average accuracy within the subdomains Dk

identified according to the local morphology of the riverbed. Graphical inspection of
Fig. 9 suggests that, although the two models appear similar in terms of the error
metrics, slightly different patterns are observed in their errors. For instance, XGBoost
is associated with noticeably fewer correct predictions for the left bottom corner,
while, on average, its predictions are of high quality in the central and upper part
of the domain. Similarly, observing Fig. 10, one may note that the main difference
between the two models appears in the center left of the domain and in the bottom-left
part.

Although the comparison of the models based on PC1 suggests overall consistency
of the results obtained with the two approaches, when using all the PCs, improved
results were obtained with XGBoost (see Sect. 4.1). This suggests that the input sim-
plification needed to build the data set of probability profiles prior to FK may have
induced a loss of predictive power with respect to a scalar approach based on state-of-
the-art machine-learning methods. On the other hand, the functional approach clearly
allows for direct interpretation of the relation between the tendency of pebbles tomove
and their characteristics, as further highlighted in Sect. 4.4. This is a clear advantage of
XGBoost, whose interpretability still appears to be limited. Finally, additional analy-
ses on the same data set—not discussed here for the sake of brevity—showed that FK
outperforms other standard statistical methods, such as general liner models (GLM),
thereby supporting the validity of the approach in the framework of model-based
statistical classification.

4.4 A Geomorphological Interpretation of the Results

From a geomorphological perspective, the zones where the predictive models
encounter difficulties in correctly classifying the probability of movement appear to
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(a) (b)

Fig. 9 CV error maps

(b)(a)

Fig. 10 CV: Average accuracy by morphological sector

be the banks and cascade, with approximately 30% of observations misclassified by
both models. A particular concentration of misclassified cases is found in the cen-
tral section of the reach under investigation. This zone is characterized by a complex
morphology, where the presence of a large boulder forces the stream into a rapid s-
curve trajectory, unlike the surrounding environment. The upstream end of the reach
is also characterized by a high concentration of misclassified cases. This area is close
to the location of a large number of pebbles. Hence, this result could be attributed
to the effect of the initial pebble deployment, which would likely behave differently
with respect to sediment that has already undergone some settlement. The concentra-
tion of misclassified cases in the banks zone is also not surprising. Those zones are
marginally affected by the flow rate during low- to moderate-flow rate events, and a
slight increase/decrease in water depth could determine whether a pebble is affected
by the flow. The definition of the boundaries of those zones is somewhat ambiguous
due to, e.g., the presence of vegetation in summer and its absence in winter.
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As a result of the functional kriging approach, the probability of pebble movement
was obtained as a function of the pebble dimensions in the different morphological
units (Fig. 10). This outcome illustrates a general similarity between banks, bars, and
cascade zones, while there is a considerable difference in the predicted values for plane
bed, run/rapid, and step and pool zones. For the former three subdomains, very small
and very large pebbles tend to have a similar probability of movement, while average-
sized ones are slightly less likely to be mobilized. This difference is also present in the
case of the step andpool zone, although it ismuchmore pronounced in the former cases.
The effect of pebble size on mobility has often been considered by authors, arguing
that the sediment mobility could be independent of the sediment dimensions in some
morphological conditions. For instance, according to Liedermann et al. (2013), coarser
particles are harder to mobilize, yet once mobilized, they may travel even farther than
smaller ones. Ferguson et al. (2017) attributed the size selectiveness of the sediment
mobility to the different types of channel morphology—a finding that is consistent
with the results in the present work. For instance, the probability of pebble movement
in a plane bed morphological unit appears to be entirely independent of sediment size,
while in a run/rapid local morphology area, strong size dependency is observed, where
smaller particles are characterized by a lower probability of movement. Church and
Hassan (1992) noted that smaller particles are characterized by a higher likelihood
of being trapped when the stream channel is composed of large grains, which could
strongly influence the dependency of the sediment mobility on the grain size. The
estimated mean probability of movement is greater than 50% in all cases, which
indicates that during moderate-flow events, the bed-load mobility is pronounced in
the presented range of pebble dimensions.

