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Abstract If c > 5 and if x is sufficiently large, then any collection of rectangles of sides of
length not greater than 1 with total area smaller than x2 − cx5/6 can be packed into a square
of side length x .
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1 Introduction

First publications related to packing of rectangles or squares appeared over fifty years ago.
In 1957 Kosiński [6] proved, among others, that any sequence of rectangles of total area V
and with sides of length not greater than D can be packed into a rectangle of side lengths 3D
and (V +D2)/D. This result was improved in [4,7,8]. Other problems related to this subject
were outlined in the sixties of the last century by L. Moser [9]. He asked, for example, “Can
every set of rectangles of total area 1 and maximal side 1 be accommodated in a square of
area 2?” (the answer is positive [5]) or “What is the smallest number A such that any set of
squares of total area 1 can be packed into some rectangle of area A?” (some bounds are given
in [3,10,11]). The question of packing of equal squares into a square as small as possible
was posed in [2].

Let Ix be a square of side length x . We say that a collection R1, R2, . . . of rectangles can
be packed into Ix , if it is possible to apply translations and rotations to the sets Ri so that
the resulting translated and rotated rectangles are contained in Ix and have mutually disjoint
interiors. Denote by s(x) the greatest number such that any collection of rectangles of sides
of length not greater than 1 with total area smaller than s(x) can be packed into Ix .
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Packing rectangles into a large square 91

Groemer [4] proved that s(x) ≥ (x−1)2 provided x ≥ 3. ByRemark 3 of [5]we know that
s(x) ≥ x2 − 2x + 2 for x ≥ 2. The aim of this note is to show that s(x) ≥ x2 − O

(
x5/6

)
.

It is an open question whether the exponent 5/6 may be lessened in the above-presented
estimation.

If all rectangles are unit squares, then sunit (x) ≥ x2 − O
(
x (3+√

2)/7 log x
)
(see [1]). Also

in this case we do not know whether the exponent (3 + √
2)/7 may be lessened. On the

other hand, by [12] we know that sunit (x) is smaller than x2 − 10−100√x |x − �x + 1/2�|
provided x(x − �x�) > 1/6.

2 Preliminaries

LetR be a finite collection of rectangles R1, R2, . . . , Rz of sides of length not greater than
1. Denote by wi the width and by hi the height of Ri . Furthermore, assume that wi ≤ hi
for any i = 1, . . . , z and that h1 ≥ h2 ≥ · · · ≥ hz .

Let S be a rectangle of width a ≥ 1 and height d ≥ 1. Denote by p a vertex of S.
Moreover, let S1, . . . , Sr be a collection of rectangles Si of width vi < a and height
smaller than d such that p ∈ Si and Si ⊂ S for i = 1, . . . , r . Then S \ ⋃r

i=1 Si is called
a σ − polygon of base a, top a −max(v1, . . . , vr ) and height d (see Fig. 1). The rectangle
S is also called a σ -polygon.

Lemma 2.1 Let a ≥ 1, d ≥ 1 and assume that the total area of rectangles in R is not
smaller than (a + 1)(d + 1). There exist integers j1 < · · · < jk such that the following
conditions are fulfilled:

– a ≤ bi < a + 1, where bi = w ji−1 + · · · + w ji−1 for i = 1, . . . , k ( j0 = 1);
– d ≤ h1 + h j1 + · · · + h jk−1 < d + 1;
– the rectangles R1, . . . , R jk−1 can be packed into the union

⋃k
i=1 Li of rectangles (with

mutually disjoint interiors) Li of sides of length bi and h ji−1 ;

– the area of the uncovered part of
⋃k

i=1 Li is smaller than a + 1.

Proof Denote by j1 the smallest integer such that w1 + w2 + · · · + w j1−1 ≥ a. Moreover,
denote by j2 the smallest integer satisfying w j1 + · · · + w j2−1 ≥ a and so on. Let k be the
smallest integer such that h1+h j1 +· · ·+h jk−1 ≥ d . Clearly, the rectangles R1, . . . , R jk−1

can be packed into the union
⋃k

i=1 Li of rectangles (with mutually disjoint interiors) Li of
sides of length bi and h ji−1 (see Fig. 2). The area of the uncovered part in each Li does not
exceed bi (h ji−1 − h ji−1). Consequently, the area of the uncovered part of

⋃k
i=1 Li (the

waste in this packing) does not exceed

Fig. 1 σ -polygon p

a

d
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Fig. 2 L1, L2, . . .
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Fig. 3 Ai λiai − λi

L1

L2

L3

ai

di

Fig. 4 Lm Lm

ω0 = (h1 − h j1−1)b1 + (h j1 − h j2−1)b2 + · · · + (h jk−1 − h jk−1)bk

≤ (h1 − h j1 + h j1 − h j2 + · · · + h jk−1 − h jk ) · max(b1, . . . , bk)

= (h1 − h jk ) · max(b1, . . . , bk)

< max(b1, . . . , bk)

< a + 1.

