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Abstract One of themain challenges of themining industry is to ensure that produced
tonnages and grades are aligned with targets derived from model-based expectations.
Unexpected deviations, resulting from large uncertainties in the grade control model,
often occur and strongly impact resource recovery and process efficiency. During oper-
ation, local predictions can be significantly improved when deviations are monitored
and integrated back into the grade control model. This contribution introduces a novel
realization-based approach to real-time updating of the grade control model by uti-
lizing online data from a production monitoring network. An algorithm is presented
that specifically deals with the problems of an operating mining environment. Due to
the complexity of the material handling process, it is very challenging to formulate an
analytical approximation linking each sensor observation to the grade control model.
Instead, an application-specific forward simulator is built, translating grade control
realizations into observation realizations. The algorithm utilizes a Kalman filter-based
approach to link forward propagated realizations with real process observations to
locally improve the grade control model. Differences in the scale of support are auto-
matically dealt with. A literature review, following a detailed problem description,
presents an overview of the most recent approaches to solving some of the practi-
cal problems identified. The most relevant techniques are integrated and the resulting
mathematical framework is outlined. The principles behind the self-learning algo-
rithm are explained. A synthetic experiment demonstrates that the algorithm is capable
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of improving the grade control model based on inaccurate observations on blended
material streams originating from two extraction points.

Keywords Grade control model · Reconciliation · Geostatistics · Ensemble Kalman
filter

1 Introduction

Traditionally, themining industry has hadmixed successes in achieving the production
targets it has set out. Several projects have been identified where mineral grades are
not as expected, schedules and plans are not met and recovery is lower than forecasted
(McCarthy 1999; Vallee 2000; Tatman 2001; McCarthy 2003). The deviations of the
produced tonnages and grades frommodel-based expectations result from a mismatch
between the scale of the exploration data and the short-term production targets (Ben-
ndorf 2013). In other words, it is challenging to accurately define the characteristics
of, e.g., a few truckloads, designated to be transported to the processing plant, based
on data gathered at relatively wide grids. For certain commodities, it is common to
perform grade control (GC) drilling to further reduce the uncertainty (Peattie and
Dimitrakopoulos 2013; Dimitrakopoulos and Godoy 2014). However, GC drilling is
expensive and almost exclusively focused on sampling grades. Metallurgical proper-
ties are often ignored.

The mineral industry is increasingly looking for effective methods for monitoring
and reconciling estimates and actual observations at different stages of the resource
extraction process (Morley 2014). Recent developments in sensor technology enable
the online characterization of production performance and rawmaterial characteristics.
To date, sensor measurements are mainly utilized in forward loops for downstream
process control and material handling (Zimmer 2012; Lessard et al. 2014; Nienhaus
et al. 2014). A backward integration of sensor information into the GC model to
continuously improve the production forecasts and dispatch decisions does not yet
occur.

The application of sensors carries a large potential regarding process improvements.
Sensor responses could be used to progressively increase the knowledge about the in
situ material characteristics. This has two main consequences. First, the frequency
of misallocation could decrease, i.e., a smaller amount of actual ore is incorrectly
allocated to the waste dump and a smaller amount of actual waste enters the processing
plant. Second, an improved characterization of metallurgical properties could lead to
a more optimal selection of process parameters. For example, the throughput of the
comminution circuit can be reduced upfront when harder ore is expected to ensure
that the resulting grain sizes stay within acceptable limits. A proactive selection of
process parameters in combination with the elimination of low value material from the
processingplantwill further result in a reductionof dilution, an increase of concentrator
recovery and a larger annual metal production.

The potential of real-time updating is obvious. To apply it in practice, algorithms
need to be developed capable of assimilating direct and indirect measurements into
the GC model. Thus, at any point in time when new observations become avail-
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able, the following inverse problem needs to be solved (Tarantola 2005; Oliver et al.
2008)

z = A−1(d), (1)

where A is a forward observation model (linear or nonlinear) that maps the spatial
attributes z of the GC model onto sensor observations d. The observations result from
either direct or indirect measurements. The following challenges are identified: (1) the
latest solution should account for previously integrated data (sequential approach);
(2) due to the nature of a mining operation, it is nearly impossible to formulate an
analytical approximation of the forward observation model, let alone compute its
inverse and (3) observations are made on blended material streams originating from
multiple extraction points. The objective of this paper is to present a new algorithm
to assimilate sensor observations into the grade control model, specifically tailored to
the requirements of the mining industry.

2 Literature Review

Kitanidis and Vomvoris (1983) introduced a geostatistical approach to the inverse
problem in groundwater modeling. Both scarce direct (local log conductivity) and
more abundant indirect (hydraulic head and arrival time) measurements are used to
estimate the hydraulic conductivity in geological media through a linear estimation
procedure known in the geostatistical literature as cokriging (Journel and Huijbregts
1978; Deutsch and Journel 1992). In the Bayesian literature, the same procedure is
referred to as updating or conditioning (Schweppe 1973; Wilson et al. 1978; Dagan
1985). The geostatistical approach received considerable attention (Hoeksema and
Kitanidis 1984; Rubin and Dagan 1987; Yates and Warrick 1987; Sun and Yeh 1992;
Harter and Yeh 1996; Tong 1996).

Later, several simultaneous and independent developments resulted in a method
to recursively incorporate subsets of data one at a time (Evensen 1992; Harvey and
Gorelick 1995; Yeh and Zhang 1996). The proposed sequential estimator improves
previous subsurface models by using linearly weighted sums of differences between
observations and model-based predictions

zt = zt−1 + Wt (dt − At (zt−1)), (2)

where the vector zt contains estimates of the spatial attributes after t updates; the
vectors dt andAt (zt−1), respectively, hold actual observations and model-based pre-
dictions at time t andWt is a matrix with kriging weights defining the contribution of
the detected deviations to the updated subsurface model. If the vector dt only contains
direct local measurements, then the linear estimator corresponds to simple kriging,
this is kriging with a known mean. On the other hand, if also indirect measurements
are included, then a single update results from solving a system of cokriging equa-
tions (Goovaerts 1997; Chiles and Delfiner 2012). The sequential linear estimator
bears a remarkable resemblance to Kalman filter techniques (Kalman 1960; Evensen
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1992; Bertino et al. 2002). The kriging weights are computed from the forecast and
observation error covariance matrices, Ct−1,zd and Ct−1,dd

Wt = Ct−1,zdC
−1
t−1,dd (3a)

= Ct−1,zzAT
t (AtC

−1
t−1,zzA

T
t + R)−1, (3b)

where Ct−1,zz is the prior error covariance matrix of the attribute field, R is a diago-
nal matrix which specifies the sensor precision (a large sensor precision corresponds
to a low value on the diagonal) and At is a first-order approximation of the nonlin-
ear observation model At (Evensen 1992; Yeh and Zhang 1996). If both the prior
error covariance matrix and the sensor precision tend to be large, then the kriging
weights tend to increase, indicating that a significant portion of the detected devi-
ations are taken into account to update the attribute field. For completeness, the
posterior error covariance matrix of the attribute field after one assimilation step is
also given

Ct,zz = (I − WtAt )Ct−1,zz . (4)

Vargaz-Guzman and Yeh (1999) provided the theoretical evidence that under a linear
observation model, sequential kriging and cokriging are equivalent to their traditional
counterpart which includes all data simultaneously. In case of a nonlinear observa-
tion model, a sequential incorporation of data increases the accuracy of the first-order
(linear) approximations At , since they are calculated around a progressively improv-
ing attribute field (Evensen 1992; Harvey and Gorelick 1995). The linear estimator
thus propagates the conditional mean and covariances from one update cycle to the
next.

At time zero, a global covariance model suffices to describe the degree and scale of
variability in the attribute field. The covariancematrixC(0,zz) is stationary.At any other
time, the updated covariances reflect the assimilation history and indirectly depend on
the location of the material sources (Harvey and Gorelick 1995). This nonstationarity
of the updated covariances results in perhaps the greatest limitation of the method,
i.e., the necessity of storing large covariance matrices. Despite the promising results,
the above-mentioned techniques were yet not considered for resource modeling and
reconciliation.

