

Packing rectangles into a large square

Janusz Januszewski

Published online: 6 February 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract If c > 5 and if x is sufficiently large, then any collection of rectangles of sides of length not greater than 1 with total area smaller than $x^2 - cx^{5/6}$ can be packed into a square of side length x.

Keywords Packing · Rectangle · Square

Mathematics Subject Classification 52C15

1 Introduction

First publications related to packing of rectangles or squares appeared over fifty years ago. In 1957 Kosiński [6] proved, among others, that any sequence of rectangles of total area V and with sides of length not greater than D can be packed into a rectangle of side lengths 3Dand $(V + D^2)/D$. This result was improved in [4,7,8]. Other problems related to this subject were outlined in the sixties of the last century by L. Moser [9]. He asked, for example, "Can every set of rectangles of total area 1 and maximal side 1 be accommodated in a square of area 2?" (the answer is positive [5]) or "What is the smallest number A such that any set of squares of total area 1 can be packed into some rectangle of area A?" (some bounds are given in [3,10,11]). The question of packing of equal squares into a square as small as possible was posed in [2].

Let I_x be a square of side length x. We say that a collection $R_1, R_2, ...$ of rectangles can be *packed* into I_x , if it is possible to apply translations and rotations to the sets R_i so that the resulting translated and rotated rectangles are contained in I_x and have mutually disjoint interiors. Denote by s(x) the greatest number such that any collection of rectangles of sides of length not greater than 1 with total area smaller than s(x) can be packed into I_x .

J. Januszewski (🖂)

Institute of Mathematics and Physics, UTP University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland e-mail: januszew@utp.edu.pl Groemer [4] proved that $s(x) \ge (x-1)^2$ provided $x \ge 3$. By Remark 3 of [5] we know that $s(x) \ge x^2 - 2x + 2$ for $x \ge 2$. The aim of this note is to show that $s(x) \ge x^2 - O(x^{5/6})$. It is an open question whether the exponent 5/6 may be lessened in the above-presented estimation.

If all rectangles are unit squares, then $s_{unit}(x) \ge x^2 - O(x^{(3+\sqrt{2})/7} \log x)$ (see [1]). Also in this case we do not know whether the exponent $(3 + \sqrt{2})/7$ may be lessened. On the other hand, by [12] we know that $s_{unit}(x)$ is smaller than $x^2 - 10^{-100}\sqrt{x|x - \lfloor x + 1/2 \rfloor}|$ provided $x(x - \lfloor x \rfloor) > 1/6$.

2 Preliminaries

Let \mathcal{R} be a finite collection of rectangles R_1, R_2, \ldots, R_z of sides of length not greater than 1. Denote by w_i the width and by h_i the height of R_i . Furthermore, assume that $w_i \leq h_i$ for any $i = 1, \ldots, z$ and that $h_1 \geq h_2 \geq \cdots \geq h_z$.

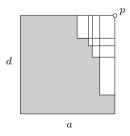
Let *S* be a rectangle of width $a \ge 1$ and height $d \ge 1$. Denote by *p* a vertex of *S*. Moreover, let S_1, \ldots, S_r be a collection of rectangles S_i of width $v_i < a$ and height smaller than *d* such that $p \in S_i$ and $S_i \subset S$ for $i = 1, \ldots, r$. Then $S \setminus \bigcup_{i=1}^r S_i$ is called a σ – polygon of base *a*, top *a* – max (v_1, \ldots, v_r) and height *d* (see Fig. 1). The rectangle *S* is also called a σ -polygon.

