
Vol.:(0123456789)

Machine Learning (2023) 112:1315–1335
https://doi.org/10.1007/s10994-022-06287-5

1 3

Neural predictor‑based automated graph classifier
framework

Babatounde Moctard Oloulade1 · Jianliang Gao1 · Jiamin Chen1 · Raeed Al‑Sabri1 ·
Tengfei Lyu1

Received: 15 February 2022 / Revised: 31 October 2022 / Accepted: 23 November 2022 /
Published online: 20 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Graph Neural Architecture Search (Graph-NAS) methods have shown great potential in
finding better graph neural network designs compared to handcrafted designs. However,
existing Graph-NAS frameworks are based on complex algorithms and fail to maintain low
costs for high scalability with high performance. They require full training of thousands of
graph neural networks to inform the search process, resulting in a prohibitive computational
cost, which is not necessarily affordable for the users interested. Due to the computation
cost, many researchers have limited the search space exploration ability, which may lead
to a local optimum solution. In this paper, we propose a performance predictor-based
graph neural architecture search (PGNAS) framework. The proposed approach consists of
three conceptually much simpler and basic phases, and can broadly explore a search space
with a much cheaper computation cost. We train n sampled architectures from a search
space to generate n (architecture, validation accuracy) pairs used to train a performance
distributions learner where the features are represented by the architecture description
and the validation accuracy denotes the target. Next, we use this performance distribution
learner to predict the validation accuracies of architectures in the search space. Finally, we
train the top-K predicted architectures and choose the architecture with the best validation
result. Although our approach seems simple, it is efficient and scalable; experiment results
show that PGNAS outperforms existing both handcrafted and Graph-NAS models on four
benchmark datasets.

Keywords  Graph classification · Neural architecture search · Neural performance
predictor · Graph neural network

Editors: Krzysztof Dembczynski and Emilie Devijver.

 *	 Jianliang Gao
	 gaojianliang@csu.edu.cn

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06287-5&domain=pdf

1316	 Machine Learning (2023) 112:1315–1335

1 3

1  Introduction

Graph neural networks (GNNs) have become a powerful approach for graph data
processing as they achieve great performances in various tasks (Wu et al., 2021; Liu et al.,
2020). GNN models are usually handcraft-built models. However, a handcraft-built GNN
model is time-consuming and requires expert experience and unwritten rules of thumb
because of the availability of multiple-choice combinations for the selection of GNN
components, which are sensitive to variation. The complexity of GNN model architectures
has brought significant challenges to the existing GNN efficiencies. As response, many
studies have attempted to apply neural architecture search(NAS) approaches to graph
representation learning. Generally, NAS frameworks work in two iterative stages. The first
step is to generate a child model from a search space, and the second step is to evaluate
it. The evaluation in each iteration serves as a benchmark for the comparison in the
following iterations. The difference between the different frameworks, therefore, lies in
three essential points, which are: (1) how to design the search space, (2) how to evaluate a
generated architecture, and (3) how to optimize the search for finding the best architecture
efficiently. The above challenges are commonly solved through three main panels: search
space, search strategy, and optimization strategy (Oloulade et al., 2021).

Message-passing schemes have been given much credit by researchers for their ability
to better represent nodes’ properties. The attention function, the aggregation function, the
attention head, and others are all components of this representation that can be learned.
Several possibilities exist for each of these functions, which have a significant impact on
the model’s performance. There are two broad categories of search space used in existing
studies to discover the best combination of components. The first class defines a search
space for the various functions but uses fixed hyper-parameters (Zhou et al., 2019; Zhao
et al., 2020) while the second class defines a search space including functions and hyper-
parameters (Li & King, 2020). While the latter will lead to a more stable optimum solution,
the search space scale might have supplementary computation costs. It is worth noting that
exploring all possible GNNs architectures in the vast search space is too time-consuming
or impossible for big graph data. This feature poses a scalability issue when searching
for the optimal model. Thus, the main challenge is how to find a trade-off between high
performance, low cost, and strengthened productivity through the search algorithm. Several
search algorithms have been proposed for different frameworks, including reinforcement
learning (RL) (Gao et al., 2020), genetic algorithm (GA) (Zhou et al., 2019), bayesian
optimization (BO) (Yoon et al., 2020), differentiable search (DS) (Cai et al., 2021), and
random search (RS) (You et al., 2020). These search strategies have also been combined
(Zhou et al., 2019).