Thus far, the discussion was focused on the sequential updating of a single best esti-
mate. In geostatistics, it is common to simulate a set of realizations to assess uncertainty
(Dowd 1994; Dimitrakopoulos 1998; Rendu 2002). The propagated conditional mean
and covariance provide an intuitive description of statistics required to perform geo-
statistical simulations. For example, a single realization can be generated through the
combination of the propagated mean with the product of a decomposed covariance
matrix (LU decomposition) and a vector filled with white noise (Davis 1987; Alabert
1987). Gomez-Hernandez and Cassiraga (2000), Hansen et al. (2006) and Hansen and
Mosegaard (2008) opt for a different approach and propose using the entire collec-
tion of measurements simultaneously in combination with a cokriging-based version
of sequential Gaussian simulation. As time progresses, such an approach results in
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significant memory usage due to the substantial growth of available production data.
The simulation approaches discussed thus far all require that the simulation algorithm
is completely rerun after each timestep.

Vargaz-Guzman and Dimitrakopoulos (2002) presented an approach that can facil-
itate fast updating of generated realizations based on new data, without repeating the
full simulation process. The approach is termed conditional simulation of successive
residuals and was designed to overcome the size limitations of the LU decomposition.
The lower triangularmatrix is obtained through a novel column partitioning, expressed
in terms of successive conditional covariance matrices. The partitioning requires the
specification of a sequence of (future) data locations. A stored L matrix can then facil-
itate the conditional updating of existing realizations if and only if the sequence of
visited subsets and used production data are the same as the one used for generating the
initial realizations (Jewbali and Dimitrakopoulos 2011; Dimitrakopoulos and Jewbali
2013).

A major limitation of the techniques discussed thus far results from the necessity to
store and propagate the conditional nonstationary covariances. A significant portion
of memory needs to be allocated to hold a collection of elements, the size of the
square of the number of grid nodes. The very large grids commonly encountered in
themining industry make such approaches infeasible. To circumvent these limitations,
the previously discussed sequential linear estimator (Eq. 2) can be integrated into a
Monte Carlo framework (Evensen 1994). At each time step, a finite set of realizations
is updated on the basis of sensor observations collected at time t:

Zt (:, i) = Zt−1(:, i) + Wt (dt − At (Zt−1(:, i)) + Et (:, i)) ∀i ∈ I, (5)

where the observation errors Et (:, i) are randomly drawn from a normal distribution
with a zero mean vector and a diagonal covariance matrix R. The conditional fore-
cast and observation error covariances,Ct−1,zd andCt−1,dd , are computed empirically
from both sets ofmodel-based predictionsAt (Zt−1(:, i)) and field realizationsZt−1(:,
i). Due to the applied Monte Carlo concept, the first-order approximation of the for-
ward observation model can be avoided (Evensen 1997; Burgers and van Leeuwen
1998). The initial set of realizations can be generated using techniques of conditional
simulation. Aside from the empirical calculation of the covariances, the Monte Carlo-
based sequential conditioning approach bears some resemblance to the equations for
conditioning simulations as presented in Journel and Huijbregts (1978). Applications
of the sequential conditioning approach in a geoscientific context can be found inmany
documented studies (Jansen et al. 2012; Heidari et al. 2011; Franssen et al. 2011; Hu
et al. 2012; Bertino et al. 2002). These other research disciplines refer to this technique
as the ensemble Kalman filter.

Before proceeding, it is important to comprehend the subtle differences to previous
applications of the (ensemble) Kalman filter. Weather forecasting and reservoir mod-
eling (oil, gas and water) consider dynamic systems repetitively sampled at the same
locations. Generally, each observation characterizes a volume surrounding a sam-
ple location. These local volumes are sampled repetitively in time. Mineral resource
modeling on the other hand focuses on static systems gradually sampled at different
locations. Each observation is characteristic for a blend of material originating from
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Fig. 1 Overview of the interaction between the updating algorithm and the forward simulator

one or more extraction points. Each part of thematerial stream is sampled only once, at
the moment it passes the sensor in the production chain. Although virtually the same,
the terminology of sequential updating is preferred over (ensemble) Kalman filtering.
This is to stress the absence of dynamic components and to highlight its link to the
field of geostatistics.

Benndorf (2015) was the first to recognize the potential of sequential updating in a
context of mineral resource extraction. His preliminary work provides a mathematical
description linked to the unique configurations of the mining industry (as discussed
above). However, the practicality of the description is limited due to the need for an
explicit formulation of theAt matrix. The presented description is based on 3b, which
requires an empirical computation of the full Ct−1,zz matrix together with its inverse.
Hence, the description results in high computational costs and memory requirements.
Moreover, the diagonal R matrix characterizing the sensor precision needs to be for-
mulated in the computation domain: straightforward when all distributions involved
are Gaussian, much less intuitive when transformations are applied.

This contribution presents an algorithm based on Eq. 3a. The forward observation
modelA is excluded from the computer code (Fig. 1). Instead, a forward simulator is
used to convert field realizations into model-based predictions (A is applied to fields
individually rather than to the covariance matrix). The use of a forward simulator over-
comes the challenges of formulating an analytical approximation linking each sensor
observation to the grade control model. The necessary forecast and observation error
covariances, Ct−1,dz and Ct−1,dd , can now be computed empirically. Differences in
the scale of support are inherently accounted for. A Gaussian anamorphosis option is
implemented to deal with suboptimal conditions related to indirect observations and
non-Gaussian distributions. A specific algorithm structure ensures that the measure-
ment error can be defined on its original units and does not need to be translated into
a normal score equivalent. An interconnected parallel updating sequence (helix) can
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be configured to reduce the effects of filter inbreeding (covariance collapse). A neigh-
borhood option can be activated to further reduce computation times and memory
requirements. Two covariance correction strategies are implemented to contain the
propagation of statistical sampling errors originating from the empirical computation
of covariances.

3 Algorithm

This section further elaborates on the design of the algorithm and its specific options.
The first subsection discusses the rationale behind the Gaussian anamorphosis. The
implementation, allowing for an intuitive treatment ofmeasurement error, is explained.
The second subsection provides a computational efficient strategy for solving the
updating equations. The presentation is generic, in that it includes the option to
configure a parallel updating sequence (helix). The third subsection discusses the
neighborhood option. The fourth subsection provides some insight into both covari-
ance correction techniques. The fifth subsection presents the pseudocode of the
updating algorithm. The pseudocode illustrates how the individual functional com-
ponents are integrated.

3.1 Gaussian anamorphosis

The updating approach presented in Benndorf (2015) is only optimal if all involved
variables are multivariate Gaussian and if the forward observation model A is linear.
Commonly, global normal score transformations are used to mitigate the effects of
multivariate distributions which are not Gaussian (Goovaerts 1997; Deutsch and Jour-
nel 1992). However due to the developing non-stationarity, the underlying assumptions
get violated. This is, after a few updates, the global cumulative field distribution does
not anymore represent the local updated conditions. Instead, grid nodes are individu-
ally transformed according to node-specific Gaussian anamorphosis functions (Beal
et al. 2010; Simon and Bertino 2009). This approximation just renders marginal dis-
tributions univariate Gaussian. Multivariate distributions are not explicitly corrected.
Yet, the random vectors are closer to being multivariate Gaussian than prior to the
univariate transformations (Zhou et al. 2011). First, the univariate transformation of
grid nodes is discussed. The transformation of observations and the treatment of mea-
surement error are addressed later on.

At each grid node xn , a local Gaussian anamorphosis function�xn is built and used
to forward transform the Monte Carlo representation of the random vector z(xn)

Ut (n, i) = �t,xn (Zt (n, i)) (6a)

= G−1(F(Zt (n, i))) ∀i ∈ I, (6b)

where I refers to the total number of elements in the Monte Carlo sample. A two-step
procedure is used for the implementation of the forward transformation. (1) The cumu-
lative probability F(Zt (n, i)) is estimated based on the rank i ′ of the corresponding
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Fig. 2 Univariate transformation of grid nodes, perturbed predicted observations, predicted observations
and actual observations

element in the full Monte Carlo sample ( i
′−0.5
I ). (2) The resulting cumulative proba-

bility is mapped onto its corresponding standard normal score value. In other words,
the inverse of the standard normal cumulative distribution function G is computed.
The left hand side of Fig. 2 shows the procedure for the univariate transformation of
grid nodes.

The necessity and added value of a transformation of observations depends partially
on the considered updating scheme (Eqs. 3a vs. 3b). To further clarify this statement,
a situation with transformed grid nodes is assumed and the impact of non-Gaussian
observations on both updating schemes is analyzed.

