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Abstract Let R be a commutative ring and M be an R-module. In this paper, we introduce
the M-principal graph of R, denoted by M−PG(R). It is the graph whose vertex set is R\{0},
and two distinct vertices x and y are adjacent if and only if x M = yM . In the special case
that M = R, M − PG(R) is denoted by PG(R). The basic properties and possible structures
of these two graphs are studied. Also, some relations between PG(R) and M − PG(R) are
established.
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1 Introduction

There are many papers on assigning a graph to a ring R, see [1–4,9,10]. In this paper, we
introduce the M-principal graph of R, denoted by M − PG(R), where M is an R-module.
Throughout the paper all rings are commutative with non-zero identity and all modules are
non-zero unitary.

Let R be a ring and M be an R-module. The annihilator of M is denoted by ann(M). The
module M is called a faithful R-module if ann(M) = 0. Also, M is called an simple R-module
if M �= 0, and M has no submodules other than 0 and M . We denote the characteristic of
R by char R. Also, J (R) denotes the Jacobson radical of R and U (R) denotes the group of
units of R. A ring having just one maximal ideal is called a local ring and a ring having only
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186 M. J. Nikmehr, F. Heydari

finitely many maximal ideals is said to be a semilocal ring. The direct product of a family of
rings {Ri | i ∈ I } is denoted by

∏
i∈I Ri . As usual, Z, R, C, and Zn will denote the integers,

real numbers, complex numbers and integers modulo n, respectively.
A graph in which each pair of distinct vertices is joined by an edge is called a complete

graph. The complete graph on n vertices is denoted by Kn . A graph G is called regular if
each vertex has the same number of neighbors. An empty graph is one whose edge set is
empty. Let G be a graph. The set of vertices and the set of edges of G are denoted by V (G)

and E(G), respectively. “A subgraph H of G is said to be an induced subgraph of G if it is
a subgraph i.e. V (H) ⊂ V (G) and E(H) ⊂ E(G) and it has exactly the same edges that
appear in G over the vertices V (H) i.e. ∀u, v ∈ V (H) an edge e = uv ∈ E(H) if and only
if e ∈ E(G).”

Also a subgraph H of G is called a spanning subgraph if V (H) = V (G). We say that G
is connected if there is a path between any two distinct vertices of G. A cycle of G is a path
such that the start and end vertices are the same. The girth of G, denoted by gr(G), is the
length of a shortest cycle in G (gr(G) = ∞ if G contains no cycles). A Hamiltonian cycle is
a spanning cycle in a graph. A graph G is called Hamiltonian if G has a Hamiltonian cycle.
A forest is a graph with no cycles. A clique in G is a set of pairwise adjacent vertices and a
set in G whose no two vertices are adjacent is called an independent set. The clique number
and the independence number of G, denoted by ω(G) and α(G), are the largest orders of a
clique and an independent set of G, respectively. Also, the chromatic number of G, denoted
by χ(G), is the smallest number of colors which can be assigned to the vertices of G in such
a way that every two adjacent vertices have different colors.

In this article, we introduce and investigate the M-principal graph of R, denoted by
M − PG(R), where R is a commutative ring and M is a non-zero R-module. If R is regarded
as a module over itself, that is, M = R, then the M-principal graph of R is denoted by PG(R).
Also, we study some properties of PG(R), in particular we consider the graph PG(Zn) for
each positive integer n > 1. Finally, some relations between PG(R) and M − PG(R) are
established.

2 The M-principal graph of R

In this section, we introduce the M-principal graph of R and study its basic properties.

Definition 2.1 Let R be a ring and M be a non-zero R-module. The M-principal graph of
R, denoted by M − PG(R), is the (undirected) graph whose vertex set is R\{0} and two
distinct vertices x and y are adjacent if and only if x M = yM .

It is clear that if M and N are isomorphic modules over R, then M − PG(R) is the same
as N − PG(R), but the converse is not true in general. For instance, consider R − PG(Z)

and C − PG(Z).