5 Application to an Independent Data Set

To enrich the comparison between the two considered approaches, they are applied to
an independent data set that was not included in the training process in the previous
sections. Here, a Eulerian approach was adopted to observe the mobility of pebbles
in a fixed spatial reference, as opposed to the Lagrangian approach used to track each
single sediment particle along the river course.

Red pebble data The observation zones represent 30 cm × 30 cm squares within
which the riverbed was painted in red. The observation zones were captured before
and after a flood event to identify the number of mobilized pebbles and their size.
The size of the individual pebbles was estimated from the images using the automatic
object detection software Basegrain (Detert et al. 2012), which allowed us to estimate
the size of the a- and b-axes of each detected pebble. Figure 11 illustrates the steps
of the tracking process. The available data set consists of seven sets of observations
that were gathered during three events (events 11, 14, and 16, which occurred during
the year 2017,1) which can be considered typical in terms of the associated flow. In
addition to assessing the capability of the proposed methods to address this type of

1 Event 11 occurred between 26/04 and 30/04; event 14 between 06/06 and 07/06; event 16 between 01/09
and 02/09.
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Fig. 11 a Red pebbles painted before an event, b post-event image of the same area, c estimation of the
dimensions of the remaining pebbles

data, this case is used to illustrate a potential approach to the application of the models
to sets of sediment particles (instead of single particles).

Limitations of RP data A technical limitation of this measurement campaign is the
difficulty in finding a dry portion of the riverbed that can be painted, typically during
low flow. Moreover, in the case of “red pebbles” (RPs), all the pebbles from the
outlined zones were considered for the measurements, while in the “yellow pebbles”
(YPs) case, only the particles large enough for insertion of an RFID tag were used.
This inevitably results in selection bias for both cases, which renders the two analyses
only partially comparable. In fact, some substantial differences are present between
the grain size distributions of the two data sets. For instance, the RPs are, in general,
much smaller than the YPs used to calibrate the models, the nominal diameters of the
latter being, on average, 70mm smaller than the diameters of the former (see Table 12).

Another limitation is the fact that the estimation of RP measurements is based on
2D projections of the original 3D objects (see Fig. 11c). This hinders the computation
of the three axes (a-,b-,c-axes) since one of the axes (presumably the c-axis) remains
covered. In fact, the estimate of the two visible axes may itself be associated with
non-negligible uncertainty. Moreover, the visible dimensions of RPs gathered before
mobilizing events may not correspond to those after the events because pebbles tend
to rotate or move—even without location change—due to the flow. Hence, these data
cannot be used to find a one-to-one correspondence between particles before and after
the events and to verify whether they moved or not, but rather they can be used to
assess joint summaries about the set of particles (e.g., granulometric distributions).

Applicability of the models Application of XGBoost and FK models on the RP
data should take into account the specific features (and limitations) of this database.
For instance, concerning FK, only 3% of the red pebbles have a PC1 larger than
−50 (when estimating the c-axis as 3/4 of the b-axis). Hence, the remaining 97% of
the data would be given the prediction p∗(−50, s), which is associated with all the
particles with a size leading to PC1 < −50 (see Sect. 3.2). In fact, application of
our models to RP data requires particular care, as one must pay close attention when
testing models out of the range of the training data, no matter the approach being used.
For the purpose of this study, a slight modification of the models described in Sect. 4
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Fig. 12 Locations of red pebble (RP) data

is considered to render the features of the YP training set as compatible as possible
with those of the RP test set by using the pebble diameter.

A classification approach based on particle diameter To cope with the lack of corre-
spondencebetweenpre-mobilizing andpost-mobilizing event data, thiswork considers
a variant of the classifiers built in Sect. 4 based on the nominal diameter, defined as
di = √

ai ∗ bi . Note that the range of di for YPs is [43.87, 160.16]; the range of diam-
eters for RPs is found in Table 12. Partial overlap is attained between the diameters of
YPs and RPs. In XGBoost, this variable is considered as the input, together with the
location of the pebbles and the flow data—the model is trained on typical events only.
In the functional approach, the probability profile p(di ; s) is estimated at the sampled
locations and then projected via functional kriging at unknown sites along the river
domain.

