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Abstract Compositional data, as they typically appear in geochemistry in terms of
concentrations of chemical elements in soil samples, need to be expressed in log-ratio
coordinates before applying the traditional statistical tools if the relative structure of
the data is of primary interest. There are different possibilities for this purpose, like cen-
tered log-ratio coefficients, or isometric log-ratio coordinates. In both the approaches,
geometric means of the compositional parts are involved, and it is unclear how mea-
surement errors or detection limit problems affect their presentation in coordinates.
This problem is investigated theoretically by making use of the theory of error prop-
agation. Due to certain limitations of this approach, the effect of error propagation is
also studied by means of simulations. This allows to provide recommendations for
practitioners on the amount of error and on the expected distortion of the results,
depending on the purpose of the analysis.
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1 Introduction

Compositional data analysis is concerned with analyzing the relative information
between the variables, the so-called compositional parts, of a multivariate data set.
Here, relative information refers to the log-ratio methodology (Aitchison 1986) and,
therefore, in fact, to an analysis of logarithms of ratios between the compositional
parts. It has been demonstrated that the sample space of compositions is not the usual
Euclidean space, but the simplex with the so-called Aitchison geometry (Pawlowsky-
Glahn et al. 2015). For a composition x = (x1, ..., xp) with D parts, the simplex
sample space is defined as

D
SD:{xz(xl,...,xD) such that x; > 0V, ijzlc}
j=1

for an arbitrary constant x . Nevertheless, according to recent developments, the sample
space of compositional data is even more general (Pawlowsky-Glahn et al. 2015): A
vector x is a D-part composition when all its components are strictly positive real
numbers and carry only relative information. Note that the term relative information
is equivalent to information lies in the ratios between the components, not in the
absolute values. As a consequence, the actual sample space of compositional data is
formed by equivalence classes of proportional positive vectors. Therefore, any constant
sum constraint is just a proper representation of compositions that honors the scale
invariance principle of compositions: the information in a composition does not depend
on the particular units, in which the composition is expressed (Egozcue 2009). In
practical terms, the choice of the constant « is irrelevant, since it does not alter the
results from a log-ratio-based analysis. In that sense, a discussion on whether the
values of an observation sum up to the same constant is needless, this would not make
any difference for the analysis considered in this paper. Though for the purpose of
better interpretability or visualization, one could also express compositions with the
closure operator

KX| KXp

Cx) = el
Z]D:Ixj Z]D:I Xj

’

which, then, sum up to the constant «.

The Aitchison geometry defines a vector space structure of the simplex by the basic
operations of perturbation and powering. Given two compositions x = (x1,...,Xp)
andy = (y1,...,yp)inS D, perturbation refers to vector addition, and is defined as

x®y=Cx1y1,...,XpYyD).

Powering refers to a multiplication of a composition x = (xi,...,xp) € S? by a
scalar @ € R, and is defined as

o o o
aOx =C(x],x3,...,xp).
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Furthermore, the Aitchison inner product, the Aitchison norm, and the Aitchison
distance have been defined, and they lead to a Euclidean vector space structure
(Pawlowsky-Glahn et al. 2015). All these definitions employ log-ratios between the
compositional parts; for instance, the Aitchison inner product between the composi-
tions x and y is given as

D D
1 Xi Vi
) = = 1 _]1 _Ja
{x, y)a 2l)j§1k§111xk e

that leads to the Aitchison norm and distance

llx[la = v{x,x)a, da(x,y) =[x ® (=) O ylla

respectively. Working directly in the simplex sample space is not straightforward.
Rather, it is common to express compositional data in the usual Euclidean geometry.
In the literature, one frequently refers to transformations; here, it is prefered to use the
terminology of expressing the compositions in appropriate coordinates with respect to
the Aitchison geometry (Pawlowsky-Glahn and Egozcue 2001) that allows to analyze
compositions in the usual Euclidean geometry.