Example 2.2 Let R = Z6. So we have the following graphs.
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The M-principal graph of a commutative ring 187

Remark 2.3 Clearly, M − PG(R) is a disjoint union of complete graphs. Hence gr(M −
PG(R)) ∈ {3,∞} and also |U (R)| ≤ ω(M − PG(R)) = χ(M − PG(R)).

By the previous remark, we have the next immediate result.

Corollary 2.4 Let R be a ring with |R| > 3, and let M be a non-zero R-module. Then the
following conditions are equivalent:

(1) M − PG(R) is a complete graph.
(2) M − PG(R) is a Hamiltonian graph.
(3) M − PG(R) is a connected graph.

Remark 2.5 Let x be a non-zero element of R. Then each coset x + ann(M) is a clique in
M − PG(R) and so |ann(M)| ≤ ω(M − PG(R)). Also, α(M − PG(R)) ≤ |R/ann(M)|.
Moreover, if ann(M) �= 0, then M − PG(R) is disconnected.

Theorem 2.6 Let R be a ring and M be a non-zero R-module. Then M is a faithful simple
R-module if and only if M − PG(R) is a complete graph and M is a cyclic R-module.

Proof Suppose that M − PG(R) is a complete graph and there exists a non-zero element
m ∈ M such that M = Rm. If 0 �= x ∈ ann(M), then x is not adjacent to 1, a contradiction.
So ann(M) = 0. Let m′ be a non-zero element of M . We have m′ = xm for some x ∈ R.
Since M − PG(R) is a complete graph, M = x M = x Rm = Rm′. Thus M is simple. For
the other direction, assume that x ∈ R and x �= 0. Since x M is a non-zero submodule of M
and M is simple, we have x M = M . The proof is complete. 	

Theorem 2.7 Let R be a ring and M be a (non-zero) finitely generated R-module. If
M − PG(R) is a complete graph, then J (R) = 0.

Proof By contradiction, assume that x ∈ J (R) and x �= 0. Since M − PG(R) is a complete
graph, x M = M . So J (R)M = M and by Nakayama’s Lemma [7, Proposition 2.6], we have
M = 0, a contradiction. 	

Theorem 2.8 Let R be a ring and M be a non-zero R-module. If M − PG(R) is empty, then
M is a faithful R-module and we have |U (R)| = 1. Moreover, if R is an Artinian ring, then
R ∼= (Z2)

k for some positive integer k.

Proof By Remark 2.5, ann(M) = 0 and since x M = M for every x ∈ U (R), we have
|U (R)| = 1 (so char R = 2 and J (R) = 0). If R is Artinian, then by [7, Theorem 8.7],
R ∼= R1 × · · · × Rk , where Ri is a local ring and k is a positive integer. Suppose that mi is a
maximal ideal of Ri , for each integer i, 1 ≤ i ≤ k. Since |Ri\mi | = |U (Ri )| = 1, we have
|mi | = 1 and hence Ri ∼= Z2. Thus R ∼= (Z2)

k . 	

Theorem 2.9 Let R be an integral domain and M be an Artinian module. If R contains a
non-zero element x such that xk �= 1 for each positive integer k, then ω(M − PG(R)) = ∞.

Proof Since M is Artinian, there exists a positive integer n, such that xk M = xn M for
each positive integer k ≥ n. Now, {xk | k ≥ n } is a clique in M − PG(R) and hence
ω(M − PG(R)) = ∞. 	


Let R be a commutative ring. An R-module M is said to be secondary (see [8, p. 42]), if
M �= 0 and, for each x ∈ R, x M = M or x ∈ √

ann(M). (
√

ann(M) denotes the radical of
ann(M).)
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Theorem 2.10 Let R be a ring and M be a secondary R-module. Then |R\P| ≤ ω(M −
PG(R)), where P = √

ann(M).

Proof Since M is a secondary R-module, x M = M for every x ∈ R\P . So R\P is a clique
in M − PG(R) and hence |R\P| ≤ ω(M − PG(R)). 	

Theorem 2.11 Let R be a ring and M be a non-zero R-module. If N is a proper submodule
of M, then M − PG(R) is a spanning subgraph of M/N − PG(R).