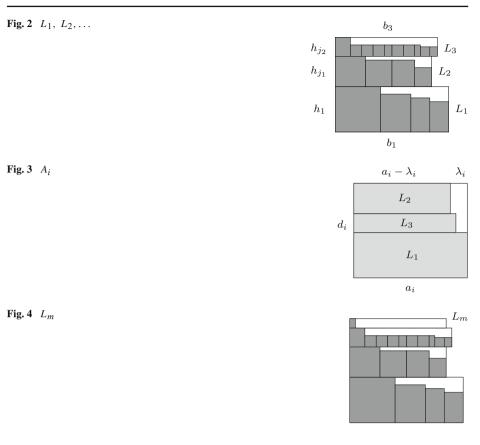
Lemma 2.1 Let $a \ge 1$, $d \ge 1$ and assume that the total area of rectangles in \mathcal{R} is not smaller than (a + 1)(d + 1). There exist integers $j_1 < \cdots < j_k$ such that the following conditions are fulfilled:

- $-a \leq b_i < a+1$, where $b_i = w_{j_{i-1}} + \dots + w_{j_i-1}$ for $i = 1, \dots, k$ $(j_0 = 1)$;
- $d \le h_1 + h_{j_1} + \dots + h_{j_{k-1}} < d + 1;$
- the rectangles R_1, \ldots, R_{j_k-1} can be packed into the union $\bigcup_{i=1}^k L_i$ of rectangles (with mutually disjoint interiors) L_i of sides of length b_i and $h_{j_{i-1}}$;
- the area of the uncovered part of $\bigcup_{i=1}^{k} L_i$ is smaller than a + 1.

Proof Denote by j_1 the smallest integer such that $w_1 + w_2 + \cdots + w_{j_1-1} \ge a$. Moreover, denote by j_2 the smallest integer satisfying $w_{j_1} + \cdots + w_{j_2-1} \ge a$ and so on. Let k be the smallest integer such that $h_1 + h_{j_1} + \cdots + h_{j_{k-1}} \ge d$. Clearly, the rectangles R_1, \ldots, R_{j_k-1} can be packed into the union $\bigcup_{i=1}^{k} L_i$ of rectangles (with mutually disjoint interiors) L_i of sides of length b_i and $h_{j_{i-1}}$ (see Fig. 2). The area of the uncovered part in each L_i does not exceed $b_i(h_{j_{i-1}} - h_{j_i-1})$. Consequently, the area of the uncovered part of $\bigcup_{i=1}^{k} L_i$ (the waste in this packing) does not exceed

Fig. 1 σ-polygon





$$\begin{split} \omega_0 &= (h_1 - h_{j_1 - 1})b_1 + (h_{j_1} - h_{j_2 - 1})b_2 + \dots + (h_{j_{k-1}} - h_{j_k - 1})b_k \\ &\leq (h_1 - h_{j_1} + h_{j_1} - h_{j_2} + \dots + h_{j_{k-1}} - h_{j_k}) \cdot \max(b_1, \dots, b_k) \\ &= (h_1 - h_{j_k}) \cdot \max(b_1, \dots, b_k) \\ &< \max(b_1, \dots, b_k) \\ &< a + 1. \end{split}$$

By the proof of Lemma 2.1 we deduce the following two results (see Figs. 2, 3, 4).

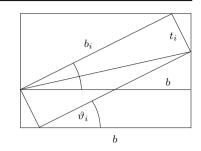
Lemma 2.2 Let $a \ge 1$, $d \ge 1$ and let n be a positive integer. Assume that the total area of rectangles in \mathcal{R} is not smaller than n(a + 1)(d + 1). There is an integer k and there are n mutually disjoint σ -polygons A_i (for i = 1, ..., n) of base a_i , top $a_i - \lambda_i$ and height d_i , where $a \le a_i < a + 1$, $d \le d_i < d + 1$ and $\sum_{i=1}^n \lambda_i < 1$ such that the following conditions are fulfilled:

- the rectangles R_1, \ldots, R_k can be packed into $\bigcup_{i=1}^n A_i$;
- the area of the uncovered part of $\bigcup_{i=1}^{n} A_i$ is smaller than a + 1.