A study of Eq. 3b shows that the kriging weights Wt can be computed without
explicitly considering the predicted observations. The transformed grid nodes U(n, :)
are used to compute the empirical field error covariances Ct−1,uu . Both forecast error
and observation error covariances are then written as linear combinations hereof. The
resulting matrices, Ct−1,uuAT

t and AtC
−1
t−1,uuA

T
t +R are fully described in a normal

score space. As a consequence, sensor precisions need to be characterized in the
normal score domain as well (R matrix). In conclusion, non-Gaussian observations
thus have a limited impact on the computation of the weightsWt when using updating
Scheme 3b.

In contrast, due to the specific formulation of updating Scheme 3a, predicted
observations and their distributions do have a direct and significant impact on the
computation of the weights Wt . The forecast error and observation error covariances
are after all empirically calculated based on untransformed predicted observations.
They are no longer expressed as linear combinations of field error covariances, com-
puted from transformed grid nodes. The use of a flexible forward simulator thus results
in a less far-reaching effect of transformed grid nodes when computing the weights
Wt .

Since updating Scheme 3a is less robust against non-Gaussian observations, a trans-
formation is warranted. This will further increase the performance of the sequential
updating technique inasmuch as all involved variables, including the observations,
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better approximate amultivariateGaussian distribution.Moreover, aGaussian anamor-
phosis of the observations leads to an apparent pseudolinearization of the forward
observation model in the normal score domain (Schoniger et al. 2012). This pseudo-
linearization can be more accurately exploited by the linear updating equations.

The K predicted observations at time step t are defined as

Bt (:, i) = At (Zt−1(:, i)) ∀i ∈ I, (7)

where K refers to the number of measurements taken over a period [t − 1, t] and
At represents a forward simulator translating single field realizations Zt (:, i) into
vectors Bt (:, i) with K predicted observations. To account for measurement error, the
predicted observations are randomly perturbed, that is, I vectors Et (:, i) drawn from
N (0,R) are added to the columns Bt (:, i). Note that the diagonal R matrix directly
describes the measurement error in the original domain, and a translation to a normal
score space is not needed. The rows of the resulting perturbed predicted observation
matrix are transformed individually by evaluating K Gaussian anamorphosis functions
(Fig. 2)

Qt (k, i) = �t,k(Bt (k, i) + Et (k, i)) ∀i ∈ I. (8)

The addition of random noise Et (:, i) results in a kernel smoothing effect making the
estimation of the empirical CDF more robust, even for small sample sizes (Cheng and
Parzen 1997). Each of the K actual inaccurate observations are assumed to originate
from a distribution described by its corresponding Monte Carlo sample of perturbed
predicted observations (Bt (k, :) + Et (k, :)). Hence, the actual observations are trans-
formed according to the previously constructed anamorphosis functions (Fig. 2)

st (k) = �t,k(dt (k)). (9)

The integration of measurement noise into the transformations allows for a smooth
computation of covariances and deviations, without the need to further consider mea-
surement error in the normal score domain. The normal score equivalent R matrix is
implicitly accounted for when computing observation error covariances from the rows
of theQt matrix. Previously, a noise vector had to be explicitly added to the deviations
between the predicted and actual observations (Eq. 5). Now, a normal score equivalent
is automatically inserted into the differences between st and the columns Qt (:, i).

The currently available transformed data would not allow for a correct empirical
computation of the forecast error covariances. A pairwise consideration of rows from
the U and Q matrix would result in overestimated forecast error covariances. This is
because the forecast error covariances should be computed without the consideration
of measurement noise. Therefore, the previously constructed anamorphosis functions
�t,k are used once more to transform unperturbed predicted observations (Fig. 2)

Yt (k, i) = �t,k(Bt (k, i)) for i = 1, 2, . . . , I. (10)
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After the updating step, the grid nodes are backvtransformed using the inverse
of the grid node-specific anamorphosis functions �−1

t,xn . Back transformation of the
observations is not required. Instead, updated predicted observations are obtained from
a subsequent run of the forward simulator.

3.2 Solving the updating equations

The following provides an efficient strategy for solving the updating equations. The
presentation is generic in that it includes an option to configure a pair of connected
updating cycles. This option can be activated to avoid problems of inbreeding. Inbreed-
ing is essentially caused by the empirical estimation of covariances fromMonte Carlo
samples of limited size (Zhou et al. 2011). When occurring, the spread in the Monte
Carlo sample becomes unrealistically small; in particular the spread would be smaller
than the difference between the samplemean and the unknown truth (Zhou et al. 2011).
The problem generally arises when a group of grid nodes is being updated frequently
during a certain period of time.

The idea of configuring a pair of sequential updating cycles originates from
Houtekamer and Mitchell (1998), who argued that the computation of the weightsWt

and the evaluation of their quality (diagonal elements in Ct+1,uu) would be based on
exactly the same information when using a single Monte Carlo sample. As the assim-
ilation cycle proceeds, the propagation of this dependent quality test might eventually
result in a collapse of the Monte Carlo sample. To maintain sufficient spread, two
connected updating cycles can be configured. The weights Wt computed from one
cycle are used to assimilate data into the other cycle. In this way, each of the two
cycles use different Monte Carlo samples to estimate the weights and to evaluate the
quality of an update.

To configure two connected updating cycles, the previously transformed Monte
Carlo samples need to be split into two subsets. The constructed matrices with I
columns (U,Q and Y) are subdivided into two new matrices with, respectively, α and
I − α columns. Considering an original matrix X, the new matrices are denoted by
X(:, :α) andX(:, α :). The operators :α and α : refer, respectively, to the first α and the
last I − α columns. The default value of the integer parameter α is set to I/2. Note
that the two subsets do not necessarily have to be of equal size.

Once the Monte Carlo samples are split, all necessary covariances are empirically
calculated. The first two K x K matrices with observation error covariances are con-
structed

C1
t,qq(k, k) = E[(Qt (k, :α) − E[Qt (k, :α)])(Qt (k, :α) − E[Qt (k, :α)])], (11a)

C2
t,qq(k, k) = E[(Qt (k, α :) − E[Qt (k, α :)])(Qt (k, α :) − E[Qt (k, α :)])]. (11b)

The observation error covariances are computed from transformed perturbed predicted
observations and as such implicitly account for a normal score equivalent of the diag-
onal R matrix. Likewise, two N x K matrices with forecast error covariances are
constructed:
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C1
t,uy(n, k) = E[(Ut (n, :α) − E[Ut (n, :α)])(Yt (k, :α) − E[Yt (k, :α)])], (12a)

C2
t,uy(n, k) = E[(Ut (n, α :) − E[Ut (n, α :)])(Yt (k, α :) − E[Yt (k, α :)])]. (12b)

It is important to stress that the transformation of the unperturbed predicted observa-
tions (Eq. 10) is only performed to calculate the forecast error covariances.

A significant speedup of the updating operation can be achieved by solving the
equations first in the K -dimensional ‘observation space’ and then projecting the solu-
tions into the N -dimensional ‘field space’ (Evensen and van Leeuwen 1996; Cohn
et al. 1998). A Cholesky decomposition of the two observation error covariance matri-
ces results in considerable computation savings when solving the following equations

C2
t,qqT(:, i ′) = st − Qt (:, i ′) ∀i ′ ∈ [1, α], (13a)

C1
t,qqT(:, i ′′) = st − Qt (:, i ′′) ∀i ′′ ∈ [α, I ]. (13b)

The two resulting lower triangular matrices are combined with deviations between
transformed actual and predicted observations of the complementary subset to calcu-
late a series of solution vectorsT(:, i). Both series of solution vectors are subsequently
combinedwith previously calculated forecast error covariances to update existing real-
izations:

Ut+1(:, i ′) = Ut (:, i ′) + C2
t,uyT(:, i ′) ∀i ∈ [1, α], (14a)

Ut+1(:, i ′′) = Ut (:, i ′′) + C1
t,uyT(:, i ′′) ∀i ′′ ∈ [α, I ]. (14b)

Finally, the Monte Carlo samples of grid nodes are recombined and transformed back
using the grid node-specific anamorphosis functions which were stored in memory

Zt+1(n, i) = �−1
t,xn (U(n, i)) ∀i ∈ I. (15)

3.3 Neighborhood

Often, it is impractical (especially for large grids) to consider all N grid nodes simul-
taneously for updating, when K observations become available. Since the spatial
correlation generally decreases with distance, it is sufficient to only include a node
when it is located in the near vicinity of one of the L extraction points. A search
algorithm based on a space-partitioning tree structure is implemented to allocate grid
nodes to a neighborhood set N ′ replacing the full grid N in all subsequent computa-
tions. A local neighborhood approach is not new.However, the current implementation
requires that neighborhoods around active extraction points are considered simultane-
ously. For example, due to measurements on blended material streams, an observation
can be correlated to multiple nodes from different neighborhoods.