Proof Suppose that x, y ∈ R and x M = yM . So x(M/N ) = (x M + N )/N = (yM +
N )/N = y(M/N ). Hence if x and y are adjacent vertices of M − PG(R), then x is adjacent
to y in M/N − PG(R). Therefore M − PG(R) is a spanning subgraph of M/N − PG(R).

	

Suppose that R is a commutative ring and M is a module over R. It is well known (see [7,

p. 19]) that if I is an ideal of R such that I M = 0, M can be regarded as an R/I -module, as
follows: if x ∈ R/I is represented by x ∈ R, define xm to be xm for every m ∈ M . So we
can deduce the next theorem.

Theorem 2.12 Let R be a ring and M be a non-zero R-module, and let I be an ideal of R
such that I M = 0. Then M − PG(R/I ) is an induced subgraph of M − PG(R). Moreover,
if I = ann(M) �= 0 and M − PG(R/I ) is a complete graph, then M − PG(R) is a disjoint
union of two complete graphs.

Proof Suppose that x, y ∈ R. Clearly, x M = yM if and only if x M = yM . So
(by assigning x to x), M − PG(R/I ) is an induced subgraph of M − PG(R). Now, assume
that M − PG(R/ann(M)) is a complete graph and let x, y ∈ R\{0}. If x, y ∈ ann(M), then
x M = yM = 0. Suppose that x, y ∈ R\ann(M). If x = y, then x−y ∈ ann(M) implies that
x M = yM . Otherwise, x and y are two distinct vertices of M − PG(R/ann(M)) and hence
x is adjacent to y. So x is adjacent to y. It is clear that if x ∈ ann(M) and y ∈ R\ann(M),
then x M �= yM . Thus M − PG(R) is a disjoint union of two complete graphs. 	


Let S be a multiplicatively closed subset of a commutative ring R, and let M be an R-
module. We denote the ring of fractions of R and the module of fractions of M (with respect
to S) by RS and MS , respectively. Now, we have the following theorem.

Theorem 2.13 Let R be a ring and M be a non-zero R-module. If S = Reg(R), then
M − PG(R) is a subgraph of MS − PG(RS). Moreover, if M − PG(R) is complete, then
MS − PG(RS) is also a complete graph.

Proof Suppose that x, y ∈ R and x M = yM . So (x/1)MS = (x M)S = (yM)S = (y/1)MS .
Thus by assigning x to x/1, M − PG(R) is a subgraph of MS − PG(RS). Note that if x �= 0,
then x/1 �= 0. Now, assume that M − PG(R) is a complete graph and x/r, y/t are two
distinct vertices of MS − PG(RS). Then t x and ry are two distinct vertices of M − PG(R)

and so t x M = ryM . Thus (x/r)MS = (t x/tr)MS = (t x M)S = (ryM)S = (ry/tr)MS =
(y/t)MS and hence x/r is adjacent to y/t . 	


3 The principal graph of R

If R is regarded as a module over itself, that is, M = R, then the M-principal graph of R is
denoted by PG(R) (the principal graph of R). In this section we study some properties of
PG(R), in particular we consider the graph PG(Zn) for each positive integer n > 1.
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The M-principal graph of a commutative ring 189

Note that for two rings R and S if R ∼= S, then PG(R) ∼= PG(S), but the converse is not
true. For instance, consider PG(Z4) and PG(Z2[x]/(x2)).

Example 3.1

Corollary 3.2 Let R be a ring with |R| > 3. Then the following conditions are equivalent:

(1) R is a field.
(2) PG(R) is a complete graph.
(3) PG(R) is a Hamiltonian graph.
(4) PG(R) is a connected graph.

Notice that α(PG(R)) is equal to the number of non-zero principal ideals of R. So we
have the next theorem.

Theorem 3.3 Let R be a ring. If α(PG(R)) is finite, then R is Artinian.

Proof R has only a finite number of distinct principal ideals, since α(PG(R)) is finite. Now,
suppose that I is a non-zero ideal of R. We have I = ∑

x∈I x R, so R contains only finitely
many ideals and hence R is Artinian. 	

Remark 3.4 Note that there exist some infinite rings which have only a finite number of
ideals, for example the ring F[x]/(x2), where F is an infinite field.