While these frameworks have proven to outperform handcrafted GNN models, it is still
necessary to find a robust trade-off between performance, cost, and scalability. Existing
solutions fail to maintain low costs for high scalability and high performance (Zhang et al.,
2021; Oloulade et al., 2021). Existing methods have to limit search space exploration
because of the expensive computation cost. The main challenge remains how to speed
up the child model evaluation and improve the efficiency of the evaluation process. To
overcome this challenge, several strategies have been proposed and have been applied
individually and in combination. The first strategy that quickly gained consensus is the
weight sharing, which helps prevent a newly generated child model from being trained
from scratch to convergence. However, Zhou et al. (2019) proved through experiments
that weight sharing is not empirically helpful. Another strategy is the single-path one-shot

1317Machine Learning (2023) 112:1315–1335	

1 3

model proposed (Guo et al., 2020) which uses uniform sampling with only one operation
activated between the input and output pair at each iteration. More recently, GraphPAS
(Chen et al., 2021) proposed parallel computation with a genetic algorithm. However,
existing frameworks still need to train several GNN configurations, resulting in a
prohibitive computational cost, which is not necessarily affordable for the users interested.
Recently, the predictor-based NAS approach (White et al., 2021, 2021), also called
surrogate-based modeling (Search, 2020; Shi et al., 2020, 2021) has been successfully
used for convolutional neural networks (CNNs) architectures search. However, applying
NAS algorithms to find GNN architectures is not trivial due to two major challenges as
follows: (1) The search space of GNN architectures is different from the search space of
CNN architecture. For example, only the kernel size needed to be specified for convolution
operation in CNN while in GNN, the message passing-based convolution is characterized
by a sequence of operations including at least an aggregation function and a combination
operation, which makes the architecture encoding construction non-trivial. (2) CNNs are
predominantly applied to data represented as a regular grid in the Euclidean space and
fail to extract latent representations from graph data. This drawback is due to graphs
being non-Euclidean data, which cannot be represented in an n-dimensional linear space.
Thus, some important operations, such as convolutions computed in Euclidean space with
CNN, are difficult to implement for graph data. Moreover existing NAS methods for CNN
commonly only search for operations while in this work we consider both operations and
hyperparameters simultaneously. We propose a simple but efficient Neural predictor for
graph neural architecture search (PGNAS) framework to alleviate the above problems.
In the proposed method, we first build a performance distribution learner by training n
random GNN configurations uniformly sampled from the search space and recording their
performance on a validation dataset. Encoding each architecture and obtaining pairs with n
(encoded architecture, validation accuracy). Training the performance distributions learner
using these data. Next, we predict the performance of GNN configurations in the search
space using the performance distributions learner and select the top − k promising GNN
configurations for the final step. Finally, we get the best configuration from the top − k by
training them and selecting the GNN’s configuration with the highest validation accuracy.
The workflow of our framework is illustrated in Figure 1. We use parallel computation
to speed up the first step, a regression problem where we first generate a dataset of n
samples to train on. The second step can be carried out efficiently as predicting a model’s
performance is cheap. The last step is a standard validation where we only evaluate a

Attention
Function

const

Aggregation
Function

mean

Activation
Function

sigmoid

tanh

relu

gat

cos

sum

max
sum

gat
sigmoid

max
cos

relu

mean

const
sigmoid

1

1

1 1

1 1

1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 00000

val acc 1

val acc m

val acc n

val acc 1

val acc m

val acc n

Y
Predictor
Training

Training DatasetSample GNN Evaluation and EmbeddingGNN Sampling

const

mean

sigmoid

tanh

relu

gat

cos

sum

max

1 1 100 0 0 0 0

1 110 0 00 00

11 1 00 00 0 0

sum
cos

tanh
...