The subset N ′ is constructed prior to performing the transformations. As a result,
the order of the U matrices in Eqs. 6, 12, 14 and 15 greatly reduces permitting a
substantial computational economy to be realized. A local neighborhood strategy also
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reduces the effects of spurious correlations which may arise between observations and
remote grid nodes. Eventually, spurious correlations might lead to an update of several
remote nodes based on irrelevant information. To avoid such a fallacy, a neighborhood
strategy can be used to exclude remote nodes from the analysis.

3.4 Covariance error correction

The previous subsections already touched upon some of the issues related to the
empirical estimation of covariances fromfiniteMonteCarlo samples. A standard result
from statistical theory states that the correlation between two normal distributions can
be estimated with the following accuracy when using I Monte Carlo pairs

E[(ρ − ρ̂)2] ≈ (1 − ρ̂)2

I
, (16)

where ρ and ρ̂ are, respectively, the unknown and estimated correlation. The term
E[(ρ − ρ̂)2] expresses the variance around the estimate. It follows that an accurate
estimation of weak correlations (or covariances) would in any case require very large
samplewith thousands of realizations.When due to practical considerations theMonte
Carlo samples are rather limited, numerical inaccuracies may arise. To mitigate pos-
sible numerical inaccuracies, two covariance correction techniques are implemented:
an error correction and a localization correction. Both techniques apply a differen-
tial correction to the individual elements of the forecast error covariance matrix Cuy .
The magnitude of the correction (indirectly) depends on the estimated value of each
covariance element.

The localization correction is based on the notion that spatial covariance generally
decreases with distance. Equation 16 indicates that the accuracy of a covariance esti-
mate reduces accordingly. To account for distant dependent numerical inaccuracies,
the forecast error covariance matrix Ct,uy is localized. The concept of localization
requires observations which can be attributed to a certain spatial location. As a result,
a physically sensible distance between an observation k and a grid block n can be cal-
culated (Sakov and Betino 2011). Given a taper function ρ, a correction factor ρ(n, k)
is computed and used to correct the corresponding covariance (Ct,uy(n, k) ∗ ρ(n, k)).
Since in mining applications, observations are made on blended material streams, the
conventional implementation had to be adjusted. The following assumes that the loca-
tions of the L simultaneous extraction points are known. The localized element of
the Cuy matrix can then be written as a sum of the product between grid realization
anomalies (Ut (n, :)−E[Ut (n, :)]) tapered around extraction location l and observation
anomalies (Yt (k, :) − E[Yt (k, :)])

Ct,uy(n, k) =
L∑

l=1

(

E
[
ρ(n, l) ∗ (Ut (n, :) − E[Ut (n, :)])∗

(Yt (k, :) − E[Yt (k, :)])
])

.

(17)
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The Gaspari–Cohn correlation function is used for tapering the grid realization anom-
alies (Gaspari and Cohn 1999). Its use requires the definition of three range parameters
(x, y, z direction). A good choice for the range parameters is based on the number of
realizations and the prior covariance (Chen and Oliver 2010). As the number of real-
izations increases, the accuracy of covariance estimates increases and thus larger range
parameters can be selected.

The error correction technique uses an off-line Monte Carlo simulation to charac-
terize the potential variations between unknown and estimated correlations (Eq. 16). A
lookup table is constructed linking the estimated correlations with the correction fac-
tors between 0 and 1 Anderson (2012). The use of a lookup table requires a fixed value
range ([−1, 1]); hence covariances are replaced by correlations without any further
consequences. The procedure for constructing the lookup table is as follows. For every
discrete correlation ρm in the range [−1, 1], a Monte Carlo experiment is performed to
compute the corresponding correction factor. Each Monte Carlo experiment consists
of five steps. (i) Define a bivariate normal distribution with zero mean and covariance
[[1, ρm], [ρm, 1]]. (ii) Draw I times two values from this distribution. Compute the
correlation coefficient based on the I pairs. (iii) Repeat (ii) P times. (iv) Compute the
mean ρ̂m and standard deviation σm of the P estimated correlation values. (v) Define
α as (ρ̂m/σm)2. The correction factor (CF) for an estimated correlation of ρm is then
computed as

CF(ρm) = α

1 + α
∗ ρ̂m

ρm
. (18)

The described Monte Carlo experiment needs to be repeated M times to construct the
lookup table. The parameters M and P are, respectively, set to 201 and 106. I should
equal the number of realizations used to estimate the empirical correlations.

Once a lookup table is constructed or read from the file, the error correction can be
applied to the Ct,uy matrix

Ct,uy(n, k) = CF

(
Ct,uy(n, k)

St,uu(n, n)St,yy(k, k)

)

∗ Ct,uy(n, k). (19)

This requires the additional computation of the empirical standard deviation at N grid
nodes (St,uu(n, n)) and K observations (St,yy(k, k)).

3.5 Pseudocode

The following pseudocode illustrates how the previously discussed functional compo-
nents are integrated in one updating procedure (Algorithm 1). The option of using two
interconnected updating cycles has been omitted to avoid unnecessary complexity. To
accommodate for this option, lines 26 to 44 (Algorithm 1) have to adjusted based on
Eqs. 11 to 14.
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Algorithm 1 Updating Algorithm
1: procedure Update(Zt ,dt ,Bt , �) � � holds L extraction locations xl
2: tree ← ConstructTree(Zt )
3: for xl in � do � collect nodes around xl
4: Zl

t ← SearchTree(tree, xl ) � Zl
t is a subset of Zt

5: Z�
t ← Union(Z�

t , Z
l
t ) � combine subsets

6: Ut ← Initialize(N ′, I ) � N ′ nodes in combined subsets
7: for n in N ′ do
8: �t,xn ← Construct(Z�

t (n, :))
9: for i in I do
10: Ut (n, i) ← �t,xn (Z

�
t (n, i))

11: Qt ← Initialize(K , I ) � K observations
12: Yt ← Initialize(K , I )
13: st ← Initialize(K , 1)
14: Et ← Generate(sensor accuracy) � K x I matrix with white noise
15: Ft ← Bt + Et

16: for k in K do
17: �t,k ← Construct(Ft (k, :))
18: for i in I do
19: Qt (k, i) ← �t,k (F(k, i)) � transform perturbed predictions
20: Yt (k, i) ← �t,k (B(k, i)) � transform predictions
21: st (k) ← �t,k (dt (k)) � transform real observations

22: Ct,qq ← Initialize(K , K )
23: for ki in K do
24: for k j in K do
25: Ct,qq (ki , k j ) ← Cov(Qt,qq (ki , :),Qt,qq (k j , :)) � Eq. 11

26: Ct,uy ← Initialize(N ′, K )
27: for n in N ′ do
28: for k in K do
29: if CovarianceLocalization is FALSE then
30: Ct,uy(n, k) ← Cov(Ut (n, :),Yt (k, :)) � Eq. 12
31: else if CovarianceLocalization is TRUE then
32: Ct,uy(n, k) ← CovLoc(Ut (n, :),Yt (k, :),�) � Eq. 17

33: if ErrorCorrection is TRUE then
34: for n in N ′ do
35: St,uu(n, n) ← StandardDeviation(Ut (n, :))
36: for k in K do
37: St,yy(k, k) ← StandardDeviation(Yt (k, :))
38: ρ ← Ct,uy(n, k)/(St,uu(n, n) ∗ St,yy(k, k))
39: CF ← LoopUp(ρ) � from table
40: Ct,uy(n, k) ← CF ∗ Ct,uy(n, k) � correct & replace, Eq. 19

41: T ← Initialize(K , I )
42: for i in I do
43: T(:, i) ← Solve(Ct,qqT(:, i) = st − Qt (:, i))
44: Ut+1(:, i) ← Ut (:, i) + Ct,uyT(:, i)

45: for n in N ′ do
46: for i in I do
47: Z�

t+1(n, i) ← �−1
t,xn (Ut+1(n, i))

48: Zt+1 ← Overwrite(Z�
t+1,Zt ) � Overwrite the N ′ selected nodes

49: Return Zt+1
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4 Experiment

4.1 General Setup

A synthetic experimental environment is created to showcase the performance of the
developed algorithm. The synthetic environment represents a mining operation with
two extraction points of unequal production rate. The resulting material streams are
blended and inaccurate observations are made. The goal of the experiment is to test
whether the algorithm is capable of improving the GC model based on unequally
blended inaccurate observations. To stress the synthetic nature of the experiment,
units for the modeled attribute are omitted.