Theorem 3.5 Let R be a semilocal ring. If ω(PG(R)) is finite, then R is finite.

Proof Suppose that m1, . . . , mk are all the maximal ideals of R. We have U (R) =
R\⋃k

i=1 mi . Since ω(PG(R)) is finite, U (R) is finite and so by [4, Theorem 2], R is finite.
	


Corollary 3.6 Let R be a semilocal ring. If PG(R) is empty, then R ∼= (Z2)
k for some

positive integer k.

Proof By the previous theorem, R is finite and so by Theorem 2.8, the result holds. 	

Theorem 3.7 Let R be an Artinian ring. If PG(R) is a forest, then R is isomorphic to one
of the rings:

Z3, Z4, Z2[x]/(x2), (Z2)
k, (Z2)

k × Z3, (Z2)
k × Z4, (Z2)

k × Z2[x]/(x2),

for some positive integer k.
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Proof Since gr(PG(R)) = ∞, so |U (R)| ≤ 2 and by [4, Lemma 1], R is isomorphic to one
of the rings:

Z3, Z4, Z2[x]/(x2), (Z2)
k, (Z2)

k × Z3, (Z2)
k × Z4, (Z2)

k × Z2[x]/(x2),

for some positive integer k. 	

The strong product G � H of graphs G and H is a graph such that the vertex set of

G � H is the Cartesian product V (G) × V (H); and any two distinct vertices (u1, u2) and
(v1, v2) are adjacent in G � H if and only if (u1 = v1 and u2 adj v2) or (u1 adj v1 and
u2 = v2) or (u1 adj v1 and u2 adj v2). Now, suppose that R1 and R2 are two rings. Let
x1, y1 ∈ R1 and x2, y2 ∈ R2. We know that (x1, x2)(R1 × R2) = (y1, y2)(R1 × R2) if and
only if x1 R1 = y1 R1 and x2 R2 = y2 R2. So PG(R1 × R2) = PG(R1) � PG(R2) and also
ω(PG(R1 × R2)) = ω(PG(R1)) × ω(PG(R2)).

Theorem 3.8 Let R1 and R2 be two rings, and let α(PG(R1)) = α1 and α(PG(R2)) = α2.
Then α(PG(R1 × R2)) = α1 + α2 + α1α2.

Proof It is obvious that PG(R1) is the union of α1 disjoint complete graphs and similarly,
PG(R2) is the union of α2 disjoint complete graphs. Suppose that A1, . . . , Aα1 are all
the components of PG(R1) and B1, . . . , Bα2 are all the components of PG(R2). Then
A1 × 0, . . . , Aα1 × 0 and 0 × B1, . . . , 0 × Bα2 and Ai × B j , where 1 ≤ i ≤ α1 and
1 ≤ j ≤ α2 are all the components of PG(R1 × R2), each of which is a complete graph.
Hence α(PG(R1 × R2)) = α1 + α2 + α1α2. 	


Let R1, . . . , Rn be rings. By induction, one can easily prove that PG(R1 × · · · × Rn) =
PG(R1) � · · · � PG(Rn).

Now, we consider the graph PG(Zn) for each positive integer n > 1. Let d(n) denote
the number of positive divisors of n. Clearly, α(PG(Zn)) = d(n) − 1. Suppose that ϕ is the
Euler phi function. By [6, Theorem 2.5], if d is a positive divisor of n, then ϕ(d) ≤ ϕ(n). So
χ(PG(Zn)) = ω(PG(Zn)) = ϕ(n).

The chromatic index of G, denoted by χ ′(G), is the smallest number of colors which can
be assigned to the edges of G such that no two edges incident on the same vertex have the
same color. By Vizing’s Theorem, if G is a graph whose maximum vertex degree is �, then
� ≤ χ ′(G) ≤ �+1. Vizing’s Theorem divides the graphs into two classes according to their
chromatic index; graphs satisfying χ ′(G) = � are called class 1, those with χ ′(G) = �+ 1
are class 2.

We now state the following result which shows that the graph PG(Zn) is class 1.

Theorem 3.9 The principal graph PG(Zn) is class 1, for each positive integer n > 1.