1 1 10 0 0 00 0

All GNN Encoding

...

...

0
0
0
0

0
0
0
0 0

0
0
0

0
0
0
0

0
0

0

0
0

0
0

0

0
0

0
0

0
0

0

1
1
1
1

1
1
1

1

1
1

1
1

1
1

1
1

1
10

0 0
00

Inference Dataset

Predictor
Inference

pred val acc 1

pred val acc 2

pred val acc M

Y

pred val acc 3

pred val acc 4

...
...

...
...

pred val acc
M-1

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

1

1

1

1

1

1

1

1

1

1

1

1

1 1 10 0

0 0 01 1 10 00

sample
GNN embedding

all GNN embedding

sumconst
tanh

mean
const sigmoid

max
gat

tanh

top k GNN evaluation

val acc 1

val acc 2

val acc k

Predicting and Selecting

The Optimal GNN

the best val acc

top k pred val acc GNN

top 2 pred val acc GNN

top 1 pred val acc GNN

Attention
Function

Aggregation
Function

Activation
Function

All GNN Sampling

^

...
...

 Training
Finish

Predictor

all GNN embedding

Fig. 1   Predictor-based graph neural architecture search framework. First, a neural predictor is built using
encoded few sampled GNN configurations from the search space and their validation accuracy distribution.
Next, the predictor is used to predict all GNN configurations in the search space

1318	 Machine Learning (2023) 112:1315–1335

1 3

well-curated set of k GNN configurations. While the method outlined above might seem
straightforward, it is very effective. Our contributions are summarized as follows:

•	 To the best of our knowledge, we make the first attempt to use a performance neural
predictor-based framework for graph neural architecture search solving the problem of
search efficiency.

•	 We propose an efficient performance predictor-based search algorithm PGNAS for
graph neural network architectures search. In PGNAS, we simultaneously consider
GNN architecture components, hyperparameters, and feature engineering. We predict
the performance of sampled GNN configurations, significantly reducing GNN
configurations’ evaluation cost compared with existing frameworks. Moreover, we use
the simple yet effective ranking process to choose the best model to deploy.

•	 We discuss PGNAS scalability, and we evaluate it by conducting extensive experiments
on different types of datasets compared with existing both handcrafted and automated
graph neural architecture search frameworks. Furthermore, experiment results show
that PGNAS can significantly accelerate the graph neural architecture search framework
while improving efficiency.

2 � Related work

Existing Graph-NAS frameworks generally consist of a recursive process involving three
components: a search space, a search strategy, and a performance estimation strategy. The
search strategy generates architectures from a predefined search space over time based
on the performance evaluation determined via the estimation strategy. Many methods
based on reinforcement learning, genetic algorithm, Bayesian optimization, differentiable
search, random search, or a combination of them have been used for building the Graph-
NAS framework. The reinforcement learning-based method uses a recurrent network as
a controller to generate child models from a search and the reward of the child model is
computed as feedback to optimize the expected performance of generated child models.
This approach has been used by many works with some differences. For example, in
GraphNAS (Gao et al., 2020) a generated child model by the controller is replaced in its
entirety with a newly generated child model regardless of their similarities while AGNN
(Zhou et al., 2019) uses a controller-based reinforce rule of policy gradient (Sutton et al.,
1999) to gradually validate models with small steps. Moreover, GraphNAS adopted the
standard parameter sharing strategy while AGNN uses constrained parameter sharing using
three constraints. It is worth noting that in the former methods it is hard for the controller
to learn which part of a model influences the accuracy change compared to another model
and standard parameter sharing would lead to unstable training when sharing parameters
among heterogeneous GNNs.

Genetic algorithm-based search has been used by many works (Shi et al., 2020; Li
& King, 2020; Chen et al., 2021), in which the population is represented by the search
space and an individual is represented by a GNN architecture. The main limitation of this
approach is the slow convergence (Oloulade et al., 2021). To overcome these burdens,
GraphPAS (Chen et al., 2021) proposes a parallel genetic algorithm-based framework
designing a parallel sharing-based evolution learning, which improves search efficiency.