	

By the proof of Lemma 2.1 we deduce the following two results (see Figs. 2, 3, 4).

Lemma 2.2 Let a ≥ 1, d ≥ 1 and let n be a positive integer. Assume that the total area
of rectangles in R is not smaller than n(a + 1)(d + 1). There is an integer k and there are
n mutually disjoint σ -polygons Ai (for i = 1, . . . , n) of base ai , top ai − λi and height
di , where a ≤ ai < a + 1, d ≤ di < d + 1 and

∑n
i=1 λi < 1 such that the following

conditions are fulfilled:

– the rectangles R1, . . . , Rk can be packed into
⋃n

i=1 Ai ;
– the area of the uncovered part of

⋃n
i=1 Ai is smaller than a + 1.

Lemma 2.3 Let a ≥ 1. There is an integer m and there are m rectangles Li (with mutually
disjoint interiors) of height not greater than 1 and width bi , where a ≤ bi < a + 1, such
that:
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Fig. 5 ϑi

ϑi

b

b

bi
ti

– the rectangles from R can be packed into
⋃m

i=1 Li ;
– the area of the uncovered part of

⋃m
i=1 Li is smaller than 2a + 1.

In the following lemma we will describe how to efficiently pack rectangles Li .

Lemma 2.4 Let B be a σ -polygon of base b, top b − λ and height h, where h ≥ b ≥ 27
and 0 ≤ λ < 1. Furthermore, let Li (for i = 1, . . . ,m) be a rectangle of width bi and
height ti , where

b ≤ b1 ≤ · · · ≤ bm < b + 1

and where ti ≤ 1 for i = 1, . . . ,m. Put μ = bm − b and

v(b, h,λ, μ) = (b2 + h + 1)b−1/2[(2λ+2μ)1/2 + 3b−1/4].

If b is sufficiently large and if

m∑

i=1

area(Li ) ≤ area(B) − v(b, h,λ, μ),

then L1, . . . , Lm can be packed into B.

Proof Assume that b ≥ 27 and that the sum of the areas of rectangles L1, . . . , Lm is not
greater than area(B) − v(b, h, λ, μ).

Put

ϑi = arctan
ti
bi

+ arccos
b

√
b2i + t2i

(see Fig. 5). Without loss of generality we can assume that ϑ1 ≤ · · · ≤ ϑm .
We pack the rectangles L1, L2, . . . into B as in Fig. 6. Contrary to the statement suppose

that the rectangles cannot be packed. We show that this leads to a contradiction. Let Lκ be
the first rectangle which cannot be packed into B.

By bκ ≤ b + μ < b + 1 and u > b − λ−1 > b − 2 in Fig. 6 we have

θ ≤ tan θ =
√
b2κ − u2

u
<

√
(b + 1)2 − (b − 2)2

b − 2
<

√
6b

b − 2
<

√
7

b
.
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Fig. 6 Li ⊂ B u λ
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We need a more precise estimation. Since tκ ≤ 1 and sin θ ≤ θ <
√
7/b, it follows that

u = b − λ−tκ sin θ > b − λ −√
7/b. By bκ ≤ b + μ we obtain

tan θ =
√
b2κ − u2

u

<

√
(b + μ)2 − (b − λ−√

7/b)2

b − λ−√
7/b

=
√
2b(λ+μ) + μ2 − λ2 −7/b + 2(b − λ)

√
7/b

b2 − 2λ b + λ2 +7/b − 2(b − λ)
√
7/b

<

√
2b(λ+μ) + 1 + 6

√
b

b2 − 2λ b − 6
√
b

.

It is easy to check that

2b(λ +μ) + 1 + 6
√
b

b2 − 2λ b − 6
√
b

< 2(λ +μ)b−1 + 7b−3/2,

for sufficiently large b.
Since

√
α1 + α2 ≤ √

α1 + √
α2 for non-negative values α1 and α2, it follows that

θ ≤ tan θ < f (b,λ, μ),

where

f (b,λ, μ) = (2λ +2μ)1/2b−1/2 + 71/2b−3/4.

