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Abstract Let f be a real differentiable function in an open interval I with one-to-one
derivative. We observe that if the Lagrange mean L [ f ] of a generator f is conditionally
positively homogeneous, then f must be of the class C∞ and the function

g(x) := x f ′ (x) − f (x) , x ∈ I,

is also a generator of L [ f ] i.e. that L [g] = L [ f ]. We show that this fact and a result on equality
of two Lagrange means allow easily to determine all positively homogeneous Lagrange
means.
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1 Introduction

Let f be a real differentiable function defined in an open interval I ⊂ R. By the Lagrange
mean-value theorem, there exists a two-place function L [ f ] : I 2 → I , called a Lagrange
mean of a generator f , such that, for all x, y ∈ I,

f (x) − f (y) = f ′ (L [ f ] (x, y)
)

(x − y) .

If the derivative f ′ is one-to-one, then the mean L [ f ] is uniquely determined.
It is well known that if the Lagrange mean L [ f ] is positively homogeneous, then it is a

generalized logarithmic mean L[p] ([4,5] cf. also [3], p. 404, Theorem 6). The main purpose
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of this note is to present a new proof of this fact. The idea is based on the observation that
any generator f of a conditionally positively homogeneous Lagrange mean L [ f ] : I 2 → I
must be of the class C∞ and that the function

g(x) := x f ′ (x) − f (x) , x ∈ I,

is also a generator of L [ f ], that is L [g] = L [ f ]. These facts and a result on equality of two
Lagrange means (cf. [1], [6]) imply that

x f ′ (x) − f (x) = a f (x) + bx + c, x ∈ I,

for some a, b, c ∈ R. Solving this differential equation we obtain all the homogeneous
Lagrange means.

In section 2 we recall the definitions of a mean, the Lagrange mean based on Lagrange’s
mean-value theorem (that is used in this paper), its integral counterpart and some of its
properties. In section 3 we prove Theorem 3.2, a slight modification of the results on the
equality of two Lagrange means (cf. [1] and [6]). In the first part of Theorem 3.2 we assume
that at least one of two equal means is uniquely determined. In section 4 we show that any
generator f of the conditionally homogeneous Lagrange mean L [ f ] in an open interval I,
that is such that, for all x, y ∈ I and t > 0,

t x, t y ∈ I �⇒ L [ f ] (t x, t y) = t L [ f ] (x, y) ,

is infinitely times differentiable (Theorem 4.1). Applying these results, in section 5 we deter-
mine all the conditionally homogeneous Lagrange means (Theorem 5.1).

Applicability of the method to determine the form of all conditionally homogeneous
Cauchy means is discussed in the last section.

2 Means, Lagrange means and some their properties

Let I ⊂ R be an interval. A function M : I 2 → R is said to be a mean in I if

min (x, y) ≤ M (x, y) ≤ max (x, y) , x, y ∈ I.

A mean M is called strict if these inequalities are sharp for all x, y ∈ I , x 
= y; and symmetric
if M (x, y) = M (y, x) for all x, y ∈ I.

Remark 2.1 If M : I 2 → R is a mean in an interval I, then

(1) M is reflexive, that is
M (x, x) = x, x ∈ I ;

(2) for any interval J ⊂ I,
M

(
J 2) = J ;

in particular, M
(
I 2

) = I.

Remark 2.2 If M : I 2 → R is a reflexive function, that is if M (x, x) = x for all x ∈ I, and
(strictly) increasing with respect to each variable, then it is a (strict) mean in I.

Remark 2.3 If M : I 2 → I is a continuous and strict mean in I, then for any u ∈ int I there
are x, y ∈ int I, x 
= y, such that M (x, y) = u.
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By the Lagrange mean-value theorem, if a real function f defined on an interval I ⊂ R

is differentiable, then there exists a mean L [ f ] : I 2 → I such that, for all x, y ∈ I, x 
= y,

f (x) − f (y)

x − y
= f ′ (L [ f ] (x, y)

)
.