In a differentiable search for Graph-NAS, the key concept is to build a supernet by
stacking mixed operations. The output of each layer is the combination of applied mixed

1319Machine Learning (2023) 112:1315–1335	

1 3

operations. The coefficients represent selection parameters and the loss function is
minimized for an architectural search. Operations with a higher coefficient in each layer
are chosen to create the final GNN architecture. In existing such Graph-NAS frameworks,
a stack is usually defined as a direct acyclic graph (Zhao et al., 2021) involving an ordered
series of nodes. The continuous relaxation scheme depends on a parameterization trick,
which is less noisy and easier to train compared to the previous search algorithm. Although
this search approach can outperform the previous search approaches in terms of speed and
search quality, the construction of the supernet makes it computationally expensive costs
and it requires a differentiable latency approximation (Oloulade et al., 2021).

3 � Proposed framework

In this section, we first formulate the graph neural architecture search problem and present
the predictor-based framework. Finally, we discuss the predictor-based search framework.

3.1 � Problem formulation

Considering a graph G = (V ,E) where V and E represent a set of nodes and a set of edges,
respectively. The neural network notion of a “layer of neurons” in GNNs is translated
into a composition of functions: the first aggregates information from the neighborhood
of each node N(i) forming an intermediate vector hN(i) (AGG​); the second combines
this intermediate vector with the current node representation hi (COMB); and applies a
normalization function (NORM) and dropout (�) before applying an activation function (�) .
The following equations describe this process:

The node’s feature vector is conventionally used as the first hidden representation, h(0)
i

= xi
where xi represents the feature the node i (Kipf & Welling, 2017).

Given how a GNN works, the problem of searching for its architecture can be formally
defined as follows: for a search space S of graph neural networks, a training dataset Dtrain , a
validation dataset Dval and performance evaluation Y, the goal is to find the optimal GNN’s
configuration gnnopt ∈ S with the best-expected performance evaluation Y on Dval , when
its parameters �∗ are set by minimizing a loss function L on Dtrain , fixing the following
bi-level optimization problem mathematically expressed as follows:

3.2 � Proposed search framework

Our goal is to model the validation accuracy Y of a graph neural network (GNN) configura-
tion gnn ∈ S using the description of the GNN, which is given by a one-hot-based encoder

(1)hk
N(i)

= AGG(hk−1
j

∶ j ∈ N(i))

(2)hk
i
= �(�(NORM(COMB(h

(k−1)

i
, hk

N(i)
))))

(3)
gnn∗ = argmax

s∈S

Y(gnn(�∗),Dval)

s.t. �∗ = argmin
�

L(gnn(�),Dtrain)

1320	 Machine Learning (2023) 112:1315–1335

1 3

model �(⋅) . For each GNN configuration gnn trained, we record the encoding of the con-
figuration and its final validation accuracy. We sample and train a population of n configu-
rations obtaining a set Sp = {(�(gnn1), Y1), (�(gnn2),Y2), ..., (�(gnnn),Yn)} . The obtained set
is used to train a performance distribution learner and further used to predict the validation
accuracy of configurations in the search space. The encoded configuration of top-k most
promising predicted GNN configurations are decoded and the corresponding models are
trained and validated. Next, the best GNN configuration is chosen based on the validation
accuracy. As we shall see in the subsequent section, predicting GNN configuration perfor-
mance is a better way to improve search efficiency as the performance distribution learner
provides a curated list of promising GNN configurations after broadly evaluating the con-
figurations in the search space. Thus, avoiding the local optimum problem. Figure 1 shows
the predictor-based framework, which we propose to solve Eq. 3.