4.2 Reference Field

During the course of the artificial experiment, a true but unknown state is sampled
twice. First, small point samples are collected on a regular grid prior to the construction
of the GC model (exploration phase). Second, observations are made on a blend of
multiple mining blocks (operational phase). To correctly account for both scales of
support, two representations of the true but unknown field are constructed. Both the
high-resolution point and the lower-resolution block reference field characterize the
true state over an area of 300 m × 300 m using a different level of discretization.

The high-resolution point reference field is constructed on a discretized grid with
300 × 300 cells of size 1 m × 1 m. This reference field is generated using a random
field simulation algorithm (sequential Gaussian simulation). The reference field is
simulated based on an isotropic exponential function with a variance of 1.0 and a
range of 100 m. Due to field dimensions which are relatively small compared to the
range of the covariance model (300 m vs. 100 m), a four times larger simulation grid
is used (600 × 600 cells of size 1 m × 1 m). Eventually, only the south-west quarter
of the grid is retained (300 × 300 cells of size 1 m × 1 m). The resulting field has an
average of−0.251 (−0.052) and a variance of 0.862 (1.006). The 5 and 95% quantiles
are, respectively, −1.733 (−1.733) and 1.312 (1.518). The values between brackets
refer to those computed from the larger simulation grid.

The low-resolution block reference field is constructed on a discretized grid with 60
× 60 cells of size 5 m × 5 m. This second reference field is obtained from reblocking
the previous point field. Values of 5 × 5, 1 m × 1 m cells are averaged and assigned to
larger 5 m × 5 m blocks. The resulting block reference field has an average of −0.251
and a variance of 0.792. The 5 and 95% quantiles are, respectively,−1.696 and 1.246.
As expected, the variability reduces due to reblocking. The final block reference field
is displayed in Fig. 3a.

4.3 Prior Set of Realizations

A set of field realizations is used throughout to characterize the spatial variability
and quantify the geological uncertainty of the study environment. The geological
uncertainty originates from the limited amount of data available. Prior to the operation,
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Fig. 3 True but unknown field a block representation, 60 × 60 blocks of size 5 m × 5 m color coded
according to their average block value, b location of point samples on 50 m × 50 m exploration grid-point
samples have a support of 1 m × 1 m

the study prescribes the availability of exploration data collected on a 50 m × 50 m
sampling grid. This medium-dense sampling grid (spacing equals half the range of
the covariance model) results in a prior set of realizations with a realistic level of
uncertainty and error.

A prior set of 200 realizations is simulated on a discretized grid with 600 × 600
1 m × 1 m cells. Again, the simulation grid is four times larger than the studied area
for reasons of small field dimensions compared to the range of the covariance model.
A total of 144 sampling points are provided as conditioning data (sampled on a 50 m
× 50 m exploration grid from the previous point simulation on the large 600 × 600
grid with 1 m× 1 m cells). From the 144, only 36 sampling points are actually located
inside the study area (Fig. 3b). The covariance model of the true field is assumed to be
known and was not inferred from the sampling points (isotropic exponential function
with a variance of 1.0 and a range of 100 m). Once simulated, only the south-west
quarter of the grid is retained (300 × 300 cells of size 1 m × 1 m). Subsequently, the
200 point simulations are reblocked onto a grid with 60 × 60 blocks of size 5 m × 5
m. Figure 4 displays four arbitrarily chosen block realizations.

Only the block realizations on a discretized grid with 60 x 60 blocks of size 5 m
× 5 m are further considered (one reference field Z∗ and 200 prior block realizations
Z0(:, i)). All previous point simulations were just an aid to this end.

Figure 5a and b display a mean and standard deviation (SD) field computed from
the 200 prior realizations. Themean field, representing the current best block estimate,
is considerably smoother than the reference field (compare Figs. 5a, 3a). The general
larger-scale patterns are nevertheless reasonably reproduced. This is due to the avail-
ability of sufficient conditioning data (on a point support). The approximate locations
of the sampling points are marked by a lower block standard deviation (compare Figs.
3b, 5b). Due to the effects of differences in the scale of support, the SD of 5 m × 5
m blocks does not entirely reduce to zero when conditioning based on cells of size
1 m × 1 m. The minimum and maximum observed SD values amount to 0.283 and
0.907. Figure 5c displays the absolute difference between true but unknown and esti-
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Fig. 4 Four arbitrarily chosen block realizations (no. 39, 56, 125 and 183), 60 × 60 blocks of size 5 m ×
5 m color coded according to their average block value

mated block values. The absolute error (AE) field is nothing more than the absolute
difference between Figs. 3a and 5a. The figure illustrates that large deviations do occur
locally, despite the considerable exploration effort. For example, the absolute error is
consistently larger than 2.0 in an area bounded by [25 m, 175 m] × [75 m, 225 m].

Figure 6a, b depicts, respectively, a north–south (x = 57.5 m) and east–west section
(y = 167.5 m) across the prior realizations and the reference field. The information
contained in the prior realizations is visualized as a combination of a most expected
mean field (blue line) and a 90 % confidence interval (blue area). The width of the
90 % confidence interval is nearly uniform across both section lines (i.e., the influence
of nearby sampling points is not immediately visible). The confidence interval of
the north–south and east–west section encloses the reference field at, respectively, 44
(73.33 %) and 53 (88.33 %) blocks (Fig. 6). Considering the entire grid, 3225 out
of 3600 blocks (89.58 %) are characterized by a confidence interval enclosing the
reference value.

Figure 7a, b displays, respectively, a north–south (x = 57.5m) and east–west section
(y = 167.5m) across the AE (purple solid) and SD (orange dashed) field. A comparison
between Figs. 6 and 7 shows that a severe misalignment between the reference field
and confidence interval directly results in an AE which is consistently larger than
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Fig. 5 Grid with 60 x 60 blocks of size 5 m × 5 m color coded according to the computed statistic amean,
b standard deviation, c absolute error

1.0. The three peaks of large AE in the north–south section (Fig. 7a) result from a
severe, but local estimation bias (overestimation around y = 150 m and y > 250 m,
underestimation at 175m < y < 225m, Fig. 6a). The two smaller peaks of AE in
the east–west section (Fig. 7b) originate from a relatively large region with a smaller
estimation bias (consistent underestimation between 125m < x < 250m). The SD,
which provides an alternative representation of remaining uncertainty, does not change
significantly across both selected sections (slight decrease in the proximity of sampling
points, Fig. 7b).

4.4 Experimental scenario

Amining operation with two extraction points of unequal production rate is simulated
and monitored. Figure 8 displays the outline of extraction zone I (40 m × 120 m) and
zone II (120 m× 40m). Each extraction zone has an area of 4800 m2 and contains 192
blocks. From this point forward, it will be assumed that the previous constructed block
realizations have a thickness of 3m. Considering a rock density of 2.8 t/m3, it is not
unreasonable to assume that each 75 m3 block is transported by a truck with a payload
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Fig. 6 Sections across prior realizations and reference field a north–south section at x = 57.5m, b east–west
section at y = 167.5 m

capacity of 210 t . Hence, the terms block and truckload are used interchangeably.
The duration of the experiment equals the time T needed to excavate and process all
384 blocks from both extraction zones. This total time is subdivided into 12 discrete
timesteps dt of equal length (T = 12 ∗ dt). Since the total production rate is kept
constant, 32 truckloads are processed during a single timestep.