If moreover f
′
is one-to-one, then

L [ f ] (x, y) =
{(

f ′)−1
(

f (x)− f (y)
x−y

)
for x 
= y

x for x = y
,

so L [ f ] is uniquely determined and, by the Darboux property of derivative, f ′ is continuous
and strictly monotonic (cf. [7], Remark 2.1), so f is either strictly convex or strictly concave
in I .

The mean L [ f ] is called the Lagrange mean and the function f its generator. It obvious
that L [ f ] is continuous, symmetric and strict, that is

min (x, y) < L [ f ] (x, y) < max (x, y) , x, y ∈ I, x 
= y.

Remark 2.4 Assume that h : I → R is continuous and strictly monotonic. Then Lh : I 2 → I
defined by

Lh (x, y) :=
{

h−1
(

1
y−x

∫ y
x h (t) dt

)
for x 
= y

x for x = y

is a strict mean in the interval I and it is called a Lagrange mean (cf. for instance [1], [2], [3]).
Setting h := f ′, it is not difficult to see that Lh = L [ f ]. Note that in the integral definition
of the Lagrange mean Lh from the very beginning it is assumed that the function h (the
derivative of f ) is continuous and strictly monotonic.

3 Equality of two Lagrange means

We need the following [cf. [6], Theorem 3.2]

Lemma 3.1 Let I ⊂ R be an open interval, f, g : I → R , and let I f stand for the range of
the two variable function

(x, y) −→ f (x) − f (y)

x − y
, x, y ∈ I, x 
= y.

Suppose that f is strictly convex or strictly concave on I . If φ : I f → R satisfies the
functional equation

g (x) − g (y)

x − y
= φ

(
f (x) − f (y)

x − y

)
, x, y ∈ I, x 
= y,

then there exist a, b ∈ R such that

φ (u) = au + b, u ∈ I f .

Applying this lemma we prove the following (cf. [6])

123



122 J. Matkowski

Theorem 3.2 Let I ⊂ R be an interval. Suppose that the functions f, g : I → R are
differentiable.

(i) If f ′ is one-to-one and
L [g] = L [ f ]

then there are a, b, c ∈ R, such that

g(x) = a f (x) + bx + c, x ∈ I.

(ii) If f ′ and g′ are one-to-one and

L [g] = L [ f ]

then there are a, b, c ∈ R, a 
= 0, such that

g(x) = a f (x) + bx + c, x ∈ I.

Proof To prove (i) assume that f ′ is one-to-one and L [g] = L [ f ]. Since

g′ (L [g] (x, y)
)

= g(x) − g (y)

x − y
, x, y ∈ I, x 
= y,

and

L [g] (x, y) = L [ f ] (x, y) = (
f ′)−1

(
f (x) − f (y)

x − y

)
, x, y ∈ I, x 
= y,

we obtain

g′
((

f ′)−1
(

f (x) − f (y)

x − y

))
= g(x) − g (y)

x − y
, x, y ∈ I, x 
= y,

whence, setting
φ := g′ ◦ (

f ′)−1
,

we get the equality

φ

(
f (x) − f (y)

x − y

)
= g(x) − g (y)

x − y
, x, y ∈ I, x 
= y. (3.1)

By the Darboux property of derivative, f ′ is continuous and strictly monotonic (cf. [7],
Remark 2.1), so f is either strictly convex or strictly concave in I . In view of Lemma 3.1
there exist a, b ∈ R such that

φ (u) = au + b, u ∈ I f ,

whence, by (3.1),

a
f (x) − f (y)

x − y
+ b = g(x) − g (y)

x − y
, x, y ∈ I, x 
= y,

which implies that

g (x) − a f (x) − bx = g (y) − a f (y) − by, x, y ∈ I.