The uncovered dark shaded part on the left side of B in Fig. 7 consists of a number
of triangles. The total length of the left sides of the triangles is smaller than h + 1. The
height of each such triangle (the height parallel to the bottom of B) is not greater than sin θ .
Consequently, the uncovered dark shaded part on the left side of B in Fig. 7 is of the area

ωl <
1

2
(h + 1) sin θ <

1

2
(h + 1)θ <

1

2
(h + 1) f (b,λ, μ).

Similarly we estimate the area ωr of the uncovered dark shaded part on the right side of B:

ωr ≤ ωl <
1

2
(h + 1) f (b,λ, μ).

123



Packing rectangles into a large square 95

Fig. 7 Wasted area
p

θ

q

ωt

ωl

ωr

ωu

ωs

b

h

Since the distance between p and q is equal to λ and the height of each Li is not greater than
1, it follows that the non-shaded uncovered part on the right side of B in Fig. 7 is of the area

ωu ≤ λ < 1.

Denote by ω+
s the area of a right triangle of legs of length b and b tan θ . Moreover, denote

by ωs the area of the light shaded uncovered part of B in Fig. 7. By η1 + η2 + · · · + ηκ = θ

(see Fig. 6) we deduce that

ωs ≤ ω+
s = 1

2
b2 tan θ <

1

2
b2 f (b,λ, μ).

The uncovered non-shaded part on the top of B in Fig. 7 is of the area

ωt <
1

2
b2 tan θ + area(Lκ ) <

1

2
b2 f (b,λ, μ) + b + 1.

Consequently, the area of the uncovered part of B does not exceed

ω = ωl + ωr + ωu + ωs + ωt

< (b2 + h + 1) f (b,λ, μ) + b + 2

= (b2 + h + 1)
[
(2λ +2μ)1/2b−1/2 + 71/2b−3/4] + b + 2

< (b2 + h + 1)
[
(2λ +2μ)1/2b−1/2 + 3b−3/4],

for sufficiently large b. This implies that

κ−1∑

i=1

area(Li ) ≥ area(B) − ω > area(B) − v(b, h, λ, μ),

which is a contradiction. 	


3 Packing into a large square

In the main packing method Ix will be partitioned into a number of σ -polygons. Next,
rectangles from R will be packed into adequate σ -polygons.
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96 J. Januszewski

Theorem 3.1 Let ε > 0. Any collection of rectangles of sides of length not greater than 1
with total area smaller than x2 − (5+ ε)x5/6 can be packed into Ix , for sufficiently large x.

Proof Assume that ε > 0 and that x > (5+ ε)6/7. Consider a collection C of rectangles Pi
of sides of length not greater than 1 with total area smaller than x2−(5+ε)x5/6. If C is finite,
then put R = C and denote by z the number of rectangles inR. Otherwise, we can assume
that area(P1) ≥ area(P2) ≥ . . . . There is an integer z such that

∑∞
i=z area(Pi ) < 1

2 . By
[5] we know that rectangles Rz, Rz+1, . . . can be packed into I1. Let R be a collection of
rectangles Ri , where R1 = I1 and Ri = Pi−1 for i = 2, . . . , z.

We show that rectangles from R can be packed into Ix provided x is sufficiently large.
Clearly,

z∑

i=1

area(Ri ) < x2 − (5 + ε)x5/6 + 1.

We can assume that the width wi of Ri is not greater than its height hi for i = 1, . . . , z
and that h1 ≥ · · · ≥ hz . Put

n = �x1/6�,
a = x/n − x1/2

and

d = x − x1/2.

It is easy to verify that n(a+ 1)(d + 1) < (x − 1)2. If ρ < n(a+ 1)(d + 1), then, by [4],
all rectangles fromR can be packed into Ix . Otherwise, by Lemma 2.2 we deduce that there
is an integer k1 and there are n mutually disjoint σ -polygons Ai of base ai , top ai − λi and
height di , where

a ≤ ai < a + 1, d ≤ di < d + 1

(for i = 1, . . . , n) and where
∑n

i=1 λi < 1 such that R1, . . . , Rk1 can be packed into⋃n
i=1 Ai and that the waste in this packing (i.e., the area of the uncovered part of

⋃n
i=1 Ai )

is at most

ω1 = a + 1 = x/n − x1/2 + 1.

Clearly,

k1∑

i=1

area(Ri ) ≥
n∑

i=1

area(Ai ) − ω1.