The focus in this paper is on isometric log-ratio (ilr) coordinates (Egozcue et al.
2003), which allow to express a composition x € SP in the real space RP7' A
particular choice for ilr coordinates is

. D—j Xj .
zj =ilrj(x) = | 2 In . j=1,....D—1, (1)
D—j+1 >~/T1P
k=j+1 %k

and the coordinates z = (z1, ..., zp—1), indeed, correspond to an orthonormal basis

in RP™! (Egozcue et al. 2003). The particular choice of the ilr coordinates in (1)
allows for an interpretation of the first coordinate z, as that one expressing all relative
information about part x1, since x1 is not included in any other ilr coordinate.

The definition of ilr coordinates (1) reveals that geometric means of (subsets of)
the parts are involved. Note that the geometric mean of x can also be expressed as

1/D

D | 2D
gm(x) = 1_[1xj = exp lelnxj
j= Jj=

involving the arithmetic mean of the log-transformed values. It is well known that the
arithmetic mean is sensitive to data outliers (Maronna et al. 2006). Consequently, also
data imprecision in one or some compositional parts (that are usually measured without
respecting the relative nature of compositional data), or detection limit problems, may
act like outliers and lead to a distortion of the geometric mean. The resulting ilr
coordinates will suffer from data quality problems, and subsequent analyses based on
these coordinates can be biased.
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This unwanted effect is investigated here under the terminology of error propaga-
tion, where the effect of the errors on the output of a function is analyzed. Propagation
of error can be performed by a calculus-based approach, or by simulation studies. A
calculus-based approach makes use of the Taylor series expansion and calculates the
first two statistical moments of the error of output, the mean and the variance, under
the assumption that the errors are statistically independent (Ku 1966). With few excep-
tions, almost all analyses of error propagation with the calculus-based approach use
the first-order Taylor approximation, and neglect the higher order terms (Birge 1939).
This approach is briefly reviewed in Sect. 2. Section 3 starts with a motivating exam-
ple about the effect of the errors on ilr coordinates and applies the concept of Taylor
approximation to error propagation in the simplex. While this is done in a general form
for any function (transformation), particular emphasis is given to error propagation for
ilr coordinates that cause one source of distortion of outputs in practical geochemical
problems (Filzmoser et al. 2009b).

Determining error propagation only for the first two moments is unsatisfactory,
because it would also be interesting how the data structure is changed in the case
of data problems like detection limits or imprecision of the measurements. Thus,
simulation-based methods for error propagation are considered as well. The Monte
Carlo method is adaptable and simple for the propagation of errors (Feller and
Blaich 2001; Cox and Siebert 2006), and various applications of this method can be
found (Liu 2008). The simulation-based approach in Sect. 4 makes use of a prac-
tical data set and shows the effect of imprecision and detection limit effects on
the ilr coordinates. The interest lies particularly in error propagation on the first
ilr coordinate, because this contains all relative information about the first compo-
sitional part, and on error propagation on all ilr coordinated jointly, because they
contain the full multivariate information. The final Sect. 5 discusses the findings and
concludes.

2 Error Propagation in the Standard Euclidean Geometry

Consider a p-dimensional random variable x = (x1,...,xp), and a function
f : R” — IR that gives the output y as a result of y = f(x). The propagation
of the errors of each variable through the function f on the output can be derived
using Taylor approximation (Ku 1966). This yields a linear approximation of the
function f by the tangent plane where the slopes in x1, ..., x), are described by the

partial derivatives Bar e By

ables (x1, ..., x,) as the sum of their expected values gt = (1, ..., /1) and random
deviations from the expected value € = (81, .8 [,), so that x = p + €, assuming
that the errors have mean zero. Taking the first-order Taylor approximation of f(x)
results in

at a single point. One can express the random vari-

y=fx1,...,xp) = f(ur+e€1,...,up+€p)

9 9
%f(m,...,up)Jr[%(m)}el+---+[%(u,})]ep. (2)
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In the framework of error propagation, it is common to assume that (x1, ..., x,) fol-
low a known distribution, in most cases, a multivariate normal distribution (Ku 1966).
If the distribution is known, the partial derivatives are evaluated at the true means,
if not, the sample averages are used for the estimation. The approximation in Eq.
(2) can now be used to calculate mean and variance of y, which both depend on the
function f. The second central moment, the variance Var(y), describes the uncer-
tainty, which is mainly used to investigate the effect of error propagation and is given
as

C )
Var(y) ~ Z (_(M/ ) E(sz) + Z#kZ: (—(/L/ ) (a—){k(uk)) E(ejer).
j=1 j
(3)

Equation (3) reveals how the variability of the output y depends on the errors and on
the function f.