Consequently, there is c ∈ R such that

g (x) = a f (x) + bx + c, x ∈ I,

which completes the proof of (i). If g′ is one-to-one then, clearly, in this formula the number
a cannot be zero. �
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Remark 3.3 Assuming the integral definition of the Lagrange mean, Berrone & Moro proved
[[1], Corollary 7] that if f ′ and g′ be continuous and strictly monotonic functions defined
on an interval I , then their corresponding Lagrange means coincide if, and only if, there are
two real constants γ1, γ2, with γ1 
= 0 such that

g′ = γ1 f ′ + γ2 on I.

In fact, part (ii) of Theorem 3.2 is equivalent to the result of Berrone & Moro.

4 The homogeneity of L[ f ] implies the high regularity of f

In this section we prove the following

Theorem 4.1 Let I ⊂ (0,∞) be an open interval. Suppose that f : I → R is differentiable
and f ′ is one-to-one. If the Lagrange mean L [ f ] is conditionally positively homogeneous,
that is, if

L [ f ] (t x, t y) = t L [ f ] (x, y)

for all x, y ∈ I and t > 0 such that t x, t y ∈ I, then f is of the class C∞ in I.

Proof Assume that L [ f ] is conditionally positively homogeneous. Then, by the definition of
the Lagrange mean,

(
f ′)−1

(
f (t x) − f (t y)

t x − t y

)
= t

(
f ′)−1

(
f (x) − f (y)

x − y

)

for all x, y ∈ I, x 
= y, and t > 0 such that t x, t y ∈ I. Take arbitrary u ∈ I. According to
Remark 2.3 there exist x, y ∈ I, x 
= y, such that L [ f ] (x, y) = u. From (3.1) we get

f ′ (ut) = f (t x) − f (t y)

t x − t y
.

Since the right-hand side is a differentiable function of t in a neighborhood of 1, the
function f ′ is differentiable in a neighborhood at the point u. Since u ∈ I is arbitrary, the
function f is twice differentiable in I. Now an easy inductive argument shows that f is of
the class C∞ in I . �

5 Equality of means as an approach to determine the homogeneous Lagrange means

We apply Theorem 3.2 on the equality of two Lagrange means to prove the following

Theorem 5.1 Let I ⊂ (0,∞) be an open interval. Suppose that f : I → R is differentiable
and f ′ is one-to-one. Then the following conditions are equivalent:

(i) the Lagrange mean L [ f ] is conditionally positively homogeneous, that is,

L [ f ] (t x, t y) = t L [ f ] (x, y) (5.1)

for all x, y ∈ I and t > 0 such that t x, t y ∈ I ;
(ii) there are p, a, b, c ∈ R, p 
= 1, a 
= 0, such that

f (x) =
⎧⎨
⎩

ax p + bx + c, x ∈ I i f 0 
= p 
= 1
a ln x + bx + c, x ∈ I i f p = 0
ax ln x + bx + c x ∈ I i f p = 1

;
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(iii) there is p ∈ R such that L [ f ] = L[p]|I 2 where L[p] : (0,∞)2 → (0,∞) is defined
by

L[p] (x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x p−y p

p(x−y)

)1/(p−1)

i f p 
= 0, p 
= 1
x−y

ln x−ln y i f p = 0

e−1
(

xx

yy

)1/(x−y)

i f p = 1

f or x 
= y; L[p] (x, x) = x .

(5.2)

Proof To show the implication (i) ⇒ (i i) assume (i). By Theorem 4.1 the function f is
twice differentiable in I. Since f ′ is one-to-one, the set

{
x ∈ I : f ′′ (x) = 0

}
is nowhere

dense in (0,∞). Let J ⊂ I be a maximal (in the sense of inclusion) open interval such
that f ′′ (x) 
= 0 for all x ∈ J . Since the interval J is open, for arbitrarily fixed x, y ∈ J,

x 
= y, there is δ > 0 such that for all t ∈ (1 − δ, 1 + δ) we have t x, t y ∈ J, whence
L [ f ] (t x, t y) ∈ J and, consequently,

f ′′ (L [ f ] (t x, t y)
)


= 0, t ∈ (1 − δ, 1 + δ) .