Lemma 2.3 Let $a \ge 1$. There is an integer *m* and there are *m* rectangles L_i (with mutually disjoint interiors) of height not greater than 1 and width b_i , where $a \le b_i < a + 1$, such that:

🖄 Springer

Fig. 5 ϑ_i



- the rectangles from \mathcal{R} can be packed into $\bigcup_{i=1}^{m} L_i$;
- the area of the uncovered part of $\bigcup_{i=1}^{m} L_i$ is smaller than 2a + 1.

In the following lemma we will describe how to efficiently pack rectangles L_i .

Lemma 2.4 Let B be a σ -polygon of base b, top $b - \lambda$ and height h, where $h \ge b \ge 27$ and $0 \le \lambda < 1$. Furthermore, let L_i (for i = 1, ..., m) be a rectangle of width b_i and height t_i , where

$$b \leq b_1 \leq \cdots \leq b_m < b+1$$

and where $t_i \leq 1$ for i = 1, ..., m. Put $\mu = b_m - b$ and

$$v(b, h, \lambda, \mu) = (b^2 + h + 1)b^{-1/2} [(2\lambda + 2\mu)^{1/2} + 3b^{-1/4}].$$

If b is sufficiently large and if

$$\sum_{i=1}^{m} area(L_i) \le area(B) - v(b, h, \lambda, \mu),$$

then L_1, \ldots, L_m can be packed into B.

Proof Assume that $b \ge 27$ and that the sum of the areas of rectangles L_1, \ldots, L_m is not greater than $area(B) - v(b, h, \lambda, \mu)$.

Put

$$\vartheta_i = \arctan \frac{t_i}{b_i} + \arccos \frac{b}{\sqrt{b_i^2 + t_i^2}}$$

(see Fig. 5). Without loss of generality we can assume that $\vartheta_1 \leq \cdots \leq \vartheta_m$.

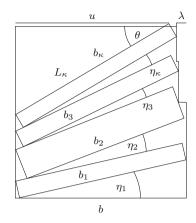
We pack the rectangles $L_1, L_2, ...$ into *B* as in Fig. 6. Contrary to the statement suppose that the rectangles cannot be packed. We show that this leads to a contradiction. Let L_{κ} be the first rectangle which cannot be packed into *B*.

By $b_{\kappa} \le b + \mu < b + 1$ and $u > b - \lambda - 1 > b - 2$ in Fig. 6 we have

$$\theta \le \tan \theta = \frac{\sqrt{b_{\kappa}^2 - u^2}}{u} < \frac{\sqrt{(b+1)^2 - (b-2)^2}}{b-2} < \frac{\sqrt{6b}}{b-2} < \sqrt{\frac{7}{b}}.$$

Springer

Fig. 6 $L_i \subset B$



We need a more precise estimation. Since $t_{\kappa} \leq 1$ and $\sin \theta \leq \theta < \sqrt{7/b}$, it follows that $u = b - \lambda - t_{\kappa} \sin \theta > b - \lambda - \sqrt{7/b}$. By $b_{\kappa} \leq b + \mu$ we obtain

$$\tan \theta = \frac{\sqrt{b_{\kappa}^2 - u^2}}{u}$$

$$< \frac{\sqrt{(b+\mu)^2 - (b-\lambda - \sqrt{7/b})^2}}{b-\lambda - \sqrt{7/b}}$$

$$= \sqrt{\frac{2b(\lambda+\mu) + \mu^2 - \lambda^2 - 7/b + 2(b-\lambda)\sqrt{7/b}}{b^2 - 2\lambda b + \lambda^2 + 7/b - 2(b-\lambda)\sqrt{7/b}}}$$

$$< \sqrt{\frac{2b(\lambda+\mu) + 1 + 6\sqrt{b}}{b^2 - 2\lambda b - 6\sqrt{b}}}.$$

It is easy to check that

$$\frac{2b(\lambda+\mu)+1+6\sqrt{b}}{b^2-2\,\lambda\,b-6\sqrt{b}} < 2(\lambda+\mu)b^{-1}+7b^{-3/2},$$

for sufficiently large *b*.