3 Error Propagation on the Simplex

As a motivating example, the composition of sand, silt, and clay in agricultural soils
in Europe is considered. The data are reported in Reimann et al. (2014). From the
ternary diagram (Fig. la), it can be seen that the clay concentrations can be very
small, but data artifacts are not immediately visible. The resulting ilr coordinates z
and z» are shown in Fig. 1b. Here, the small clay values are visible in form of a band
that deviates clearly from the joint data structure. In fact, small values of clay have
been rounded in the laboratory, which causes already a distortion of the multivariate
data structure. Thus, the imprecision here is visible as a rounding effect in the part
clay. Variables with values below a detection limit can result in similar artifacts, since
usually the values below detection are set to some constant, like 2/3 times the values
of the detection limit (Martin-Ferndndez et al. 2003). This is still the usual practice in
geosciences rather than employing more sophisticated algorithms for their imputation
(Martin-Fernandez et al. 2012).

Similar as in Sect. 2, error propagation is derived for a general function using first-
order Taylor approximation. However, since this is directly done on the simplex, also
the Taylor approximation needs to be done on the simplex. The theoretical background
for the differential calculus on the simplex can be found in Barceld-Vidal and Martin-
Fernandez (2002) and Barcel6-Vidal et al. (2011). Here, the tools necessary to carry
out the Taylor approximation are recalled.

Let f : U — R™ be a vector-valued function defined on a subset U C Rf. Let

= {C(w), w € U}, the compositional closure of U, be a subset of SP. If f is scale
invariant, that is f(w) = f(kw) for any k > 0, it induces a vector-valued function
f U — R"™. It suffices to define

fx)=f(w), YwelU,
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Fig.1 Composition of sand, silt, and clay in agricultural soils of Europe. Ternary diagram a, representation
in ilr coordinates b

where C(w) = x (Barcel6-Vidal et al. 2011). The function f is C-differentiable at
x € U, if there exists an m x D matrix A = (a;;), satisfying A1p = 0,, (defining a
linear transformation from R” to R™), such that

If(x @) — f(x) — Alnu]
im =0

< lulla

foru € U, where 1p = (1, ..., 1) with length D, and 0,, = (0, ..., 0) with length

. C
m. Note that n = C(1, ..., 1) is the neutral element of (S?, @) and u — n denotes
that u converges to n on the simplex. From the definitions above, the first-order Taylor
approximation of a real-valued function f can be written as

0 ac f
Sx@uw) ~ f(x)+ D In(u;)) [ﬁ(”]’ )
— J

j=1

where the C-derivative of f exists and is equal to

oc f of i
—x)=x;{ —(x) — i —(x forj=1,...,D. 5
oy, B =5 5o ® ;x,axl_u J )
Given a D-part composition x = (x1,...,Xp) € SP. which can be expressed as a
perturbation of its center 4 = (i1, ..., up) (Pawlowsky-Glahn and Egozcue 2002)
and random deviations € = (€, ..., €p) from the center, so that x = u @ €, then (4)

can be rewritten as
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cf
fW@o~ﬂm+Z}mp[—mﬂ (6)

j=1

One can proceed as in Sect. 2 to derive the variance of the components of f(u @ €).
Similar as for the Taylor expansion (2) from Sect. 2, also here, the approximation is
valid just for small perturbations. Moreover, in contrast to the previous case, the error
is now multiplicative. Although this fits well with the nature of compositional data,
particularly with their scale invariance, in practice, error terms are often additive (van
den Boogaart et al. 2015). This fact should be considered for an error propagation
analysis of compositional data.

