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Abstract We prove an Ergodic Theorem in variable exponent Lebesgue spaces, whenever
the exponent is invariant under the transformation. Moreover, a counterexample is provided
which shows that the norm convergence fails to hold for an arbitrary exponent.
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1 Introduction

Variable exponent Lebesgue and Sobolev spaces are natural extensions of classical constant
exponent L p-spaces. Such kind of theory finds many applications for example in nonlinear
elastic mechanics [23], electrorheological fluids [20] or image restoration [18]. During the
last decade Lebesgue and Sobolev spaces with variable exponents have been intensively
studied; see for instance the surveys [5,21]. In particular, the Sobolev inequalities have
been shown for variable exponent spaces on Euclidean spaces (see [4,7] and [15]) and on
Riemannian manifolds (see [9] and [11]). Recently, the theory of variable exponent spaces
has been extended to metric measure spaces, see e.g. [8,10,16,17,19]. Moreover, the theory
of Lebesgue spaces with variable exponent on probability spaces exists as well, see e.g. [1]

In this article we investigate Birkhoff’s Ergodic Theorem in the context of variable
Lebesgue spaces. Let us mention that Ergodic theorems in spaces other than Lebesgue spaces
have been studied in the past (see e.g. [2,13,14,22]).

We organize this paper as follows. In the next section we review some definitions and
present the theory of variable exponent spaces. In the third section we present and prove the
main result.
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2 Variable exponent Lebesgue spaces

In this section we recall some basic facts and notation about variable exponent Lebesgue
spaces. Most of the properties of these spaces can be found in the book of Cruz-Uribe and
Fiorenza [3] and in the book of Diening et al. [6].

Let (�,μ) be a σ -finite, complete measure space. By a variable exponent we shall mean
a bounded measurable function p : � → [1,∞). We put

p+ = ess sup
x∈�

p(x), p− = ess inf
x∈�

p(x).

The variable exponent Lebesgue space L p(·)(�) consists of thoseμ-measurable functions
f : � → R for which semimodular

ρp(·)( f ) =
∫

�

| f (x)|p(x) dμ(x)

is finite. This is a Banach space with respect to the following Luxemburg norm

‖ f ‖p(·) = inf

{
λ > 0 : ρp(·)

(
f

λ

)
≤ 1

}
,

where f ∈ L p(·)(�). Variable Lebesgue space is a special case of the Musielak–Orlicz
spaces. When the variable exponent p is constant, then L p(·)(�) is an ordinary Lebesgue
space. It is needed very often to pass between norm and semimodular. An important property
of the variable Lebesgue spaces is the so-called ball property: ‖ f ‖L p(·)(�) ≤ 1 if and only if
ρp(·)( f ) ≤ 1. Moreover, the following inequality

‖ f ‖L p(·)(�) ≤ ρp(·)( f ) + 1

holds (see e.g. [6]). Let us remark that, if p+ < ∞, then convergence in norm is equivalent
to convergence in semimodular.

3 Main result

In this note we would like to present the following observation.

Theorem 3.1 Let (�,μ) be a probability space and T : � → � a measure preserving
transformation. Moreover, let p be T−invariant variable exponent, such that p+ < ∞.

(i) If f ∈ L p(·)(�), then the limit

fav(x) = lim
n→∞

1

n

n−1∑
j=0

f (T j (x))

exists for almost each point x ∈ � and fav ∈ L p(·)(�).
(ii) For every f ∈ L p(·)(�), we have

lim
n→∞

∥∥∥∥∥∥ fav − 1

n

n−1∑
j=0

f ◦ T j

∥∥∥∥∥∥
L p(·)(�)

= 0, (3.1)

fav(x) = fav(T (x)), (3.2)∫
�

favdμ =
∫

�

f dμ. (3.3)
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Proof Let us start with the proof of (i). Since L p(·)(�) ↪→ L1(�), the existence of the limit
fav(x) for almost every point of � follows from the standard Birkhoff’s Theorem. Thus, by
the Fatou Lemma we obtain

∫
�

| fav(x)|p(x)dμ ≤
∫

�

lim
n→∞

⎛
⎝1

n

n−1∑
j=0

| f (T j (x))|
⎞
⎠

p(x)

dμ

≤ lim inf
n→∞

∫
�

⎛
⎝1

n

n−1∑
j=0

| f (T j (x))|
⎞
⎠

p(x)

dμ

≤ lim inf
n→∞

1

n

n−1∑
j=0

∫
�

| f (T j (x))|p(x)dμ,

where in the last step we applied convexity and Jensen inequality. Now, since T is a measure
preserving map and p is T−invariant we have

∫
�

| f (T (x))|p(x)dμ =
∫

�

| f (T (x))|p(T (x))dμ =
∫

�

| f (x)|p(x)dμ.