Figure 9 provides a schematic overview of the extraction sequence and monitoring
setup (forward simulator). The extraction sequence is visually prescribed through the
numbers inside the demarcated digging blocks. During the first half time step ([0,
dt/2]), a small digging block is extracted from mining zone I (1a, [50 m, 150 m] ×
[40 m, 160 m], 4 truckloads). Simultaneously, a large digging block is removed from
mining zone II (1a, [150 m, 130 m] × [165 m × 170 m], 12 truckloads). During the
second half timestep ([dt/2, dt]), a small (1b, [40m, 150m]× [50m, 160m]) and large
(1b, [165 m, 130 m]× [180 m, 150 m]) digging block are, respectively, extracted from
mining zone I and II. A similar generic approach applies for the remaining timesteps.
Generally, during each half timestep, 4 and 12 truckloads are extracted always from
complementary mining zones (4 from one, 12 from the other). As a result, the total
production rate remains constant: 16 truckloads per half timestep. Figure 9, however,
illustrates that the local production rates (4 or 12 truckloads per half timestep) reverse
after every 3t h timestep.

The monitoring setup is strongly related to the extraction sequence. Every timestep
yields two observations, each an average of 16 blended truckloads. The composition
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Fig. 7 Sections across absolute error (AE, purple solid) and standard deviation (SD, orange dashed) field,
a north–south section at x = 57.5 m, b east–west section at y = 167.5 m

Fig. 8 Outline of extraction zone I ([50 m, 150 m] × [90 m, 270 m]) and II ([150 m, 150 m] × [270 m,
190 m])

of the blend is prescribed by the defined extraction sequence. This is at time t , two
observations become available, characterizing the blend resulting from the extraction
during respective periods [t−1, t−1+dt/2] and [t−1+dt/2, t]. A forward simulator
is implemented based on the described extraction sequence and measurement setup.
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Fig. 9 Schematic overview of extraction sequence and monitoring setup: during each half timestep dt , 4
and 12 blocks are extracted from complementary zones (X and X’) and blended

The forward simulator At translates each (prior) realization Zt−1(:, i) into a vector
Bt (:, i) with two observations (Fig. 1).

Obviously in practice, the real observation vector dt results from actual measure-
ments with inaccurate sensors. However, due to the synthetic nature of the experiment,
a second forward simulatorA∗

t needs to be build to mimic the behavior of a real mon-
itoring network. This simulator generates inaccurate but true observations dt based
on the reference field Z∗ (dt = A∗

t (Z
∗)). The previous constructed simulator At is

adjusted to suit this purpose. Two main modifications are made. First, the reference
field Z∗ is propagated through the simulator and not one of the realizations Zt−1(:, i).
Second, random noise is added onto the resulting observations to mimic the behavior
of an inaccurate sensor. The random noise is drawn from a normal distribution with
zero mean and a standard deviation of 0.0625 (0.25/

√
16). The reported standard

deviation defines the measurement accuracy over a volume of 16 truckloads (1200
m3). The applied sensor has a rather low accuracy. The corresponding accuracy of one
truckload measurement would be 0.25, merely a quarter of the accuracy of a block
estimate (block standard deviation varies between 0.283 and 0.907). In real appli-
cations, the observation and related accuracy would result from a time average of a
continuous sensor response.

The described experimental scenario is executed in 29 s on a standard laptop (Intel
Core i7-3520M CPU@ 2.90Ghz, 8Gb RAM memory). A single update is completed
in less than 2.5 s. The computation time is expected to only slightly increase when
applying this technique to ongoing operations. It is important to understand that the
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time needed to solve the updating equations is only dependent on the number of grid
nodes in the neighborhood subset. The size of the neighborhood subset is more deter-
mined by the geological scale of correlation and the number of extraction locations
than by, e.g., the total number of nodes in a typical application problem (can be up
to a billion). Larger grids though will impact the time needed to construct the neigh-
borhood subset. Considering L extraction locations and a space-partitioning search
tree, the time to construct a neighborhood subset will be in the order of L log2(N ).
Therefore, it is to be expected that the time needed to complete a single update in real
applications will be an order of magnitude smaller than the time needed to collect
time-averaged measurements (a few minutes versus a few hours).

5 Results

The performance of the algorithm is evaluated using three sets of criteria. (1) Fields
and cross sections are visually inspected. Mean and reference fields are compared,
the reliability of the 90 % confidence interval is assessed and the evolution of the AE
and SD is studied. (2) Global assessment statistics are computed. The overall quality
of a set of realizations is evaluated by the magnitude of two single value measures:
the root mean square error (RMSE) and the spread. (3) Local assessment statistics are
computed for 14 different areas. RMSE and spread are calculated per local area to aid
a quantitative comparison. Scatter plots, box plots and empirical probability plots are
drawn to visually evaluate local improvements.

5.1 Visual inspection

Figure 10 displays how the mean field changes through time when assimilating sensor
observations from the production chain. The two large rectangular outlines demarcate
the extent of both extraction zones (I and II). The four smaller rectangles delineate
the digging block which were extracted, blended and measured during the considered
time interval. A comparison of Fig. 10a–l with the prior mean field (Fig. 5a) and the
referencefield (3a) indicates that themeanfield (the current best estimate) continuously
improves in and around both extraction zones.

Figure 11a, b depict, respectively, a north–south (x = 67.5 m) and east–west (y =
167.5 m) section across the reference field and final realizations (after 12 updates).
Both figures support the previous conclusion. The mean field in the neighborhood of
both extraction zones (150m < y < 270m and 150m < x < 270m) considerably
improved compared to the initial model (Fig. 6). Two out of the three occurrences of
severe local estimation bias in the north–south section are corrected (175m < y <

225m and y > 250m, Fig. 6a and 11a). The third occurrence, an overestimation bias
around y = 150m, could not be corrected. This local deviation did go undetected
because large positive deviations of small digging blocks were blended with smaller
negative deviations of larger digging blocks (1a and 1b from zone I mixed with 1a and
1b fromzone II, Fig 9). The two local corrections along the north–south section can also
be observed in Fig. 10f, j (increasemean field, 175m < y < 225m) and 10k (decrease
mean field, y > 250m). The algorithm further corrected the underestimation bias in
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Fig. 10 Evolution of mean field through time, from update 1 (a) to 12 (l)—grid with 60 × 60 blocks of
size 5 m × 5 m color coded according to the computed average block value

the east–west section (Figs. 6b - 11b, 125m < x < 250m). The observed correction
in the east–west section corresponds to a higher mean field in mining zone II (e.g.,
compare Fig. 10a, l).

Figure 12a, b displays a north–south (x = 57.5 m) and an east–west (y = 167.5
m) section across the initial and final AE field. The 12 updates result in a significant
reduction of the absolute error around the extraction zones. Two of the three peaks of
large AE in the north–south section have disappeared (Fig. 12a, 175m < y < 225m
and y > 250m). In the corresponding areas, a reduction in AE from 2.0 to 0.5 is
observed. The height of the third peak, however, slightly increases from about 1.6
to 2.3 (Fig. 12a y = 150m). A plausible explanation for this behavior has been
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Fig. 11 Sections across updated realizations (after update 12) and reference field: a north–south section at
x = 57.5 m, b east–west section at y = 167.5 m

provided previously. The correction of the underestimation bias around mining zone
II causes a reduction of AE in the eastern part of the east–west section (Fig. 12b,
125m < x < 250m). The increase of AE in the western part of this section is directly
related to the discussed local underperformance of the algorithm at the southern border
of mining zone I (Fig 10a y = 167.5 m, Fig. 10b x = 57.5 m).

The assimilation of sensor observations results as well in an adjustment of the
uncertainty model. The width of the 90 % confidence interval is approximately halved
within both extraction zones (compare Figs. 6 and 11, 150m < y < 270m and
< 150m < x < 270m). The remaining uncertainty inside the excavated areas is
attributed to a combination of measurement error and scale of support effects. In
other words, average inaccurate measurements of blended truckloads are not sufficient
to uniquely characterize individual blocks without any remaining uncertainty. The
evolution of the SD field through time illustrates that the remaining uncertainty is
not uniformly adjusted across the excavated areas (Fig. 13). The updating algorithm
seems to assign a lower uncertainty (lower SD) to the larger digging blocks. The
SD of updated blocks in large digging areas varies between 0.25 and 0.45 (Fig. 13).
The SD of updated blocks in small digging areas is significantly higher, and values
between 0.55 and 0.75 are observed. A comparison of the SD fields across Fig. 13
indicates that the adjustment of the uncertainty model is not only limited to already
excavated areas. For example, Fig. 13a, b shows that the uncertainty near the middle
of mining zone II reduces from somewhere around 0.7 to 0.6 over even 0.5. This
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Fig. 12 Sections across absolute error before (dashed red) and after 12 updates (solid purple). a North–
south section at x = 57.5 m, b east–west section at y = 167.5 m

reduction occurs during the second update when none of the material near the middle
of mining zone II has already been excavated. Figs. 13 and 5b illustrate that a reduction
in uncertainty is observed up to a distance of 30 m from the border of a digging
block.