In the case of ilr coordinates, however, the investigation of the error propagation
simplifies. By considering (6) with ilr coordinate ilr; (x) as i th component of f

if j <1,
wm ifj =1 )
—" DL if j > i,
wherei = 1, ..., D — 1. This corresponds exactly to a logcontrast (Aitchison 1986)

of the i th ilr coordinate of the compositional error €, and consequently
ilr; (x) = ilr; (u @ €) = ilr; (u) +1ilr;(e), i =1,...,D — 1.

In the context of error propagation this shows that the ilr coordinates are additive
with respect to multiplicative errors. On the other hand, for other forms of errors,
a non-linear behavior can be expected. This issue is further investigated within the
simulation study in Sect. 4.

In addition, this leads to an alternative verification of the linearity of ilr coordinates

z =ilr(x) =ilr(u ® €) = ilr(p) +ilr(e),

that is commonly shown directly with the definitions from Sect. 1. Even more, ilr
coordinates represent an isometry, which means that all metric concepts in the simplex
are maintained after taking the ilr coordinates (Pawlowsky-Glahn et al. 2015). The
variance can now be considered component-wise, for example for the j th component
z;j of z one obtains

Var(z;) = Var(ilr;(x)) = Var(ilr; (¢)).

This variance can be expressed by log-ratios of the compositional parts, as shown in
Fiserova and Hron (2011) as

@ Springer



948 Math Geosci (2016) 48:941-961

Var(z;) = A— B with
D

_ <
A_D_j+1k:Z+lVar(lnek),
Z(D—J)(D—J+ D Z Z Var(ln_) ®

k=j+11=j+1

The contributions of log-ratio variances in this linear combination are clearly higher
for terms in A that include €;, and lower for terms in B where ¢; is not involved,
and their magnitude depends on the number of parts D. In particular, if D is large
and contamination (imprecision, detection limit problem) is expected only in one
compositional part, the effect on the variance of z; will be small. Note, however,
that for a multivariate analysis, the focus is in all coordinates z1, ..., zp—1 simulta-
neously, and thus, it is not so straightforward to investigate the effect, since there
may also be dependencies among the error terms. There is a simple exception:
suppose that an error is to be expected only in log-ratios with one compositional
part. From a practical perspective, it would then appear that only one composi-
tional part is erroneous. If this part is taken as the first one, the ilr coordinates
from Eq. (1) will allow to assign this error exclusively to zi, but not to the other
coordinates.

Besides investigating the variance of the coordinates, it is also important to know
how the errors affect distances between different compositions, that is between obser-
vations of a compositional data set, and how the multivariate data structure is affected.
All these aspects will be investigated in more detail by simulations in the next
section.

4 Simulation-Based Investigations of Error Propagation

For a simulation-based analysis of error propagation, a real data set is used, namely
the GEMAS data mentioned in Sect. 1, described in Reimann et al. (2014). More than
2000 samples of agricultural soils have been analyzed in an area covering 5.6 million
km? of Europe across 33 countries, and for the simulations, the concentrations of the
elements Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Nb, P, Pb, Rb, Si, Sr, Ti, V, Y, Zn, and
Zr are considered. Precision or detection limit problems of these elements are rather
small or even not existing (Reimann et al. 2014), and thus, these elements form a good
base for carrying out simulations where contamination is artificially introduced in the
form of imprecision and detection limit problems.

Denote the resulting compositional data matrix by X, where the observations are
forming the rows and the above-mentioned compositional parts the columns. The
number of observations is n = 2107, and the number of parts is D = 20. The cells of
the matrix X are denoted as x;;, fori =1,...,nand j =1,..., D

In the simulations, problems with detection limit and imprecision are reproduced
as follows:
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o Detection limit (DL) Set all observations x;; of the j th part to the value

&)

x H %DL/' ifx,'j < DL/'
ij

X = .
Xij otherwise,

wherei =1, ..., n, and DL; is taken as some quantile of that part.

o Imprecision rate (IR) A noise term ¢;; is added to each observation x;;, where
the noise depends on the magnitude of the observation and follows a uniform
distribution. Thus, the values x;;,i =1, ..., n, are set to

X = xij e ey~ Ul—agxij, o)), (10)

where o; > 0 defines the imprecision rate of the j th part, and the resulting
simulated value xi*j must be positive. Note that this contamination is not additive
but multiplicative, since

xy=xi;(I+yp, v ~U(—aj, ).