Thus, we get
∫

�

| fav(x)|p(x)dμ ≤
∫

�

| f (x)|p(x)dμ. (3.4)

Hence, fav ∈ L p(·)(�).
Now, we turn our attention into (i i). Let us mention that (3.2) and (3.3) follows from

Ergodic Theorem in classical Lebesgue spaces. In order to prove (3.1) we assume that f ∈
L∞(�). Thus,

lim
n→∞

∣∣∣∣∣∣ fav(x) − 1

n

n−1∑
j=0

f (T j (x))

∣∣∣∣∣∣
p(x)

= 0, a.e.

‖ fav‖L∞(�) ≤ ‖ f ‖L∞(�).

Subsequently, we get
∣∣∣∣∣∣ fav(x) − 1

n

n−1∑
j=0

f (T j (x))

∣∣∣∣∣∣
p(x)

≤
∣∣∣∣∣∣‖ f ‖L∞(�) + 1

n

n−1∑
j=0

‖ f (T j )‖L∞(�)

∣∣∣∣∣∣
p(x)

≤ (
2‖ f ‖L∞(�) + 1

)p+
.

Hence, by dominated Lebesgue Theorem we have (3.1), provided f ∈ L∞(�). Now, let us
take any f ∈ L p(·)(�) and ε > 0, then there exists g ∈ L∞ such that

ρp(·)( f − g) ≤ ε.

By the previous step, there exists n0, such that the following inequality

ρp(·)

⎛
⎝gav − 1

n

n−1∑
j=0

g ◦ T j

⎞
⎠ ≤ ε
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holds for n ≥ n0. Let q ≥ 1, then by convexity of the function y 	→ yq , we have for any
nonnegative a, b, c the inequality (a + b + c)q ≤ 3q−1(aq + bq + cq). Hence, we get

ρp(·)

⎛
⎝ fav − 1

n

n−1∑
j=0

f ◦ T j

⎞
⎠ =

∫
�

∣∣∣∣∣∣ fav(x) − 1

n

n−1∑
j=0

f (T j (x))

∣∣∣∣∣∣
p(x)

dμ(x)

≤ 3p
+−1

⎛
⎝ρp(·)(( f − g)av) + ρp(·)

⎛
⎝gav − 1

n

n−1∑
j=0

g ◦ T j

⎞
⎠

+ ρp(·)

⎛
⎝1

n

n−1∑
j=0

( f − g) ◦ T j

⎞
⎠

⎞
⎠ .

Thus, using (3.4) and convexity of ρp(·) we have

ρp(·)

⎛
⎝ fav − 1

n

n−1∑
j=0

f ◦ T j

⎞
⎠ ≤ 3p

+
ε.

This finishes the proof of the theorem. 
�
Finally, let us give the following example showing that the norm convergence fails to hold

for an exponent p(x) which is not T invariant. In fact, we shall give an example of f ∈ L p(·)
such that fav /∈ L p(·).

Example 3.1 Let (�,μ) be a probability space defined as follows: � = Z × {0} ∪ {0} ×
Z \ (0, 0), μ((m, 0)) = μ((0,m)) = 1

4
1

2|m| . Next, we define a measure preserving map
T : � → � by formulas T (m, 0) = (0,m), T (0, k) = (−k, 0). Moreover, we put variable
exponent p(−m, 0) = p(0,m) = p(0,−m) = 1, p(m, 0) = 2. Now, if we take f defined
in the following manner f (m, 0) = 0, f (0,±m) = f (−m, 0) = (

√
2)m , then one can see

that f ∈ L p(·)(�) but fav /∈ L p(·)(�).
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