Since $\sqrt{\alpha_1 + \alpha_2} \le \sqrt{\alpha_1} + \sqrt{\alpha_2}$ for non-negative values α_1 and α_2 , it follows that

$$\theta \leq \tan \theta < f(b, \lambda, \mu),$$

where

$$f(b, \lambda, \mu) = (2\lambda + 2\mu)^{1/2}b^{-1/2} + 7^{1/2}b^{-3/4}.$$

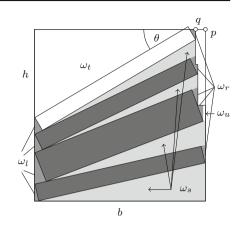
The uncovered dark shaded part on the left side of *B* in Fig. 7 consists of a number of triangles. The total length of the left sides of the triangles is smaller than h + 1. The height of each such triangle (the height parallel to the bottom of *B*) is not greater than $\sin \theta$. Consequently, the uncovered dark shaded part on the left side of *B* in Fig. 7 is of the area

$$\omega_l < \frac{1}{2}(h+1)\sin\theta < \frac{1}{2}(h+1)\theta < \frac{1}{2}(h+1)f(b,\lambda,\mu).$$

Similarly we estimate the area ω_r of the uncovered dark shaded part on the right side of B:

$$\omega_r \leq \omega_l < \frac{1}{2}(h+1)f(b,\lambda,\mu).$$

Fig. 7 Wasted area



Since the distance between p and q is equal to λ and the height of each L_i is not greater than 1, it follows that the non-shaded uncovered part on the right side of B in Fig. 7 is of the area

$$\omega_u \leq \lambda < 1$$

Denote by ω_s^+ the area of a right triangle of legs of length *b* and *b* tan θ . Moreover, denote by ω_s the area of the light shaded uncovered part of *B* in Fig. 7. By $\eta_1 + \eta_2 + \cdots + \eta_{\kappa} = \theta$ (see Fig. 6) we deduce that

$$\omega_s \leq \omega_s^+ = \frac{1}{2}b^2 \tan \theta < \frac{1}{2}b^2 f(b, \lambda, \mu).$$

The uncovered non-shaded part on the top of B in Fig. 7 is of the area

$$\omega_t < \frac{1}{2}b^2 \tan \theta + area(L_{\kappa}) < \frac{1}{2}b^2 f(b, \lambda, \mu) + b + 1.$$

Consequently, the area of the uncovered part of B does not exceed

$$\begin{split} \omega &= \omega_l + \omega_r + \omega_u + \omega_s + \omega_t \\ &< (b^2 + h + 1) f(b, \lambda, \mu) + b + 2 \\ &= (b^2 + h + 1) \big[(2 \lambda + 2\mu)^{1/2} b^{-1/2} + 7^{1/2} b^{-3/4} \big] + b + 2 \\ &< (b^2 + h + 1) \big[(2 \lambda + 2\mu)^{1/2} b^{-1/2} + 3b^{-3/4} \big], \end{split}$$

for sufficiently large b. This implies that

$$\sum_{i=1}^{\kappa-1} area(L_i) \ge area(B) - \omega > area(B) - v(b, h, \lambda, \mu),$$

which is a contradiction.

3 Packing into a large square

In the main packing method I_x will be partitioned into a number of σ -polygons. Next, rectangles from \mathcal{R} will be packed into adequate σ -polygons.

Theorem 3.1 Let $\epsilon > 0$. Any collection of rectangles of sides of length not greater than 1 with total area smaller than $x^2 - (5 + \epsilon)x^{5/6}$ can be packed into I_x , for sufficiently large x.