3.2.1 � GNN design space

A GNN architecture consists of a combination of many components. Different components
can take different values called options. We depict a general design space of GNNs that
consider GNN architecture components such as aggregation function and pooling function
and hyperparameters components such as learning rate and dropout. The designed
search space is presented in Table 1. It consists of 12 design components, resulting in
over 33.106 possible architectures with two layers. Our objective in proposing such is to
show how focusing on the design space can improve GNN research and how insensitive
our framework is to the search space size. We emphasize that the design space is easily
extendable to new design dimensions that emerge in state-of-the-art models.

3.2.2 � Sampling and encoding methods

Due to the vast size of the search space, a non-representative sample of the search space
would be inappropriate for generalizing the predictor to the whole search space. To
overcome this challenge, we propose a controlled stratified random sampling method.
For each option of each component in the search space, we use a proportional stratified
sampling method to sample s GNN configurations from the search space. Then, we force

Table 1   GNN design space Components Choices

Aggregation function Sum, max ,mean
Convolution function Linear, GCNConv, GENConv, LEConv
Dropout False, 0.3, 0.6
Activation function ReLU6, Tanh, ELU, PReLU, Sigmoid
Normalizer BatchNorm, GraphNorm, InstanceNorm
Hidden dimension 64, 128,256
Multi-head 1,2,4,8
Learning rate 1e-2, 1e-3, 5e-3, 5e-4
Weight regulation 0, 1e-3, 5e-4
Optimizer adam, sgd
Loss criterion CrossEntropyLoss, MultiMarginLoss
Pooling type global_add_pool, global_max_pool

1321Machine Learning (2023) 112:1315–1335	

1 3

the value of the current function to be the value of the current option in the loop. The
total number of sampled GNN configurations is n = s × Topt , where Topt is the total number
of options. The algorithm of the proposed sampling method is shown in Algorithm 1.
Furthermore, the ablation study result presented in Sect. 4.8 shows that the proposed
sampling method is effective compared with the random sampling method.

Upon the search space being built, n architectures were sampled from the search space
using the sampling the aforementioned method. We transform the list of chosen options
into a one-hot encoded sparse vector using the one-hot encoding of size equal to the total
number of options in the search space. One-hot encoding is often used in machine learning
algorithms for converting categorical features into numerical ones and is commonly used
as a first step to more sophisticated representation methods (Hancock & Khoshgoftaar,
2020). For each selected option, we use the one-hot encoding of size p, where p is the
number of choices available for the corresponding function in the search space. Finally, we
concatenate the encoding of each option to get the encoding of a GNN’s configuration. An
abstract example of the encoding method is shown in Fig. 2. The built dataset is used to
train a performance distribution learner.

K AGG NORM DROP ACT

K AGG NORM DROP ACT

POOL

L1

L2

Loss L2 LROPT Y

DIMATT

ATT DIM

2-layers GNN Architecture Configuration

One-hot encoding of a GNN Architecture configuration
2 Sum BatchNorm 0.6 PReLU

1000 0100 100 001100

128Linear 4 0.001Linear

00010 010 1000 0010 0100

…

…

Fig. 2   GNN architecture and its encoding representation

1322	 Machine Learning (2023) 112:1315–1335

1 3

4 � Experiments

We apply our method to find the optimal GNN model given the graph classification task to
answer the following four questions:

•	 How does GNN models found by PGNAS compare with state-of-the-art handcrafted
models and the ones searched by other NAS methods?

1323Machine Learning (2023) 112:1315–1335	

1 3

•	 How does the search efficiency of PGNAS compare with those of different search
methods?

•	 Whether or not the model encoding strategy effectively helps the predictor GNN’s
configuration to learn model performance distribution?

•	 How well does the neural predictor model learn GNN configurations performance
distribution?

•	 How does the proposed sampling method perform compared with random sampling?

This section presents more details about the datasets, baseline methods, experimental
settings, and results. We conduct extensive performance, efficiency, and analysis
experiments to evaluate the effectiveness and the scalability of PGNAS.

4.1 � Datasets

We use four benchmark datasets in this work, including the proteins dataset, enzymes
dataset, imdb-b dataset, and dd datasets. The statistics of dataset characteristics are
summarized in Table 2.