Differentiating both sides of (5.1) with respect to t ∈ (1 − δ, 1 + δ) , we get
[
x f ′ (t x) − y f ′ (t y)

]
(t x − t y) − [ f (t x) − f (t y)] (x − y)

f ′′
(
( f ′)−1

(
f (t x)− f (t y)

t(x−y)

))
(t x − t y)2

= (
f ′)−1

(
f (x) − f (y)

x − y

)
,

that is [
x f ′ (t x) − y f ′ (t y)

]
(t x − t y) − [ f (t x) − f (t y)] (x − y)

f ′′ (L [ f ] (t x, t y)
)
(t x − t y)2 = L [ f ] (t x, t y),

whence, setting t = 1, after obvious simplification, we obtain
[
x f ′ (x) − f (x)

] − [
y f ′ (y) − f (y)

]

x − y
= L [ f ] (x, y) f ′′ (L [ f ] (x, y)

)
, x, y ∈ J, x 
= y.

Since the function g : J → R defined by

g(x) := x f ′ (x) − f (x) (5.3)

is differentiable and
g′ (x) = x f ′′ (x) , x ∈ J,

we can write this equality in the form

g (x) − g (y)

x − y
= g′ (L [ f ] (x, y)

)
, x, y ∈ J, x 
= y,

which implies that L [g] = L [ f ] in J 2. By Theorem 3.2(i) there are α, β, γ ∈ R, such that

g(x) = α f (x) + βx + γ, x ∈ J.

In view of (5.3) we hence get

x f ′ (x) − f (x) = α f (x) + βx + γ, x ∈ J,

whence, setting
p := α + 1,
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we obtain
x f ′ (x) = p f (x) + βx + γ, x ∈ J.

Solving this linear differential equation, in the case when 0 
= p 
= 1, we get

f (x) = ax p + bx + c, x ∈ J,

in the case when p = 0, we get

f (x) = a ln x + bx + c, x ∈ J,

and in the case when p = 1, we get

f (x) = ax ln x + bx + c, x ∈ J,

for some a, b, c ∈ R. Since, by the assumption, f ′ is one-to-one, we conclude that the number
a cannot be zero. Note also that in the first case

f ′′ (x) = p(p − 1)ax p−2, x ∈ J,

in the second case when p = 0,

f ′′ (x) = − a

x2 , x ∈ J,

and, in the case p = 1,

f ′′ (x) = a

x
, x ∈ J.

Since J is a maximal subinterval of I such that f ′′ (x) 
= 0 for all x ∈ J, it follows that
J = I for all p. This proves that (i i) holds true.

Since the remaining implications (i i) ⇒ (i i i) and (i i i) ⇒ (i) are easy to verify, the proof
is complete. �
Remark 5.2 Clearly, for any p ∈ R, the mean L[p] is posiyively homogeneous, that is

L[p] (t x, t y) = tL[p] (x, y) , t, x, y > 0.

The mean L[0] is called the logarithmic mean, the mean L[1], defined as the pointwise limit,
by the formula

L[1] (x, y) := lim
p→1

L[p] (x, y) , x, y > 0,

is called the identric mean, and
{L[p] : p ∈ R

}
is sometime called the family of generalized

logarithmic means. It is well-know (and obvious) that, for arbitrary (x, y) ∈ (0,∞)2 , the
function

R � p → L[p] (x, y)

is continuous.

6 Remarks on the relevant question for Cauchy means

Let I ⊂ R be an interval. Assume that f, g : I → R are differentiable and g′ (x) 
= 0 for
all x ∈ I. By the Cauchy mean-value theorem, there exists a Cauchy mean C [ f,g] : I 2 → I
such that, for all x, y ∈ I, x 
= y,

f (x) − f (y)

g (x) − g (y)
= f ′

g′
(

C [ f,g] (x, y)
)
.
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(The functions f and g are called the generators of C [ f,g].) If moreover f ′
g′ is one-to-one,

then

C [ f,g] (x, y) =
{(

f ′
g′

)−1 (
f (x)− f (y)
g(x)−g(y)

)
for x 
= y

x for x = y
,

so C [ f,g] is uniquely determined. Note here that

f ′

g′ ◦ g−1 = (
f ◦ g−1)′

or, equivalently,
f ′

g′ = (
f ◦ g−1) ◦ g.