Proof Assume that $\epsilon > 0$ and that $x > (5 + \epsilon)^{6/7}$. Consider a collection C of rectangles P_i of sides of length not greater than 1 with total area smaller than $x^2 - (5 + \epsilon)x^{5/6}$. If C is finite, then put $\mathcal{R} = C$ and denote by z the number of rectangles in \mathcal{R} . Otherwise, we can assume that $area(P_1) \ge area(P_2) \ge \ldots$. There is an integer z such that $\sum_{i=z}^{\infty} area(P_i) < \frac{1}{2}$. By [5] we know that rectangles R_z, R_{z+1}, \ldots can be packed into I_1 . Let \mathcal{R} be a collection of rectangles R_i , where $R_1 = I_1$ and $R_i = P_{i-1}$ for $i = 2, \ldots, z$.

We show that rectangles from \mathcal{R} can be packed into I_x provided x is sufficiently large. Clearly,

$$\sum_{i=1}^{z} area(R_i) < x^2 - (5+\epsilon)x^{5/6} + 1.$$

We can assume that the width w_i of R_i is not greater than its height h_i for i = 1, ..., zand that $h_1 \ge \cdots \ge h_z$. Put

$$n = \lfloor x^{1/6} \rfloor,$$

$$a = x/n - x^{1/2}$$

and

$$d = x - x^{1/2}.$$

It is easy to verify that $n(a+1)(d+1) < (x-1)^2$. If $\rho < n(a+1)(d+1)$, then, by [4], all rectangles from \mathcal{R} can be packed into I_x . Otherwise, by Lemma 2.2 we deduce that there is an integer k_1 and there are *n* mutually disjoint σ -polygons A_i of base a_i , top $a_i - \lambda_i$ and height d_i , where

$$a \leq a_i < a+1, d \leq d_i < d+1$$

(for i = 1, ..., n) and where $\sum_{i=1}^{n} \lambda_i < 1$ such that $R_1, ..., R_{k_1}$ can be packed into $\bigcup_{i=1}^{n} A_i$ and that the waste in this packing (i.e., the area of the uncovered part of $\bigcup_{i=1}^{n} A_i$) is at most

$$\omega_1 = a + 1 = x/n - x^{1/2} + 1.$$

Clearly,

$$\sum_{i=1}^{k_1} area(R_i) \ge \sum_{i=1}^n area(A_i) - \omega_1.$$

We lose no generality in assuming that $d_1 \ge d_2 \ge \cdots \ge d_n$.

 I_x will be divided into: *n* polygons A_i and n + 1 other σ -polygons. Then R_1, \ldots, R_{k_1} will be packed into $\bigcup_{i=1}^n A_i$. The remaining rectangles from \mathcal{R} will be first packed into larger rectangles L_i or L'_i . Next, L_i and L'_i will be packed into $I_x \setminus \bigcup_{i=1}^n A_i$.

We apply Lemma 2.3 for packing R_{k_1+1}, \ldots, R_z . There is an integer *m* and there are rectangles L_i (for $i = 1, \ldots, m$) of width b_i , where

$$x^{1/2} \le b_i < x^{1/2} + 1$$

🖉 Springer

Fig. 8 Partition of Ix

Fig. 9 Partition of D_i

and height not greater than 1 such that R_{k_1+1}, \ldots, R_z can be packed into $\bigcup_{i=1}^m L_i$ and that the waste in this packing is no more than

$$\omega_2 = 2x^{1/2} + 1.$$

There is no loss of generality in assuming that $b_1 \leq b_2 \leq \cdots \leq b_m$.

We divide I_x into: *n* rectangles D_i (for i = 1, ..., n) of width e_i and height d_i and one σ -polygon B_{n+1} of base $x - d_n$ and height *x* (as in Fig. 8). Now we will describe how to choose proper values $e_1, ..., e_n$. This action depends on the width of some rectangles L_i .