We lose no generality in assuming that d1 ≥ d2 ≥ · · · ≥ dn .
Ix will be divided into: n polygons Ai and n + 1 other σ -polygons. Then R1, . . . , Rk1

will be packed into
⋃n

i=1 Ai . The remaining rectangles from R will be first packed into
larger rectangles Li or L ′

i . Next, Li and L ′
i will be packed into Ix \ ⋃n

i=1 Ai .
We apply Lemma 2.3 for packing Rk1+1, . . . , Rz . There is an integer m and there are

rectangles Li (for i = 1, . . . ,m ) of width bi , where

x1/2 ≤ bi < x1/2 + 1
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Fig. 8 Partition of Ix
Bn+1

D1 D2 Dn
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Fig. 9 Partition of Di
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a1

d1

a1 − λ1

b1

and height not greater than 1 such that Rk1+1, . . . , Rz can be packed into
⋃m

i=1 Li and that
the waste in this packing is no more than

ω2 = 2x1/2 + 1.

There is no loss of generality in assuming that b1 ≤ b2 ≤ · · · ≤ bm .

We divide Ix into: n rectangles Di (for i = 1, . . . , n) of width ei and height di and one
σ -polygon Bn+1 of base x − dn and height x (as in Fig. 8). Now we will describe how to
choose proper values e1, . . . , en . This action depends on the width of some rectangles Li .

Put e1 = a1−λ1 +b1. Clearly, D1 can be divided into the σ -polygon A1 and a σ -polygon
B1 of base b1, top b1 − λ1 and height d1 (see Fig. 9). Denote by m1 the greatest integer
such that

m1∑

i=1

area(Li ) ≤ area(B1) − v(b1, d1,λi , bm1 − b1).

By Lemma 2.4 we know that L1, . . . , Lm1 can be packed into B1, for sufficiently large x .
Obviously,

m1+1∑

i=1

area(Li ) > area(B1) − v(b1, d1,λi , bm1+1 − b1).
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98 J. Januszewski

Consequently,

m1∑

i=1

area(Li ) > area(B1) − (x1/2 + 1) − v(b1, d1,λi , bm1+1 − b1).

We proceed in a similar way for i = 2, . . . , n − 1. Put

ei = ai − λi + bmi−1+1

for i = 2, . . . , n − 1. Each Di is divided into the σ -polygon Ai and a σ -polygon Bi of base
bmi−1+1, top bmi−1+1 − λi and height di . Denote by mi the greatest integer such that

mi∑

i=mi−1+1

area(Li ) ≤ area(Bi ) − v(bmi−1+1, di ,λi , bmi − bmi−1+1),

By Lemma 2.4 we know that Lmi−1+1, . . . , Lmi can be packed into Bi provided x is
sufficiently large. Moreover,

mi∑

i=mi−1+1

area(Li ) > area(Bi ) − (x1/2 + 1) − v(bmi−1+1, di ,λi , bmi+1 − bmi−1+1).

Clearly, if mi = m for some integer i , then all rectangles from R were packed into Ix .
Denote by mn the greatest integer such that

mn∑

i=mn−1+1

area(Li ) ≤ area(Bn+1) − v(x − dn, x, 1, 1).

By Lemma 2.4 we know that Lmn−1+1, . . . , Lmn can be packed into Bn+1. Moreover,

mn∑

i=mn−1+1

area(Li ) > area(Bn+1) − (x1/2 + 1) − v(x − dn, x, 1, 1).

Finally, put

en = x −
n−1∑

i=1

ei .

The rectangle Dn is divided into the σ -polygon An and a σ -polygon B ′
n of height dn and

base

b′ = en − an + λn = x −
n∑

i=1

an +
n∑

i=1

λi −
n−1∑

i=1

bmi−1+1

(m0 = 0). Since

n∑

i=1

λi < 1,

x − nx1/2 = na ≤
n∑

i=1

ai < n(a + 1) = x − nx1/2 + n
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and

(n − 1)x1/2 ≤
n−1∑

i=1

bmi−1+1 < (n − 1)(x1/2 + 1),

it follows that

x1/2 − 2n + 1 ≤ b′ < x1/2 + 1.