In [7], Proposition 1, it was observed that

C [ f,g] (x, y) = g−1
(

L [ f ◦g−1] (g (x) , g (y))
)

, x .y ∈ I,

that is the Cauchy mean C [ f,g] is g-conjugate to the Lagrange mean L [ f ◦g−1] of the generator
f ◦ g−1. Hence we have

L [ f ◦g−1] (u, v) = g
(

C [ f,g] (g−1 (u) , g−1 (v)
))

, u, v ∈ g (I ) .

Now applying Theorem 5.1 with f replaced by f ◦ g−1 we obtain the following

Corollary 6.1 Let I ⊂ (0,∞) be an open interval. Suppose that f, g : I → R are differ-

entiable, g′ (x) 
= 0 for all x ∈ I, and
(

f ′
g′

)−1
is one-to-one. Then the following conditions

are equivalent:
(i) the Lagrange mean L [ f ◦g−1] is conditionally positively homogeneous, that is,

L [ f ◦g−1] (tu, tv) = t L [ f ◦g−1] (u, v)

for all u, v ∈ I and t > 0 such that tu, tv ∈ g (I ) ;
(ii) there are p, a, b, c ∈ R, p 
= 1, a 
= 0, such that

f (x) =
{

a [g (x)]p + bg (x) + c, x ∈ I i f p 
= 0
a ln g (x) + b (x) + c, x ∈ I i f p = 0

;

(iii) there is p ∈ R, p 
= 1, such that

C [ f,g] (x, y) = g−1
(
L[p]|g(I )2 (g (x) , g (y))

)
, x, y ∈ I,

where L[p] : (0,∞)2 → (0,∞) , for every p ∈ R, is defined by (5.2).

In this context it is natural to ask if we can determine all conditionally positively homo-
geneous Cauchy means by a similar method as that in the case of Lagrange means. It turns
out that, in general not. First of all let us note that, under the assumptions of the definition,
the condition

C [ f,g] (t x, t y) = tC [ f,g] (x, y) (6.1)

for all x, y ∈ I and t > 0 such that t x, t y ∈ I, does not imply that both f and g must be of
the higher regularity. It is not difficult to see that this condition and the assumption that one
of the functions of f or g is twice differentiable imply that the remaining one is also twice
differentiable.

Assuming that one of these functions is twice differentiable and differentiating both sides
of (6.1) with respect to t and then setting t = 1 leads to the following interesting equality
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C [ f,g] (x, y) ·
(

f ′
g′

)′ (
C [ f,g] (x, y)

)

f ′
g′

(
C [ f,g] (x, y)

) = x f ′ (x) − y f ′ (y)

f (x) − f (y)
− xg′ (x) − yg′ (y)

g (x) − g (y)

for all x, y ∈ I, x 
= y. Hence, setting

ϕh (u) := uh′ (u)

h (u)
,

for a differentiable function h such that h′ (u) 
= 0 for all u ∈ I, and applying the Cauchy
mean-value theorem for each of two difference quotient on the right side, we obtain

ϕ f ′
g′

(
C [ f,g] (x, y)

)
= ϕ f

(
C [ f,id· f ] (x, y)

)
− ϕg

(
C [g,id·g] (x, y)

)
, x, y ∈ I. (6.2)

Thus we have shown the following

Corollary 6.2 Let I ⊂ (0,∞) be an open interval. Suppose that f, g : I → R are differ-

entiable, g′ (x) 
= 0 for all x ∈ I, and
(

f ′
g′

)−1
is one-to-one. If the Cauchy mean C [ f,g] is

conditionally positively homogeneous, then (6.2) holds true.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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