Put $e_1 = a_1 - \lambda_1 + b_1$. Clearly, D_1 can be divided into the σ -polygon A_1 and a σ -polygon B_1 of base b_1 , top $b_1 - \lambda_1$ and height d_1 (see Fig. 9). Denote by m_1 the greatest integer such that

$$\sum_{i=1}^{m_1} area(L_i) \le area(B_1) - v(b_1, d_1, \lambda_i, b_{m_1} - b_1).$$

By Lemma 2.4 we know that L_1, \ldots, L_{m_1} can be packed into B_1 , for sufficiently large x. Obviously,

$$\sum_{i=1}^{m_1+1} area(L_i) > area(B_1) - v(b_1, d_1, \lambda_i, b_{m_1+1} - b_1).$$

Deringer

							B_{n+1}		
d_1	D_1			D_2	D_n				
		e_1				e_n			
	a_1 -	$-\lambda_1$		$a_n - \lambda_n$					
	b_1			B					
			B_1		B_2		k	B'_n	
d_1	A	1		A_2		A	n		
	a	1							

Γ

Consequently,

$$\sum_{i=1}^{m_1} area(L_i) > area(B_1) - (x^{1/2} + 1) - v(b_1, d_1, \lambda_i, b_{m_1+1} - b_1).$$

We proceed in a similar way for i = 2, ..., n - 1. Put

$$e_i = a_i - \lambda_i + b_{m_{i-1}+1}$$

for i = 2, ..., n - 1. Each D_i is divided into the σ -polygon A_i and a σ -polygon B_i of base $b_{m_{i-1}+1}$, top $b_{m_{i-1}+1} - \lambda_i$ and height d_i . Denote by m_i the greatest integer such that

$$\sum_{i=m_{i-1}+1}^{m_i} area(L_i) \le area(B_i) - v(b_{m_{i-1}+1}, d_i, \lambda_i, b_{m_i} - b_{m_{i-1}+1}),$$

By Lemma 2.4 we know that $L_{m_{i-1}+1}, \ldots, L_{m_i}$ can be packed into B_i provided x is sufficiently large. Moreover,

$$\sum_{i=m_{i-1}+1}^{m_i} area(L_i) > area(B_i) - (x^{1/2}+1) - v(b_{m_{i-1}+1}, d_i, \lambda_i, b_{m_i+1} - b_{m_{i-1}+1}).$$

Clearly, if $m_i = m$ for some integer *i*, then all rectangles from \mathcal{R} were packed into I_x . Denote by m_n the greatest integer such that

$$\sum_{i=m_{n-1}+1}^{m_n} area(L_i) \le area(B_{n+1}) - v(x - d_n, x, 1, 1).$$

By Lemma 2.4 we know that $L_{m_{n-1}+1}, \ldots, L_{m_n}$ can be packed into B_{n+1} . Moreover,

$$\sum_{i=m_{n-1}+1}^{m_n} area(L_i) > area(B_{n+1}) - (x^{1/2} + 1) - v(x - d_n, x, 1, 1).$$

Finally, put

$$e_n = x - \sum_{i=1}^{n-1} e_i.$$

The rectangle D_n is divided into the σ -polygon A_n and a σ -polygon B'_n of height d_n and base

$$b' = e_n - a_n + \lambda_n = x - \sum_{i=1}^n a_i + \sum_{i=1}^n \lambda_i - \sum_{i=1}^{n-1} b_{m_{i-1}+1}$$

 $(m_0 = 0)$. Since

$$\sum_{i=1}^{n} \lambda_i < 1,$$

$$x - nx^{1/2} = na \le \sum_{i=1}^{n} a_i < n(a+1) = x - nx^{1/2} + n$$

and

$$(n-1)x^{1/2} \le \sum_{i=1}^{n-1} b_{m_{i-1}+1} < (n-1)(x^{1/2}+1),$$

it follows that

$$x^{1/2} - 2n + 1 \le b' < x^{1/2} + 1.$$

Denote by R_{k_2} the last rectangle packed in L_{m_n} . The rectangles R_1, \ldots, R_{k_1} were packed into $A_1 \cup \cdots \cup A_n$. The rectangles $R_{k_1+1}, \ldots, R_{k_2}$ were packed into $B_1 \cup \cdots \cup B_{n-1} \cup B_{n+1}$. The remaining rectangles R_{k_2+1}, \ldots, R_z will be packed into B'_n . Unfortunately, it is possible that L_{m_n+1}, \ldots, L_m are too large to apply Lemma 2.4 and therefore we need to repack R_{k_2+1}, \ldots, R_z into other larger rectangles. We apply Lemma 2.3. There is an integer l and there are rectangles L'_i (for $i = 1, \ldots, l$) of width b'_i , where