Figure 14a, b depicts, respectively, a north–south (x = 67.5 m) and east–west (y
= 167.5 m) section across the prior (Fig. 5b) and final (13l) SD field. The north–
south section shows that the reduction of the SD is lower in the smaller digging
areas (150m < y < 180m) compared to the larger ones (180m < y < 270m).
North of the northern border of extraction zone I (y > 270m), the SD increases
from 0.25 (inside, 180m < y < 270m) towards 0.75 over a distance of about
30 m. The uncertainty as well reduces up to 30m away from the southern border
(120m < y < 150m), though this reduction is less remarkable due to the larger SD
values in the smaller digging areas (150m < y < 180m). The east–west section
primarily intersects large digging areas (except for 50m < x < 70m); hence, the
SD inside both extraction zones generally reduces to values between 0.25 and 0.35
(Fig. 14a). The SD inside the smaller digging areas (50m < x < 70m) reaches
values near 0.65. The effects of a reduction in uncertainty are again observed up to
30 m away from the boundaries of both extraction zones (zone I, x < 50m and
x > 90m; zone II, x < 150m and x > 270m). The differences between the prior and
final SD field displayed in the east–west section (Fig. 14b) are less striking compared
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Fig. 13 Evolution of SD field through time, from update 1 (a) to 12 (l)-grid with 60 × 60 blocks of size 5
m × 5 m color coded according to the computed block standard deviation

to those in the north–south section (Fig. 14a). This is due to lower and more vari-
able prior SD field in the east–west section (larger effect of nearby sampling points)
and has nothing to do with the updating results which are similar for both cross
sections.

5.2 Global assessment statistics

The RMSE and spread are single value measures expressing the global quality of a set
of realizations. As such, they allow for a more convenient comparison of realization
sets across different timesteps. The RMSEmeasures the overall deviation between the
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Fig. 14 Sections across standard deviation before (dashed green) and after 12 updates (solid orange). a
North–south section at x = 57.5 m, b East–West section at y = 167.5 m

reference field (Z∗) and the mean field (Ẑt ) at a given timestep. The RMSE is defined
as the root of the average squared difference between all available true and estimated
block values

RMSEt =
√
√
√
√ 1

N

N∑

n=1

[Z∗(n) − Ẑt (n)]2. (20)

The spread summarizes the overall estimated uncertainty and is calculated as the root
of the average block variance

SPREADt =
√
√
√
√ 1

N

N∑

n=1

V AR(Zt (n, :)). (21)

In both formulations (Eqs. 20 and 21), n iterates over all 3600 blocks in the grid.
Ideally, the RMSE reduces in function of the number of incorporated measurements.
During the course of the experiment, the uncertainty model is adjusted as well to
account for the remaining error. Hence, the need for a spread which approximates the
RMSE.

123



28 Math Geosci (2017) 49:1–37

Fig. 15 Evolution of RMSE and spread through time

Figure 15 shows the evolution of the global RMSE and spread through time. The
RMSE of the prior realizations amounts to 0.708, while the prior spread is 0.690. Over
the course of the experiment, the global RMSE drops by about 11 % (from 0.708 to
0.630). The spread decreases accordingly, a reduction of 5% is observed (from 0.690
to 0.649). Figure 15 indicates that the spread decreases at a constant rate. This was
to be expected since a constant material volume is measured during each timestep.
There is no reason to assume that the information value of similar observations would
be different over time. Figure 15 illustrates that the RMSE tends to reduce at the same
rate. The more volatile behavior is possibly caused by its large sensitivity to local
improvements. For example, the rate of reduction in RMSE from timestep 5 to 6 is
exceptionally large and inconsistent with the general pattern. This exceptionally large
reduction originates from a local correction of an anomalous area. Figure 5c already
indicated that the prior AE was consistently larger than 2.0 in an area bounded by [25
m, 175 m] × [75 m, 225 m]. During the 6th timestep, a significant part of this area
is excavated and measured. The algorithm detects this local anomaly and performs a
correction. Figure 10e, f clearly shows that the mean field in this local area is lifted
during the 6th timestep.

5.3 Local assessment statistics

The previously reported global statistics are computed over all available 3600 blocks.
During an update, only a fraction of this number is adjusted. The effects of local
improvements are thus smeared out when computing a measure of global quality. The
following presents a more local assessment to better comprehend the effects of an
updating sequence.

A total of 14 local areas are defined and displayed in Fig. 16. Two local areas (I0
and II0) coincide with the previous demarcated extraction zones (zone I and II, Fig.
8). Six constitute frames of 5m thickness around mining zone I (I1 to I6). Another six
are laid out around mining zone II (II1 to II6).

For each local area, a true value is computed by averaging blocks of the reference
field located inside the corresponding boundary. Similarly, each realization is con-
verted into 14 local area values. Upon completion, 200 simulated local area values are
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Fig. 16 Outline of 14 local areas, 2 extraction zone of 4800m2, and 12 surrounding frames with a thickness
of 5 m

collected and further used to compute a best estimate (i.e., mean) and quantile values.
Figure 17 displays the true local area values versus their best estimates before and
after 12 updates. A zero distance between a point and the bisector refers to a perfect
alignment of a true and estimated value. The scatter plot indicates that the quality
of the prior model (blue dots) is location dependent. In general, local area estimates
deviate more from their reference values in and around mining zone II (open mark-
ers) than they do in and around mining zone I (filled markers). The 12 updates alter
the realizations such that the estimated area values in and around zone II are shifted
towards the bisector (red squares, Fig. 17). This corresponds to a general increase in
the mean field in the vicinity of zone II (compare Fig. 10a, l). Notice the large change
in area value II0 and II1, both change respectively from 0.062 to 0.547 (0.673) and
from −0.199 to 0.236 (0.427). Their corresponding reference values are indicated
between brackets. The best estimates in mining zone I do not experience such drastic
changes.

Figure 18 depicts box plots constructed from the computed local area quantiles.
The box plots indicate that the prior uncertainty model partially accounts for the
previously observed initial deviations (Fig. 18a). For about 10 of the 14 local areas, the
reference field is located inside the 90 % confidence interval. The mismatch between
the reference value and confidence interval is remarkable in areas II0 to II4. After
updating 12 times, the box plots characterizing the local areas in mining zone II are
shifted upwards and become shorter. Those characterizing mining I undergo a similar
transition, although their upward shift is much more subtle. A uniform shift refers to
a correction of bias, while shorter box plots indicate a reduction of uncertainty.
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Fig. 17 Scatterplot of true versus estimated area values before (blue dots) and after 12 updates (red
squares)—filled markers refer to areas in mining zone I, open markers refer to areas in mining zone II

Fig. 18 Box plots constructed from the computed local area quantiles at timestep 0 (a) and timestep 12
(b)—reference values are indicated as red crosses, box and whiskers refer, respectively, to the 50 and 90 %
confidence interval

123



Math Geosci (2017) 49:1–37 31

Fig. 19 Bar charts displaying the local area RMSE (a) and spread (b) of the prior (red) and updated
realizations (blue)

The previously defined RMSE and spread can also be computed locally. In Eqs. 20
and 21, n then refers to blocks confined to one of the specified local areas. Figure 19
displays the prior and posterior RMSE and spread per local area. Apparently, the prior
RMSE of the local areas in mining zone I is slightly larger than those in mining zone II
(Fig. 19a). This might seem contradictory, since previously larger deviations between
local area estimates and reference values were observed in mining zone II, and not
in zone I (Fig. 17). The contradiction directly results from the effect of different bias
mechanisms on the computed statistics. In mining zone I, three occurrences of a severe
local under- or overestimation of the prior model are observed (zone I, Figs. 3a, 5a
and 10l). When computing an area estimate, the local deviations are averaged out.
However due to the squared difference in Eq. 18, these local large deviations do have a
significant impact on the resulting RMSE value. The prior model in zone II is affected
by a medium single bias extending over a larger area (zone II, Figs. 3a, 5a and 10l).
This regional bias is not averaged out, and hence the larger deviation between an area
estimate and the reference value. Since the regional bias is of medium magnitude, the
resulting RMSE is not as large as that of mining zone I.