4.2 � Baseline methods

We compare GNNs architecture identified by our model against baselines, including the
state-of-art handcrafted architectures such as WEGL (Kolouri et al., 2021), BASGCN (Bai
et al., 2020), DiffPool (Ying et al., 2018), CurGraph (Wang et al., 2021), PGCN (Pasa
et al., 2021) and NAS methods such as GraphNAS (Gao et al., 2020), Genetic-GNN (Shi
et al., 2020), and Auto-GNAS (Chen et al., 2022).

4.3 � Experiment settings

The GNN architectures designed by PGNAS are implemented by the Pytorch-Geometric
library(Fey & Lenssen, 2019). We evaluate our model on graph classification tasks
with inductive settings. For all experiments, we use a consistent setup, where random
80%∕10%∕10% train/val/test splits are used for dataset split, we use the accuracy metric
for GNN performance evaluation. The total number of sampled configurations for
each function in the search space s is set to 12, and the total number of sampled GNN
configurations is given by n = s × n0 where n0 is the total number of choices in the search

Table 2   Benchmark datasets.

NG Number of Graphs; AN Average Nodes; NF Node features; NC Number of Classes

Dataset NG AN NF NC Field Source

enzymes 600 32.63 21 6 Chemical dataset (Borgwardt et al., 2005; Schomburg et al., 2004)
imdb-b 1000 19.77 – 2 Social dataset (Yanardag & Vishwanathan, 2015)
proteins 1113 39.06 4 2 Chemical dataset (Borgwardt et al., 2005; Dobson & Doig, 2003)
 dd 1178 284.32 – 2 Chemical dataset (Dobson & Doig, 2003; Shervashidze et al., 2011)
 bzr 405 35.75 3 2 Chemical dataset (Sutherland et al., 2003)

1324	 Machine Learning (2023) 112:1315–1335

1 3

space, which is 50. The number of times zinit a sampled GNN’s configuration should be
trained before recording its performance in the first step is set to 1, the number of best-
predicted GNN configurations k to keep for final evaluation is set to 20, the number of
time zfinal the predicted best GNN configurations are trained before ranking their average
performance is set to 5, and the number of time t the best GNN’s configuration is tested
before we report its average performance is set to 10. We set the number of epochs to 200
for all experiments.

4.4 � Performance distribution learner evaluation

For evaluating the ability of the performance distribution learner to learn the sampled
model performances’ distribution, we evaluate the predictor’s generalization ability to the
whole search space. We use R2 metric for both evaluations. Figure 3 shows the power of the
performance distribution learner to learn graph neural network performance distribution.

4.5 � Evaluation on graph classification task

To validate the performance of our model, we compare the GNN models discovered by
PGNAS with handcrafted models and those designed by other search approaches. The
performance of the graph classification task is summarized in Table 3. We report the test
accuracy of baseline handcrafted models from the original work. Results of NAS-based
baseline models are replicated using the Auto-GNAS1 framework with the search space
proposed by GraphNAS (Gao et al., 2020). For a fair comparison, we reduce the search
space defined in 3.2.1 to the same search space. We use “global_add_pooling” operation
for graph pooling. The best result for each group of our baselines is underlined, and the
best result on each dataset is in boldface. Looking only at the handcrafted methods, we
notice that there is no clear winner over the considered datasets. For example, WELG is the
best model for the proteins dataset while PGCN is the best model for the enzymes dataset
and BASGCN achieves the best performance on the dd dataset. Considering that these
datasets are from different fields, it shows the need for adaptive graph neural architecture
for graph classification. Besides, the result indicates that PGNAS can achieve competitive
results on all four datasets, which demonstrates the effectiveness of PGNAS in searching
efficiently neural architecture for graph classification and proving its scalability ability to
different types of networks.