$$b' \leq b'_i < b'+1$$

and height not greater than 1 such that R_{k_2+1}, \ldots, R_z can be packed into $\bigcup_{i=1}^l L'_i$ and that the waste in this packing is no more than

$$\omega_3 = 2b' + 1 < 2x^{1/2} + 3$$

It remains to check that

$$\sum_{i=1}^{l} area(L'_i) \le area(B'_n) - v(b', d_n, \lambda_n, 1), \qquad (*)$$

for sufficiently large x (then, by Lemma 2.4, L'_1, \ldots, L'_l and, consequently, the rectangles R_{k_2+1}, \ldots, R_z can be packed into B'_n).

Put $\mu_1 = b_{m_1+1} - b_1$ and $\mu_i = b_{m_i+1} - b_{m_{i-1}+1}$ for i = 2, ..., n-1. Obviously, $\sum_{i=1}^{n-1} \mu_i < 1$. By

$$\sum_{i=1}^{k_1} \operatorname{area}(R_i) \ge \sum_{i=1}^n \operatorname{area}(A_i) - \omega_1,$$
$$\sum_{i=k_1+1}^{k_2} \operatorname{area}(R_i) \ge \sum_{i=1}^{m_n} \operatorname{area}(L_i) - \omega_2$$

and

$$\sum_{i=k_2+1}^{z} area(R_i) \ge \sum_{i=1}^{l} area(L'_i) - \omega_3,$$

we have

$$\sum_{i=1}^{z} area(R_i) \ge \sum_{i=1}^{n} area(A_i) - \omega_1 + \sum_{i=1}^{n-1} area(B_i)$$
$$-(n-1)(x^{1/2}+1) - \sum_{i=1}^{n-1} v(b_{m_{i-1}+1}, d_i, \lambda_i, \mu_i)$$
$$+area(B_{n+1}) - (x^{1/2}+1) - v(x - d_n, x, 1, 1) - \omega_2$$
$$+ \sum_{i=1}^{l} area(L'_i) - \omega_3.$$

Consequently,

$$\begin{aligned} x^{2} - (5+\epsilon)x^{5/6} + 1 &> x^{2} - area(B'_{n}) - \omega_{1} - \omega_{2} - \omega_{3} - n(x^{1/2} + 1) \\ &- \sum_{i=1}^{n-1} v(b_{m_{i-1}+1}, d_{i}, \lambda_{i}, \mu_{i}) - v(x - d_{n}, x, 1, 1) \\ &+ \sum_{i=1}^{l} area(L'_{i}). \end{aligned}$$

To prove the inequality (*) we show that

$$\begin{aligned} \zeta &= \omega_1 + \omega_2 + \omega_3 + 1 + n(x^{1/2} + 1) \\ &+ v(x - d_n, x, 1, 1) + v(b', d_n, \lambda_n, 1) \\ &+ \sum_{i=1}^{n-1} v(b_{m_{i-1}+1}, d_i, \lambda_i, \mu_i) < (5 + \epsilon) x^{5/6}. \end{aligned}$$