After 12 updates, the RMSE of local areas I0 and II0 drop by about 38 and 45 %
(I0: from 0.984 to 0.608, II0: from 0.811 to 0.447, Fig. 19a). The first three local
areas around mining zone I (I1, I2, I3, Fig. 16) observe a reduction in error of about
24, 17 and 13 %. The posterior RMSE values are, respectively, 0.833 (I1), 0.839 (I2)
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and 0.790 (I3). In the three frames surrounding mining zone II (II1, II2, II3, Fig. 16),
the RMSE drops by about 39, 27 and 19 %, reaching posterior RMSE values of 0.547
(II1), 0.569 (II2) and 0.620 (II3). Around mining zone II, a significant improvement is
observed and small posteriorRMSEvalues are attained (0.55 to 0.60). The updates are
still successful around the mining zone, although medium RMSE values are obtained
(0.80).

Figure 19b displays the prior and posterior spread per local area. The prior spread
is more or less uniform across the areas and varies between 0.647 and 0.724. After 12
updates, the spread of local areas I0 and II0 drop by about 40 and 41% (I0: from 0.663
to 0.396, II0: from 0.677 to 0.0.401). The first local areas surrounding both extraction
zones (I1 and II1) observe a reduction in spread of about 24 and 26 % (I1: from 0.704
to 0.533, II1: from 0.724 to 0.539). The spread in local areas I2 and II2 reduces by
about 15 and 16 % (I2: from 0.696 to 0.591, II2: from 0.720 to 0.607). A reduction
of 9 and 10 % is observed in local areas I3 and II3 (I3: from 0.687 to 0.624, II3: from
0.714 to 0.646). The reported spread values indicate that the uncertainty gradually
increases in function of the distance from the extraction zones. The initial bias does
not seem to affect the posterior spread values. Further, notice the similarities between
the reduction of RMSE in mining zone I and the overall spread reduction.

To conclude the discussion of the experimental results, global and local empirical
probability curves are presented and analyzed. For each block included in the analysis,
empirical quantiles are computed according to a predefined set of theoretical proba-
bilities (e.g., 0.025—0.975). For a given theoretical probability, corresponding block
quantiles are retrieved and compared against the reference values. The proportion
of reference values not exceeding the block quantiles is referred to as the empirical
probability. The procedure is repeated for all predefined theoretical probabilities. The
interested reader is referred to Olea (2012). A good uncertainty model would result in
probability pairs located along the bisector. Thiswould for example imply that for 10%
of the investigated blocks (empirical probability), the reference value is lower than the
corresponding 10 % quantile (the 10 % here refers to the theoretical probability).

Figure 20a displays the global empirical probability curves computed from prior
and updated realizations. The curve confirms a globally good agreement between
deviations (error) and uncertainty (spread) in the prior model (due to medium dense
sampling grid). Updating results in an even better alignment of the global probability
curve with the bisector.

Figure 20b–d displays two prior and two posterior local probability curves com-
puted from blocks in, respectively, local areas I0 and II0, local areas I2 and II2 and
local areas I4 and II4 (Fig. 16). The figures illustrate that the regional deviations in
mining zone II are not accounted for in the prior uncertainty model (purple triangles).
The occurrence of low values is severely overestimated. For example in only 6 % of
the blocks in area I0 is the reference value below the computed 40 % quantile value.
The prior probability curves for areas II0, II2 and II4 indicate that the block distri-
butions in and around extraction zone II are centered around values which are too
low (purple triangles, Fig. 20b–d). Updating causes a significant upward shift of the
corresponding distributions (orange pentagons, Fig. 20b–d). However, the posterior
empirical probability curves indicate that the upward shift could have been slightly
larger. Figure 18b confirms this conclusion. A slightly higher position of the box plots,
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Fig. 20 Empirical versus theoretical probabilities computed over prior and updates realizations—a entire
grid, b local area I0 and II0, c local areas I2 and II2, d local areas I4 and II4

representing local areas II0 to II4, would result in reference values located inside the
50% confidence interval. The prior empirical probability curves of areas I0, I2 and I4
approve the overall quality of the prior uncertainty model around mining zone I (red
circles, Fig. 20b–d). A more detailed analysis reveals that the tails of the distributions
are a bit too long. Such a conclusion can be drawn from the fact that the occurrence
of low values and high values is slightly overestimated (’S’ shape instead of straight
line). Updating generally results in a better alignment of the posterior curves with the
bisector (green squares, Fig. 20b–d). This corresponds to shorter confidence interval,
as observed in Fig. 18b.

6 Conclusion

This contribution presents a newalgorithm to automatically assimilate online data from
a production monitoring network into the grade control model. The practicality of the
algorithm mainly results from the design decision to exclude the forward observation
model from the computer code. Instead, for each unique application, a case-specific
forward simulator is built and used independently from the existing code. This results
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in great flexibility, allows for a better integration of expert knowledge and facilitates
interdisciplinary cooperation.

Once built, the forward simulator is run to translate grade control realizations into
observation realizations. The resulting realization sets are subsequently used to com-
pute the empirical covariances. These covariances mathematically describe the link
between the sensor observations and blocks from the grade control model. There is
no need to formulate and linearize an analytical forward observation model, let alone
compute its inverse. The forward simulator further ensures that the distribution of the
Monte Carlo samples already reflect the support of the concerned random values. As a
result, the necessary covariance, derived from these Monte Carlo samples, inherently
account for differences in the scale of support.

AGaussian anamorphosis option is implemented to dealwith suboptimal conditions
related to non-Gaussian distributions. A specific algorithm structure ensures that the
sensor precision (measurement error) can be defined on its original units and does not
need to be translated into a normal score equivalent.

When due to practical considerations the Monte Carlo samples are rather lim-
ited, numerical inaccuracies may arise. An interconnected parallel updating sequence
(helix) can be configured to reduce the effects of filter inbreeding. Due to the empiri-
cal computation of the covariance, degrees of freedom are lost over time. Eventually,
this might result in a collapse of covariances. A neighborhood option is implemented
to constrain computation time and memory requirements. Since observations are col-
lected on blendedmaterial streams originating frommultiple extraction zone, different
neighborhoods need to be considered simultaneously. A neighborhood strategy also
partially reduces the effect of spurious correlations. Two covariance correction options
are implemented to contain the propagation of statistical sampling errors originating
from the empirical computation of covariances. The localization correction is based
on the assumption that the accuracy of a covariance estimate decreases with distance
from an extraction point. Hence, grid anomalies are tapered around central extraction
locations. The error correction uses an off-line Monte Carlo simulation to precompute
the accuracy of a certain correlation estimate. Corresponding correction factors are
stored in lookup table and used to adjust the elements of the forecast error covariance
matrix.

An artificial experiment is conducted to showcase the capabilities of the developed
algorithm. Amining operation with two extraction points of unequal production rate is
simulated. The resulting material streams are blended and inaccurate observations are
made. A total of 12 updates is performed, each one based on 2 inaccurate observations
of 16 blended blocks. The results indicate a 38–45 % improvement in RMSE inside
both extraction zone. Improvements ranging from 39 to 13 % were observed in a
close neighborhood. The results are very promising, especially considering the large
measurement volume and low sensor accuracy.

Future research should focus on the influence of the monitoring network and geo-
logical environment on the performance of the algorithm. A series of experiments
needs to be conducted to measure the effects of different sensor precisions, mea-
surement volumes, update intervals and blending ratios. The results of such a study
could be used to formulate recommendations for designing an optimal monitoring
network, guaranteeing optimal algorithm performance. The authors expect that for
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a given blending ratio the order of extraction does not significantly impact the final
results. This assumption has not been proven and should be verified.

It is also important to understand the limitations of the algorithm regarding the geo-
logical environment and the prior model hereof. The question still remains whether
good performance can be achieved when the prior model and the reality differ substan-
tially. Also, the effects of different spatial correlation structures are not yet understood
(different covariance models, ranges, nugget,…). Another possible point of atten-
tion could be the further improvement of the localization error correction option.
The current implementation (Gaspari–Cohn correlation function) results in a differ-
ential covariance correction of blocks inside the same digging area. Blocks near the
extraction point receive a lower correction factor than blocks slightly further away.
Especially when considering large measurement volumes (digging blocks), a tapering
function with a plateau might be more suitable. The function should be defined such
that all blocks inside the digging area are not corrected (correction factor of 1) and
that tapering starts from the border of the digging areas.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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