The application of the model to the RP data is performed as follows. Given a
square region R j and a mobilizing event e, j ∈ {1, 2, 4, 5, 6, 8, 9}, e ∈ {11, 14, 16},
call S−

je = {S1, ..., Sn−
je
} the set of n−

je red pebbles in R j before the event e, and

S+
je = {S1, ..., Sn+

je
} the set of n+

je red pebbles that are still in R j after the event e.

Table 12 reports the values of n−
je for the regions and events available in the data

set. Considering a single pebble Si ∈ S−
je, one may estimate its probability p∗

i of
movement based on the set of features associated with the considered pebble and
one of the calibrated models (XGBoost or FK). To describe the joint probability of
movement of the set of pebbles in S−

je, one can then consider their joint law, which

under independence reads p∗
je = ∏n−

je
i=1 p

∗
i . This approach enables simulation of a set

of realizations from such a distribution to be compared with the actual observations in
S+
je. Comparison of the empirical distribution of the particle diameters—a.k.a. particle-
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(a) (b)

Fig. 13 Sampled ECDFs of distributions of pebbles that did not move, and actual PSD, at location R6

size distributions (PSDs)—with the actual PSD after the events enables evaluation of
the capability of the models to adapt to this type of data.

Results and comparison As an example, Fig. 13 displays a set of M = 100 empirical
cumulative distribution functions (ECDFs) of the diameters of the particles found in
location R6 after event 16 (gray lines). These are compared with the ECDF of the PSD
estimated from the pebbles in P+

6,16, depicted as black lines.
Graphical inspection of Fig. 13 suggests that both methodologies fail to correctly

represent the displacement of pebbles with relatively small diameters (between 8 and
30 mm), possibly due to the partial incompatibility of the data in the YP and RP
data sets. In particular, both models appear to be associated with underestimation of
the mobility of small particles and overestimation of that of large particles (see also
Table 13). Nevertheless, the XGBoost approach seems to be associated with a slightly
higher variability of the estimated PSDs, particularly for relatively large diameters.
The cloud of simulated PSDs is thus closer to the actual observation than that for FK.
The results in Table 13 suggest that, overall, both approaches result in considerable
overestimation of the proportion of stationary pebbles, particularly for R4 and R5.

An overall quantitative comparison between the simulated and actual PSDs can
be obtained by computing the Wasserstein distance (see, e.g., Villani 2008) between
these distributions, which is obtained as

d(Pm,Pobs) =
(∫ 1

0
(P−1

m (t) − P−1
obs(t))

2dt

)1/2

,

Pm ,Pobs being the PSD of the mth simulation (cumulative distribution functions),
m = 1, ..., 100, and the observed post-event PSD, respectively, and P−1

m ,P−1
obs the

respective quantile functions. Table 13 reports the average Wasserstein distance, that
is, 1/m

∑M
m=1 d(Pm,Pobs), for the observed regions R j . One may note a small

discrepancy between the approaches—XGBoost performs only slightly better than
FK.
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In addition to the efforts made to render the YP and RP data sets compatible, these
analyses suggest that the YP data are only partially informative on the phenomenon
described by the RP data. This reflects the poorer performance of the models cali-
brated on the former data set when applied to the latter one. Moreover, the limitations
highlighted within the section may point to directions of improvement for future
investigations, if these are intended to support the construction of models better rep-
resentative of the joint behavior of sediment particles within the region’s R j ’s.

6 A Quantitative Comparison between Data-Driven and Physics-Based
Approaches

Bed-load transport in rivers is frequently predicted using empirical formulae developed
from experimental data (obtained from laboratory installations or field campaigns).
Depending on which formula is employed for the prediction, a preliminary assessment
of threshold conditionsmay be necessary. In this context, the determination of incipient
particlemotionmay rely on the traditional approach attributed to Shields (1936),which
refers to a critical value of dimensionless shear stress at the riverbed.