Proof By [6, Theorem 2.5], ϕ(d) is even for each positive integer d ≥ 3. Thus each connected
component of PG(Zn) with two or more vertices is a complete graph which contains an even
number of vertices. So by [5, Theorem 5.11], PG(Zn) is class 1. 	

Remark 3.10 By [6, Theorem 2.5], ϕ(d) ≥ 2 for each positive integer d ≥ 3. So if n is
even, then PG(Zn) contains exactly one isolated vertex and otherwise it contains no isolated
vertex.

Theorem 3.11 If G = PG(Zn), then the following conditions are equivalent:

(1) G is a regular graph.
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(2) n is a prime number.
(3) G is a complete graph.
(4) G is a Hamiltonian graph or G ∼= PG(Z2) or G ∼= PG(Z3).
(5) G is a connected graph.

Proof Suppose that PG(Zn) is a regular graph. So if d �= 1 is a positive divisor of n, then
ϕ(d) = ϕ(n). Assume that p and q are prime divisors of n. Then ϕ(p) = ϕ(q) implies that
p = q and thus n is a prime number (note that ϕ(p2) �= ϕ(p)). By Corollary 3.2, the proof
is complete. 	


Let m, n > 1 be positive integers. We know that PG(Zm × Zn) = PG(Zm) � PG(Zn)

and so ω(PG(Zm × Zn)) = ϕ(m)ϕ(n). Then ω(PG(Zm × Zn)) ≤ ω(PG(Zmn)).
We close this article by considering some relations between PG(R) and M − PG(R),

where R is a ring and M is a non-zero R-module.

Theorem 3.12 Let R be a ring and M be a non-zero R-module. Then PG(R/ann(M)) is a
subgraph of M − PG(R). Moreover, |ann(M)|ω(PG(R/ann(M))) ≤ ω(M-PG(R)).

Proof Let R = R/ann(M) and suppose that x and y are two adjacent vertices of PG(R).
Now, assume that m ∈ M . Since x R = y R, there exists r ∈ R such that x = yr . Hence
(x − yr)m = 0 which implies that x M ⊆ yM . Similarly, yM ⊆ x M . So x and y are
two adjacent vertices of M − PG(R). Thus by assigning x to x, PG(R) is a subgraph of
M − PG(R). By Remark 2.5, the last part is clear. 	

Theorem 3.13 Let R be a ring and M be a non-zero R-module. Then PG(R) is a spanning
subgraph of M − PG(R). Furthermore, if M is a faithful cyclic R-module, then the graph
PG(R) is exactly the same as the graph M − PG(R).

Proof Suppose that x and y are two adjacent vertices of PG(R). Clearly, x R = y R implies
that x M = yM . So x and y are two adjacent vertices of M − PG(R). Thus PG(R) is
a spanning subgraph of M − PG(R). Now, assume that ann(M) = 0 and M = Rm for
some m ∈ M . If x and y are two adjacent vertices of M − PG(R), then x M = yM and so
there exists r ∈ R such that xm = yrm. Hence x − yr ∈ ann(M) = 0 which implies that
x R ⊆ y R. Similarly, y R ⊆ x R. Therefore x and y are two adjacent vertices of PG(R). So
PG(R) is exactly the same as M − PG(R). 	

Theorem 3.14 Let R be a ring. If M = ∏

i∈I Ri , where Ri ∼= R for each i ∈ I , then PG(R)

is exactly the same as M − PG(R).

Proof Suppose that x, y ∈ R\{0}. By the previous theorem, x R = y R implies that
x

∏
i∈I Ri = y

∏
i∈I Ri . Now, assume that x

∏
i∈I Ri = y

∏
i∈I Ri . Let e = (ei ), where

e1 = 1 and ei = 0, for each i �= 1. So there exists r = (ri ) ∈ ∏
i∈I Ri such that xe = y(ri )

and hence x = yr1. Thus x R ⊆ y R. Similarly, y R ⊆ x R and so x R = y R. 	

Corollary 3.15 Let R be a ring and F be a free R-module. Then PG(R) is exactly the same
as F − PG(R).

Proof Since F is isomorphic to a direct sum of copies of R, the result holds by the previous
theorem. 	
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