Denote by Rk2 the last rectangle packed in Lmn . The rectangles R1, . . . , Rk1 were packed into
A1∪· · ·∪ An . The rectangles Rk1+1, . . . , Rk2 were packed into B1∪· · ·∪Bn−1∪Bn+1. The
remaining rectangles Rk2+1, . . . , Rz will be packed into B ′

n . Unfortunately, it is possible
that Lmn+1, . . . , Lm are too large to apply Lemma 2.4 and therefore we need to repack
Rk2+1, . . . , Rz into other larger rectangles. We apply Lemma 2.3. There is an integer l and
there are rectangles L ′

i (for i = 1, . . . , l ) of width b′
i , where

b′ ≤ b′
i < b′ + 1

and height not greater than 1 such that Rk2+1, . . . , Rz can be packed into
⋃l

i=1 L
′
i and that

the waste in this packing is no more than

ω3 = 2b′ + 1 < 2x1/2 + 3.

It remains to check that

l∑

i=1

area(L ′
i ) ≤ area(B ′

n) − v(b′, dn,λn, 1), (*)

for sufficiently large x (then, by Lemma 2.4, L ′
1, . . . , L

′
l and, consequently, the rectangles

Rk2+1, . . . , Rz can be packed into B ′
n).

Put μ1 = bm1+1 − b1 and μi = bmi+1 − bmi−1+1 for i = 2, . . . , n − 1. Obviously,
∑n−1

i=1 μi < 1. By

k1∑

i=1

area(Ri ) ≥
n∑

i=1

area(Ai ) − ω1,

k2∑

i=k1+1

area(Ri ) ≥
mn∑

i=1

area(Li ) − ω2

and

z∑

i=k2+1

area(Ri ) ≥
l∑

i=1

area(L ′
i ) − ω3,
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we have

z∑

i=1

area(Ri ) ≥
n∑

i=1

area(Ai ) − ω1 +
n−1∑

i=1

area(Bi )

−(n − 1)(x1/2 + 1) −
n−1∑

i=1

v(bmi−1+1, di ,λi , μi )

+area(Bn+1) − (x1/2 + 1) − v(x − dn, x, 1, 1) − ω2

+
l∑

i=1

area(L ′
i ) − ω3.

Consequently,

x2 − (5 + ε)x5/6 + 1 > x2 − area(B ′
n) − ω1 − ω2 − ω3 − n(x1/2 + 1)

−
n−1∑

i=1

v(bmi−1+1, di ,λi , μi ) − v(x − dn, x, 1, 1)

+
l∑

i=1

area(L ′
i ).

To prove the inequality (∗) we show that

ζ = ω1 + ω2 + ω3 + 1 + n(x1/2 + 1)

+v(x − dn, x, 1, 1) + v(b′, dn,λn, 1)

+
n−1∑

i=1

v(bmi−1+1, di ,λi , μi ) < (5 + ε)x5/6.

It is easy to check that

ω1 + ω2 + ω3 + 1 + n(x1/2 + 1) ≤ x/n + 3x1/2 + 6 + n(x1/2 + 1) < (1 + ε/4)x5/6,

v(x − dn, x, 1, 1) ≤ v(x1/2, x, 1, 1) = (2x + 1)(2x−1/4 + 3x−3/8) < εx5/6/4

and

v(b′, dn,λn, 1) < εx5/6/4,

for sufficiently large x . This implies that

ζ < (1 + 3ε/4)x5/6 +
n−1∑

i=1

b2mi−1+1 + x + 1

b1/2mi−1+1

· [
(2λi + 2μi )

1/2 + 3b−1/4
mi−1+1

]

< (1 + 3ε/4)x5/6 + (x1/2 + 1)2 + x + 1

(x1/2)1/2
·
n−1∑

i=1

[
(2λi + 2μi )

1/2 + 3x−1/8].

The arithmetic mean of a list of non-negative real numbers is smaller than or equal to the
quadratic mean of the same list. Therefore

α
1/2
1 + · · · + α

1/2
n−1 ≤ [

(n − 1)(α1 + · · · + αn−1)
]1/2
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for non-negative numbers α1, . . . , αn−1. Since
∑n−1

i=1 (λi + μi ) < 2, it follows that

n−1∑

i=1

(2λi + 2μi )
1/2 < 2(n − 1)1/2.

Hence

ζ < (1 + 3ε/4)x5/6 + 2x + 2x1/2 + 2

x1/4
· [
2(n − 1)1/2 + 3(n − 1)x−1/8]

< (1 + 3ε/4)x5/6 + (2x3/4 + 2x1/4 + 2x−1/4) · [
2(x1/6)1/2 + 3x1/6x−1/8]

= (5 + 3ε/4)x5/6 + 6x19/24 + 4x1/3 + 6x7/24 + 4x−1/6 + 6x−5/24.

Consequently,

ζ < (5 + ε)x5/6,

for sufficiently large x . 	


Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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