The data presented in this manuscript are related to the mobilization of individual
pebbles rather than sediment transport flux. The motion/stillness of a particle, related
to the threshold conditions for sediment motion, is thus particularly relevant. To com-
pare the results obtained by the data-driven approach with those obtained in a more
traditional way, simple numerical simulations of a reach of the Caldone River were
performed, with the objective of determining bed shear stress values corresponding
to the flow rates measured during the events. The simulations were run with a highly
simplified channel geometry because only a few sections were available for the 1-
km reach. Within the latter, our test reach was represented by only two sections and
resulted as a single-slope one; in other words, it was impossible to incorporate the
step/pool geometry that characterizes the reach in terms of its geometric description,
with a consequent need to account for it with a suitable value for the Manning coef-
ficient. Furthermore, the simulations were run with a steady flow to determine the
critical sediment size (minimum size of a pebble that remains still under a certain
flow) at peak discharge. Finally, even if the attention is focused on the test reach, the
extended 1-km reach was used in the hydraulic simulations to reduce the effect of
boundary conditions.

The data-driven and physics-based approaches clearly work from different per-
spectives, each characterized by its own simplifying assumptions. Indeed, the
hydrodynamic computation for incipient sediment motion considers the sediment to
be distributed over a flat, rough surface, and is unable to distinguish particles from each
other (except for size variability). Here, the parameters are the Manning roughness
coefficient of the river and a chosen threshold value of the Shields number (usually
between 0.03 and 0.06 in the fully turbulent regime). The data-driven approach does
not account for the physics of the process and again considers each pebble individu-
ally; estimation of the classification rule is based on the training data set, which is also
used to calibrate the model hyperparameters.
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In the following, a twofold comparison is performed between the results of the
data-driven and physics-based approaches. On the one hand, with reference to the
data for the yellow pebbles (Sect. 2), the accuracy of the models is compared in terms
of the prediction of the number of particles moved during an event. On the other
hand, with reference to the data for the red pebbles (Sect. 5), the critical sediment
size is compared. In this study, calibration of the two parameters characterizing the
physics-based approach is not performed (because of the lack of data on the depth
values in the test reach needed to calibrate the roughness coefficient), but a sensitivity
analysis is performed. A set of 21 pairs of parameter values was considered, obtained
by combining seven values for the Manning coefficient (ranging from 0.04 to 0.10—
every 0.01— s/m1/3, following the classic description provided by Chow (1959)) and
three values for the threshold Shields number (0.03, 0.045, and 0.06). For each pair
of parameters, the model was used to compute the critical diameter in a single event
and, in turn, the number of yellow particles predicted to move, eventually obtaining
21 results for these outputs (one for each pair of parameters). Following the stress
decomposition method (e.g., Chanson 1999), a skin roughness coefficient nskin was
used to estimate the portion of the total shear stress contributing to the bed-load (τskin).
The set of equations used for the computations is as follows

nskin = d1/690

26
; τskin = γ RH

n2skinV
2

R4/3
H

; dcrit = τskin

γ (s − 1)τ ∗
c

where d90 is a sediment size corresponding to 90% in the granulometric distribution
(a value of 150 mm was used here according to field measurements); γ is the specific
weight of water; RH and V are the hydraulic radius and bulk velocity of the flow,
respectively, returned by the numerical simulation with assigned discharge; dcrit is
the critical diameter; s is the ratio of the sediment to water density; and τ ∗

c is the
critical value of the Shields number (the Shields number for any particle size d is
τ ∗ = τskin/(γ (s − 1)d)).

Yellow pebbles A comparison of the accuracy of the methods for the yellow pebbles
is given in Fig. 14. The accuracy of the physics-based approach is quite sensitive to
the parameter values. Furthermore, for two groups of events (9 to 12 and 20 onwards)
it may jump from 0 to 1, changing the value of a parameter (these are the events
with a binary behavior, with all the pebbles moving or being still). Generally, the
XGB method presents larger accuracy (always larger than 0.6) and a similar behavior
throughout all the events.