Thus, this contamination scheme corresponds to the error model of the previous
section, while contamination by a detection limit introduces a non-linear effect.

As mentioned previously, the main interest is the investigation of error propagation
for ilr coordinates. If the i th row of X is denoted by x;, then the ilr coordinates
are obtained by Eq. (1), leading to the values z; = (z;1, ..., zi,p—1). The complete
n x (D — 1) matrix of coordinates is denoted by Z, with cells z;;.

As an illustrative example the last ten parts of the composition are picked, and
contaminated with errors. A detection limit problem is imitated, by choosing DL ; as
the 0.25-quantile in each of these components, and setting the values in these parts
according to Eq. (9). The results are shown in the left panels of Fig. 2: the upper panel
shows the first ilr coordinate of the original versus the contaminated data. One can see
clear distortions in form of deviations from the main structure, but also in the form of
nonlinearities. For a clearer picture of the multivariate data structure, the Mahalanobis
distances of all ilr coordinates for the original and contaminated data are presented in
the lower panel of Fig. 2. The Mahalanobis distance (MD) for the i th composition
expressed in coordinates is

MD(z,-)=\/(zi—tz)’CZ‘l(zi—tz), fori =1,...,n, (11D

where ¢; and C; are robust estimators of location and covariance of the ilr coordi-
nates Z, respectively. For reasons of comparability, the Mahalanobis distances for the
contaminated data are computed with the estimators ¢, and C; based on the unconta-
minated data. Plugging in robust estimators is essential, since they guarantee that the
Mahalanobis distance estimation is not spoiled by single outliers, but based on the data
majority. For this purpose, the minimum covariance determinant (MCD) estimator is
used (Rousseeuw and Van Driessen 1999).
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Fig. 2 Effect of the DL and IR contamination on the first ilr coordinate (a and b), and on all ilr coordinates
jointly (¢ and d)

The right panel of Fig. 2 shows the results of a simulated precision problem. Again,
the last ten parts are contaminated, o is set to 0.25 for these parts, and Eq. (10) is
applied. The upper panel compares the first ilr coordinates for the original and distorted
data. Since the contamination is symmetric in each part, the outcome is also relatively
symmetric around the line of 45 degrees. The comparison of the Mahalanobis distance
shows that those distances for the contaminated data increase, in general.

The above example already provides an idea about possible choices of measures
for quantifying the resulting error. The focus is on the first ilr coordinate as well as on
all coordinates jointly in terms of Mahalanobis distances, and the original data will be
compared with the contaminated data.

Denote the values of the first ilr coordinate by zo.1 = (z11, ..., 2n1), and the
corresponding contaminated version by z5, = (z];....,2,;). The two vectors are
compared by:
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e Spearman rank correlation, expressed as

Cov(R(z0.1), R(z§ 1))

Cors(zo0.1, 25 1) = , (12)
T Var(R(zo.n)/Var(R(z )
where R(-) gives the ranks of its argument vector.
e Mean absolute scaled deviation (MASD), defined as
1< |zin — 25
MASD(z0.1,201) = = )~ (13)
0-1 n = «/Var(zo.1)

The Spearman rank correlation coefficient measures the monotone relation between
the uncontaminated and contaminated coordinates; a value of one would refer to the
same ordering of the values of the coordinates. On the other hand, MASD is more strict
and evaluates the error in reproducing the values of the coordinate. Note that the scaling
in MASD by the variance is used to allow for a comparison of the corresponding first
ilr coordinates if the parts in the data matrix are permuted.