4.6 � Efficiency of PGNAS

To show that PGNAS is efficient and effective, we do a supplementary experi-
ment with different values for n where we use random search instead of our search
algorithm and note this framework as PGNAS_RSe . Since the total number ntotal of
trained and validated GNN configurations by PGNAS in the whole search process is
ntotal = n ∗ zinit + k ∗ zfinal , we train and validate ntotal GNN configurations for a fair
comparison. As shown in Fig. 4, PGNAS significantly outperforms random search.
Meanwhile, it is shown that when the number of samples increases, the performance

1  https://github.com/AutoMachine0/Auto-GNAS

1325Machine Learning (2023) 112:1315–1335	

1 3

of PGNAS increases, but PGNAS can already achieve very competitive results with
600 GNN configuration samples. For simplicity, we make the experiment only on two
datasets, the proteins dataset, and the dd dataset . It is worth noting that existing NAS
methods trained a larger number of models before stopping exploring search space.
For example, GraphNAS (Gao et al., 2020) and GraphPAS (Chen et al., 2021) stop
the search process after training 2000 models. However, even if this number is larger,
it still limits the search efficiency because it represents only 0.2% of the search space
of GraphNAS and GraphPAS, which limits the search space exploration and leads to
a sub-optimal solution. GPNAS can train only 600 models for a whole search process
and perform better because of its huge search space exploration capability.

Fig. 3   The ability of the neural predictor to learn graph neural network performance distributions

1326	 Machine Learning (2023) 112:1315–1335

1 3

Ta
bl

e 
3  

P
er

fo
rm

an
ce

 c
om

pa
ris

on
 b

et
w

ee
n

PG
N

A
S

an
d

ot
he

r m
et

ho
ds

 o
n

fo
ur

 d
at

as
et

s

M
od

el
s

Pr
ot

ei
ns

 d
at

as
et

En
zy

m
es

 d
at

as
et

im
db

-b
 d

at
as

et
dd

 d
at

as
et

H
an

dc
ra

fte
d

M
od

el
s

W
EG

L
(K

ol
ou

ri
et

 a
l.,

 2
02

1)
76

.5
 ±

 4
.2

60
.5

 ±
 5

.9
75

.4
 ±

 5
.0

–
BA

SG
C

N
 (B

ai
 e

t a
l.,

 2
02

0)
76

.5
 ±

 0
.5

9
–

73
.8

6
±

 0
.9

2
80

.7
1

±
 0

.9
9

D
iff

Po
ol

 (Y
in

g
et

 a
l.,

 2
01

8)
76

.2
5

62
.5

3
–

80
.6

4
C

ur
G

ra
ph

 (W
an

g
et

 a
l.,

 2
02

1)
75

.4
 ±

 3
.1

64
.8

 ±
 3

.3
73

.4
 ±

 3
.2

78
.6

 ±
 3

.0
PG

C
N

 (P
as

a
et

 a
l.,

 2
02

1)
75

.3
1

±
 0

.3
1

70
.5

 ±
 1

.7
7

72
.6

0
±

 3
.8

0
79

.4
5

±
 0

.2
9

N
A

S
M

od
el

s
G

ra
ph

N
A

S
(G

ao
 e

t a
l.,

 2
02

0)
75

.2
0

±
 0

.0
25

–
73

.6
0

±
 0

.0
46

76
.7

4
±

 0
.0

45
SN

A
G

 (Z
ha

o
et

 a
l.,

 2
02

0)
70

.5
3 ±

0
.0
3
1
1

–
72

.5
0 ±

0
.0
4
6

72
.2

3
±
0
.0
3
8

PA
S

(C
he

n
et

 a
l.,

 2
02

2)
76

.6
4

±
 0

.0
32

–
75

.1
0

±
 0

.0
53

78
.9

6±
0.

03
36

PG
N

A
S_

ba
se

lin
e

76
.8

2
±
2
.4
8

70
.8

3
±

 2
.9

6
75

.1
2
±
1
.8
1

80
.6

3
±

 1
.7

1
PG

N
A

S
77

.5
6

±
 1

.1
71

.1
3

±
 4

.8
75

.1
8
±
3
.2

82
.8

6
±

 2
.7

7

1327Machine Learning (2023) 112:1315–1335	

1 3

4.7 � Statistical significance analysis

We make statistical tests and discuss the results of the statistical significance of the found
differences.