Red pebbles A comparison of model performance exploiting the data for the red peb-
bles is presented in Fig. 15. Recall that these data are available for a set of locations
and events, as shown in Table 12, and refer to observed granulometric distributions
within a square area before and after an event. For consistency with Fig. 13, the results
are shown for location R6 after event 16. The XGB method returns a good estimate
of the critical diameter (that is conceptually the sediment size at 0%) while underes-
timating the sediment sizes of the distribution. The physics-based approach returns
variable estimates of the critical diameter, with those intercepting the starting values

123



Math Geosci

Fig. 14 Accuracy of model prediction for the yellow pebble data. For the physical approach, the Manning
coefficient ranges in 0.04 (a), 0.06, (b) 0.08 (c), and 0.10 s/m1/3 (d), while the critical values of the Shields
number appear in the legends

of the actual PSD for 0.10–0.045 and 0.09–0.06 as couples of Manning coefficient
and critical Shields number, respectively (the plots include only some combinations
to avoid confusion between too many lines). Furthermore, the values of the estimated
critical diameter correspond to an abrupt rise in the actual PSD (which is an alterna-
tive proxy for the critical diameter) for couples 0.08–0.03, 0.07–0.045, and 0.06–0.06.
The results for other locations, not shown in the paper, confirm that relatively high
values of the Manning coefficient and critical Shields number may better represent
the field determinations. The need for a high Manning coefficient is explained by the
poor geometric description used in the hydraulic model, which requires the step/pool
morphology to be mimicked by an increased roughness. Furthermore, using a larger
value of the critical Shields number corresponds to hindering the transport of parti-
cles. A best value of the critical Shields number relates to a need to parameterize, in
the physics-based approach, several triggering or damping factors for sediment trans-
port beyond the shear stress (exposure/damping conditions, collective entrainment,
peripheral location on the river with low velocity, etc.).
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Fig. 15 Sampled ECDFs of distributions pebbles that did not move, actual PSD, and estimated critical
diameter by a physics-based approach at location R6. a XGB; b FK. The legends indicate the values of the
Manning coefficient in s/m1/3 and of the critical Shields number

7 Discussion and Conclusions

This work compared two methodological approaches to the prediction of sediment
transport in a pre-Alpine region. To this end, state-of-the-art machine-learning and
geostatistical methods, namely, XGBoost (Chen and Guestrin 2016) and functional
kriging (FK,Menafoglio and Secchi 2017), were considered. Results on real data sug-
gest that both approaches have good performance, withXGBoost having slightly better
predictive power than FK. Nonetheless, FK yields more interpretable results since it
allows for an explicit prediction of the probability of movement of a single pebble at
a site s as a function of its dimensions (characterized by PC1). These results are in
agreement with the general advantages and disadvantages evidenced in the compari-
son between machine-learning and model-based statistical methods, where the former
often outperform the latter in terms of prediction power, while the latter are typically
associated with higher interpretability.

However, the methods developed in this work are subject to a number of limitations
that should be considered when applying the calibrated models to independent data. In
addition to the limitations on the use of the models for independent data only partially
compatible with our training set (e.g., for RP data, see Sect. 5), one should note that not
all the regions of the spatial domain are densely covered by the observations, which
results in spatially varying uncertainty in the predictions. Analyses have shown that
the pebble location is indeed informative of its probability to move. For instance, if
one trains the XGBoost model without the feature si , a relevant decrease in accuracy
and AUC would be observed (on all the events, with all the other features: AUC =
0.915, accuracy = 0.815, F1 = 0.758, compared with the results in Table 2). As such,
higher degrees of uncertainty are associated with the areas of the domains where data
are sparse. Note that FK is associated with a measure of prediction uncertainty (named
kriging variance; see, e.g., Menafoglio et al. 2013), which also accounts for the data
sparsity. This is not the case for XGBoost, where measures of uncertainty are only
indirectly available (e.g., through CV analyses).
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To enrich the comparison between the two approaches, a block CV was run using
the R package BlockCV (Valavi et al. 2019). As expected, the accuracy of XGB was
estimated to be lower than that in the nonspatial case, with an accuracy of 0.68 (aver-
age across CV repetitions). Similarly, FK showed worse performance, with lower
accuracy than XGB (0.58). The discrepancy between this result and that reported in
the manuscript is likely due to the strong local variability of the probability of move-
ment, which has a detrimental effect on the prediction accuracy in the extrapolation.
This additional validation further confirms the complex local nature of the probability
of movement, which, in turn, is associated with the morphological structure of the
Caldone River domain.