Similar measures for comparison are proposed in the multivariate case. Denote by
MD(Z), the vector of the Mahalanobis distances MD(z;), fori = 1, ..., n, see Eq.
(11), and by MD(Z*) the corresponding contaminated version, with entries MD(z).
Then, the Spearman rank correlation coefficient Corg(MD(Z), MD(Z*)) investigates
if the overall ordering in the multivariate data structure, represented in coordinates, is
maintained. A mean absolute scaled deviation (MASD) measure relates to the Maha-
lanobis distances

D(z;) — MD(z})|
Q0.5(MD(Z))

MASD(MD(Z), MD(Z*)) = %Z M (14)
i=l1

The scaling is done by the 0.5 quantile (median) of the Mahalanobis distances of Z
to allow for comparability of subcompositions with different numbers of parts. This
measure, thus, indicates the error in reproducing the multivariate data structure. As
mentioned previously, the Mahalanobis distances MD(Z*) are based on the estimates
of location ¢, and covariance C of the matrix Z, see Eq. (11), leading to a MASD
value of zero for observations which have not been changed.

These measures have been computed for the example shown in Fig. 2 to get an idea
about the meaning of the magnitude of these values. The Spearman rank correlation
is in all cases clearly above 0.9, in spite of the deviations of some points. The scaled
distances MASD for the first ilr coordinates are lower that those for all coordinates
jointly (Mahalanobis distances).

4.1 Simulation 1: One Uncontaminated, 1 to 19 Contaminated Parts

Start with the first column x ; of the composition X, and add step-by-step another
column. After the (k — 1)-st step, one ends up with the subcomposition X; =
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(x0.1,X02,...,X0k), Where k = 2,...,20. A contaminated version is generated
by contaminating all parts except the first one; this yields X} = (x0.1, X 5, - - ., X( ¢)-
Then, the ilr coordinates are computed from X and X7, and the measures Corg and
MASD are calculated for the first coordinates and for all coordinates jointly in terms
of Mahalanobis distances.

The number of simulation replications is 100. In each replication, the parts of
the original composition are permuted. In that way, the first (uncontaminated) part
changes, but also the sequence of the parts that are added changes. All simulations are
done for the contamination in the form of detection limit (DL) and for imprecision
(IR). In the first case, the value DL of the detection limit is taken as the 0.25 quantile,
see Eq. (9), while in the latter case, the imprecision rate is taken as o; = 0.25, see Eq.
(10).

The results are presented by boxplots in Fig. 3. The left panels show the outcome for
the detection limit simulations, and the right panels show the results of the imprecision
simulations. The upper figures show the comparison of original versus contaminated
versions in terms of Spearman correlations, while the lower figures compare in terms
of MASD. The grey boxplots compare the first ilr coordinates, while the white box-
plots summarize the Mahalanobis distances of all joint coordinates. The plots allow to
compare the impact of an increasing number of contaminated parts (horizontal axis).
Although the amount of contamination is quite high, the correlations reveal that the
covariance structure of the multivariate data is basically preserved. In particular, the
comparison of the first ilr coordinates leads to a remarkably high correlation, which
is quite stable with an increasing number of parts (for DL), and even improving in
the case of IR. This means that additional parts coupled with a symmetric contam-
ination scheme, as in the case of IR, still provide important and useful information
that stabilizes the first ilr coordinate. The MASD results for the first ilr coordinate are
quite stable in the case of DL, while in the IR case with increasing number of parts an
improvement is observed.

The picture is somewhat different when comparing all ilr coordinates jointly. The
Spearman correlation is clearly lower, and it gets more stable with an increasing
number of parts. In the case of DL, the MASD measure is nearly constant with an
increasing number of parts, while for IR first, a decline is observed, but then a clear
increase. It is, however, surprising that the Mahalanobis distances do not change more
drastically, given that the amount of contamination is relatively high.

4.2 Simulation 2: 10 Uncontaminated, 1 to 10 Contaminated Parts

In a further simulation experiment, a block of ten compositional parts is fixed and left
uncontaminated. Step-by-step, a contaminated part is added, until all ten remaining
(contaminated) parts have been included. The comparison is done in the same way as
before. The simulation is repeated 100 times, and the parts are randomly permuted for
each replication. Thus, the uncontaminated block changes, but also the contaminated
parts differ from simulation to simulation. The results are shown in Fig. 4.