It is easy to check that

$$\omega_1 + \omega_2 + \omega_3 + 1 + n(x^{1/2} + 1) \le x/n + 3x^{1/2} + 6 + n(x^{1/2} + 1) < (1 + \epsilon/4)x^{5/6},$$

$$v(x - d_n, x, 1, 1) \le v(x^{1/2}, x, 1, 1) = (2x + 1)(2x^{-1/4} + 3x^{-3/8}) < \epsilon x^{5/6}/4$$

and

$$v(b', d_n, \lambda_n, 1) < \epsilon x^{5/6}/4,$$

for sufficiently large x. This implies that

$$\begin{aligned} \zeta &< (1+3\epsilon/4)x^{5/6} + \sum_{i=1}^{n-1} \frac{b_{m_{i-1}+1}^2 + x + 1}{b_{m_{i-1}+1}^{1/2}} \cdot \left[(2\lambda_i + 2\mu_i)^{1/2} + 3b_{m_{i-1}+1}^{-1/4} \right] \\ &< (1+3\epsilon/4)x^{5/6} + \frac{(x^{1/2}+1)^2 + x + 1}{(x^{1/2})^{1/2}} \cdot \sum_{i=1}^{n-1} \left[(2\lambda_i + 2\mu_i)^{1/2} + 3x^{-1/8} \right]. \end{aligned}$$

The arithmetic mean of a list of non-negative real numbers is smaller than or equal to the quadratic mean of the same list. Therefore

$$\alpha_1^{1/2} + \dots + \alpha_{n-1}^{1/2} \le \left[(n-1)(\alpha_1 + \dots + \alpha_{n-1}) \right]^{1/2}$$

D Springer

for non-negative numbers $\alpha_1, \ldots, \alpha_{n-1}$. Since $\sum_{i=1}^{n-1} (\lambda_i + \mu_i) < 2$, it follows that

1 10

$$\sum_{i=1}^{n-1} (2\lambda_i + 2\mu_i)^{1/2} < 2(n-1)^{1/2}.$$

Hence

$$\begin{aligned} \zeta &< (1+3\epsilon/4)x^{5/6} + \frac{2x+2x^{1/2}+2}{x^{1/4}} \cdot \left[2(n-1)^{1/2}+3(n-1)x^{-1/8}\right] \\ &< (1+3\epsilon/4)x^{5/6} + (2x^{3/4}+2x^{1/4}+2x^{-1/4}) \cdot \left[2(x^{1/6})^{1/2}+3x^{1/6}x^{-1/8}\right] \\ &= (5+3\epsilon/4)x^{5/6} + 6x^{19/24}+4x^{1/3}+6x^{7/24}+4x^{-1/6}+6x^{-5/24}. \end{aligned}$$

Consequently,

$$\zeta < (5+\epsilon)x^{5/6},$$

for sufficiently large x.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- F. Chung, R.L. Graham, Packing equal squares into a large square. J. Comb. Theory Ser. A 116, 1167–1175 (2009)
- 2. P. Erdös, R.L. Graham, On packing squares with equal squares. J. Comb. Theory 19, 119–123 (1975)
- 3. S. Hougardy, On packing squares into a rectangle. Comput. Geom. 44(8), 456–463 (2011)
- 4. H. Groemer, Covering and packing properties of bounded sequences of convex sets. Mathematika **29**, 18–31 (1982)
- 5. J. Januszewski, Packing rectangles into the unit square. Geom. Dedicata 81, 13-18 (2001)
- A. Kosiński, A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies. Colloq. Math. 4, 216–218 (1957)
- 7. A. Meir, L. Moser, On packing of squares and cubes. J. Comb. Theory 5, 126–134 (1968)
- 8. J.W. Moon, L. Moser, Some packing and covering theorems. Colloq. Math. 17(1), 103–110 (1967)
- 9. L. Moser, Poorly formulated unsolved problems of combinatorial geometry, mimeographed, (1966)
- P. Novotny, A note on a packing of squares. Stud. Univ. Transp. Commun. Žilina Math.-Phys. Ser 10, 35–39 (1995)
- 11. P. Novotny, On packing of squares into a rectangle. Arch. Math. (Brno) 32(2), 75-83 (1996)
- K.F. Roth, R.C. Vaughan, Inefficiency in packing squares with unit squares. J. Comb. Theory Ser. A 24, 170–186 (1978)