Another aspect worth mentioning concerns the river flow data. In XGBoost models,
flow data are used as features and appear to be associated with improved accuracy (see
Table 2). However, flow data are available only after the end of a rainfall event. To use
the model in a real-world application to forecast sediment transport, one should thus
consider predicted flow data or perform a scenario-based analysis. In both cases, the
additional degree of uncertainty would affect the final sediment transport forecast. In
this sense, although the fact that FK does not account for flow data may appear to be
a limitation of the approach—resulting in decreased accuracy—this may not really be
the case in the actual application of the model.

Nevertheless, an intrinsic limitation of FK is the need to estimate the functional
profile p(x, s) from raw data, which in turn imposes a limitation on the dimensionality
of the feature vector x. This aspect led us to assume all the typical events to be similar
from the flow perspective and to work in an average flow scenario. In this respect,
larger databases may allow for a higher dimensionality of x than that considered in
this work to partially account for the dynamics of the event being considered. Indeed,
even if the average characterizations of mobilizing events are similar, the dynamics
of events could vary drastically, with a possible impact on the actual probability of
movement of sediment particles.

The outcome of the comparisons between the data-driven approach explored in this
manuscript and a traditional physics-based approach supports the claim that machine-
learning approaches provide better estimates, as suggested by several previous works
(e.g., Bhattacharya et al. 2007; Azamathulla et al. 2010; Sahraei et al. 2018). Those
works were, however, related to the estimation of sediment transport fluxes, while
the present study addresses the mobility of individual clasts. Furthermore, a key issue
emerges, in line with the statement Kitsikoudis et al. (2014) that machine-learning
approaches perform well if data are abundant. We revisit this statement considering
the representativeness of the data. In fact, a crucial consideration is that the data-driven
approach outperforms the physics-based approach in relation to the investigated peb-
ble samples. Therefore, the outcome of an estimate based on, for example, XGB will
provide a good representation of the river system only if the pebble sample selected
for the analysis accurately represents the whole sediment population. In the present
study, it was unfortunately impossible to assess the representativeness of the con-
sidered sediment samples with reference to the entire riverbed. It can be reasonably
argued that two characteristics may affect this issue, namely, the sediment size and
the geomorphological units. For the yellow pebbles, the sample spans a variety of
units, but the sediment sizes explored were limited by the need to insert passive tags
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into the pebbles (see Fig. 3). Additionally, the yellow pebbles may have represented
the largest sizes in the granulometric distributions, as shown by Ivanov et al. (2020a).
By contrast, the samples for the red pebbles included a wider range of particle sizes,
but each sample was limited to a single morphological unit (Table 12). Finally, the
physics-based approach cannot consider local features (particle hiding/exposure, mor-
phological unit, etc.) while returning a judgment ofmotion/stillness for a single pebble,
but, as we acknowledge, may be more representative of the behavior of the entire sed-
iment bed. However, it is difficult to assess this issue in a robust quantitative manner,
and this consideration deserves further investigation in follow-up studies.

Notably, the majority of mobilizing events are characterized by moderate flow, that
is, events that are sufficiently energetic to provoke sediment mobility, but not excep-
tional. While the data set includes observations of pebble mobility during high-flood
events, these data are limited to four events, effectively participating in the XGBoost
analysis through the PCA on river flow data, but excluded from the FK analysis due to
its abovementioned limitations. The estimation of the probability of pebble movement
presented here suggests that, during moderate-flow events, the mobilized YP sample
is, on average, between 50% and 100%, depending on the morphological unit, while
looking at RPs—characterized by a considerably smaller grain size distribution—the
proportion of mobile pebbles is over 90% with the exception of bars, where this value
is around 55%. While those two parameters are obtained through different method-
ologies and based on different (only partially comparable) data sets, they effectively
correspond to the same conceptual quantity—the ratio of moving particles, as dis-
cussed by Ivanov et al. (2020a). The combination of those two parameters indicates
that (i) there appears to be a general dependency of pebble mobility on grain size,
and (ii) moderate-flow or “typical” events contribute significantly to the dynamics
of bed-load transport. A further step in the investigation would be to try to quantify
this effect in terms of the distances traveled by the pebbles, as well as their velocity
(or virtual velocity). Analyses in this direction are currently ongoing, and will be the
scope of future work.
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