Basically, a similar impression can be observed as in Fig. 3. For the first ilr coordi-
nates, the correlations are now very close to one, and the values of MASD, although
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Fig.3 One uncontaminated part, and 1-19 contaminated parts added. Univariate and multivariate structural
changes between the original and contaminated ilr coordinates with increasing number of contaminated
parts in case of DL (a and ¢) and IR (b and d)

increasing slightly with increasing number of contaminated parts, are close to zero.
Therefore, having good data quality for a major part of the data set is a good protection
against poor data quality in additional parts—at least for the first ilr coordinate. The
multivariate data structure is well maintained in terms of ordering, expressed by the
Spearman rank correlations, which are still clearly above 0.9. The MASD values for
the Mahalanobis distances now increase for DL as well as for IR, with an increasing
number of parts, but they are lower than in the previous simulation.

4.3 Simulation 3: Changing the Amount of Contamination

In the previous simulations, the amount of contamination is fixed. Here, the effect
of changing the amount of contamination is investigated. For that purpose, ten parts
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are selected randomly to leave them uncontaminated, while the remaining ten parts
are contaminated by the same amount: in the case of DL contamination, the value
DL; is varied from the 0.05-quantile to the 0.95-quantile; for IR contamination, the
imprecisionrate ¢ ; is varied from 0.05 to 0.95. Note that the imprecision in real studies
can be much higher, in particular for small concentrations (Reimann et al. 2014).
Fig. 5 summarizes the outcome of the simulations, where again 100 replications were
performed.

The resistance against contamination of the first ilr coordinate is remarkable. Both
the correlation and the MASD report relatively small deviations, even for very high
amounts of contamination. Contamination according to DL has more effect than that
based on imprecision. This is different when looking at the multivariate data structure,
expressed by the joint coordinates. The correlations get severely low, and also the
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Fig. 5 Ten uncontaminated parts, and 10 contaminated parts added. Univariate and multivariate structural
changes between the original and contaminated ilr coordinates with increasing amount of contamination in
case of DL (a and ¢) and IR (b and d)

MASD increases rapidly. The effect for IR contamination is more severe than that for
DL. AMASD value of one means that the average change of the Mahalanobis distances
before and after contamination is as large as the median Mahalanobis distance, and
thus, this would correspond to a substantial change in the multivariate data structure.

4.4 Simulation 4: Changing the Number of Observations
In a final simulation, the effect of the number of observations in the data set, which has
been fixed before with all available observations (i.e., more than 2000), is analyzed.

As before, ten parts are randomly selected and not modified, and the remaining ten
parts are contaminated at a level of 25 %, that is for DL contamination 25 % of values
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below detection limit in each of these parts, and for IR contamination «; = 0.25 for
these parts. The results in Fig. 6 for the 100 simulations show that there is no visible
effect for the first ilr coordinate. However, the multivariate structure suffers severely
if the number of observations is smaller than 100.

5 Discussion and Conclusions
To many practitioners, it looks almost obvious that geometric means, as they are used
in log-ratio approaches, may cause instabilities due to the involved products of the data

values. Even worse, measurement errors could be propagated by the use of geometric
means. This problem is investigated in more detail, by focusing on the most important
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log-ratio approach based on ilr coordinates (Pawlowsky-Glahn and Buccianti 2011;
Pawlowsky-Glahn et al. 2015).

In a first attempt, the classical theory of error propagation has been formulated on
the simplex, the sample space of compositional data. While this gets complex if any
transformation function would be considered, the results are straightforward when
using ilr coordinates because of their linearity. It has been shown that the variance of
an ilr coordinate is just the variance of the same ilr coordinate of the random devia-
tions from the center. Using Eq. (8), it can be seen which terms contribute by which
magnitude to this variance. For non-linear contamination schemes, these variance con-
tributions cannot be computed from the random errors, but they have to be computed
directly from the ilr coordinate. This has been done for the simulation scheme outlined
in Sect. 4.1 for the first ilr coordinates z; of the uncontaminated data, the data conta-
minated by a detection limit, and contaminated by the imprecision rate. The resulting
variance contributions are shown in Fig. 7 in the form of ratios A/B according to Eq.
(8) as non-colored boxplots. With increasing number of parts, the term B (which does
not involve variance contributions with log-ratios to x1) gets more dominant. This can
be seen in the uncontaminated case, as well as in the contaminated cases due to the
inherent variability contained within the log-ratios of the remaining parts. Interest-
ingly, detection limit contamination has almost no effect on the variance contributions
A and B when compared to the uncontaminated case. This is also shown by the dark
boxplots which represent the ratios of A-contaminated to A-uncontaminated. Only for
contamination by the imprecision rate, the variance contributions are clearly higher
compared to the uncontaminated case if the number of contaminated parts is low. For
higher numbers of contaminated parts, the variance contributions are about the same.

Further investigations have been carried out through simulation experiments. The
contamination is studied in terms of mimicking a detection limit problem, and in
terms of imprecision in form of a multiplicative factor. In all experiments it turned
out that the structure of the first ilr coordinate can almost not be destroyed with poor
data quality, except in the case of extremely high amounts of contamination. This is an
interesting outcome, since due to the proposed formula (1) to derive the ilr coordinates,
the first coordinates describes all relative information about the first compositional part
(FiSerova and Hron 2011). Clearly, if the main interest is not in the first, but in another
part, then this part is simply put to the first position. Note that the first coordinate is
proportional to the corresponding centered log-ratio (clr) coefficient (Aitchison 1986)
for this part (FiSerova and Hron 2011). Practitioners often explore just the structure
of the resulting clr coefficients. For example, one can study the clr coefficients for
the different chemical elements in maps, which is the compositional alternative to
the traditional maps based on the absolute concentrations. Examples are shown in
Reimann et al. (2014).

Itis not studied, how the contamination of the first part effects the first ilr coordinate
(z1), because it is clear that the contamination would be immediately reflected in
the first ilr coordinate, and any additional contamination in other parts would make
things worse. Hence, variations of z; are only due to variations of (x2, ..., xp). Itis,
therefore, quite logical that the impact of DL or IR on z; remains limited, and that
its growth decreases as D increases, due to compensation effects when computing
gm(x2,...xp).
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Especially when applying multivariate statistical methods, such as principal com-
ponent analysis or discriminant analysis, all ilr coordinates have to be analyzed jointly.
Therefore, the effect of errors on the multivariate data structure is also investigated in
the simulations. It depends very much on the setting if the multivariate data structure
is destroyed by the contamination or not. If dimension increases, the effects of the
contamination generally increase. It depends a lot on the contamination level if the
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Fig. 8 Biplots of the first two PCs based on the data shown in Fig. 2. Classical PCs of uncontaminated
data (a), classical PCs of contaminated data (b), robust PCs of uncontaminated data (c¢), and robust PCs of
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multivariate data structure after contamination is still closely related to that before,
but this also depends on the sample size of the data: higher numbers of observation
(e.g., at least 100 in the data set used here) stabilize the results.

Consider again the example shown in Fig. 2, where 10 parts out of 20 have been
contaminated at a level of 25 %. Here, the DL contamination scheme is considered.
Figure 8 shows the biplots for the first two principal components (PCs): left panels
for the uncontaminated data, right panels for the contaminated data. A comparison
is also done with robust PCs (Filzmoser et al. 2009a), which are shown at the lower
panels. While there is almost no difference visible between the uncontaminated and
contaminated versions, there is a clear difference in the outcome of classical and robust
principal component analysis. This shows that, although the MASD is around 0.18
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(Fig. 2¢), the outliers that are present in the data have a much stronger effect than the
artificial contamination used here.

The overall conclusion of this paper is not that one does not have to care anymore
about data quality issues. In contrary, good data quality is the basis of any sound
statistical analysis. Rather, it should provide an answer to researchers who have a data
set available, and who carefully think about which compositional parts to include in the
analysis. Often, it is known which parts have precision problems, and sometimes even
the level of imprecision is known. In addition, the amount of values below detection
is known. Including such parts with moderate quality in the analysis will in general
not have a major effect on a single (the first) ilr variable, and the effects will also be
limited, in general, for the multivariate data structure.

The point why one should consider including as much information as possible in
the analysis is because the reliable values of such parts with moderate data quality
also contribute to the log-ratio analysis, and they might contain important and relevant
information.
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