Firstly, we use the Friedman test (Demsar, 2006) to verify the hypothesis of equal
performance among compared methods. Before calculating the family-wise p-value,
it is needed to reject the null hypothesis, which is then compared to methods that have
equal performance. We apply non-parametric tests that are known to be suitable for
comparing predictive models based on multiple data samples (Demsar, 2006; Garcia &
Herrera, 2008). Compared to the parametric tests, the non-parametric tests require fewer
assumptions (Demsar, 2006). In this experiment, we make the analysis with seven methods
(PGNAS, BASGCN, PAS, CurGraph, PGCN, GraphNAS, and SNAG) and three datasets
(the proteins dataset, imdb-b dataset, and dd dataset). We use the Friedman ranking test
(García et al., 2010) to access the statistical significance of differences in the model’s
performance on multiple datasets, based on the average accuracy after repeated runs on

Fig. 4   Efficiency comparison

1328	 Machine Learning (2023) 112:1315–1335

1 3

each dataset. The overall performance ranking of compared methods to the accuracy metric
is presented in Fig. 5. It can be seen that the proposed PGNAS ranks first position.

Then, we obtain family-wise p-values with Bonferroni correction. We calculate the chi-
square as shown in Eq. 4,

where N is the number of datasets, k is the number of methods, and Rj the average ranking
of the jth method. With N=3 and k=7, we can get X2

F
= 14.36 Next, we calculate FF as

shown in Eq. 5.

In this experiment with seven algorithms and three datasets, FF = 7.8 . FF is distributed
according to the F-distribution with 7 − 1 = 6 and (7 − 1) × (3 − 1) = 12 degrees of free-
dom. According to the F-distribution table, the critical value (CV) of FF is 2.33 for � = 0.1 .
As a result, the hypothesis of “equal” performance among compared methods is clearly
rejected as FF > CV .

Consequently, we use the Bonferroni correction (Holm, 1979) as a post-hoc test to
compute family-wise p-values. In this computation, we set PGNAS as the control method
and compute the family-wise p-values. The family-wise p-values between PGNAS and
baseline methods are 0.0006672, 0.014019, 0.03763531, 0.03763531, 0.34470422, and
0.3447042 for SNAG, GraphNAS, CurGraph, PGCN, BASGCN, and PAS, respectively.
It is revealed from the family-wise p-values that PGNAS shows significantly better
performance over existing graph neural architecture search baseline frameworks with
� = 0.1.

Finally, we make the Nemenyi test (Demsar, 2006) to see how other baselines methods
perform against each other. The Nemenyi test shows that every baseline method has
significantly better performance over at most one other method. Figure 6 shows that every

(4)X
2

F
=

12N

k(k + 1)
[

k
∑

j=1

R2

j
−

k(k + 1)2

4
]

(5)FF =
(N − 1)X2

F

N(k − 1) − X
2

F

Fig. 5   Average Friedman ranking
values of PGNAS and baseline
methods. Average Friedman
ranking values of PGNAS and
baseline methods. PGNAS ranks
first

1329Machine Learning (2023) 112:1315–1335	

1 3

baseline method has significantly better performance over at most one other method, which
confirm the superiority of PGNAS among compared methods.

4.8 � Ablation studies

4.8.1 � Sampling method

To show that the sampling method is effective, we replace the sampling method with
random sampling and note this framework as PGNAS_RSa . This means that we use
random sampling instead of the controlled stratified random sampling described above. As
shown in Fig. 4 PGNAS outperforms PGNAS_RSa . This result also indicates that GNN
configurations sampled by PGNAS_RSa is not sufficiently representative of the global
population and thus does not effectively represent the search space. Hence, the proposed
sampling method is effective and should be used.

4.8.2 � Choice of regression method

Here, we describe our results for conducting the final neural network performance.
The objective of the performance distributions learner is to learn the validation accura-
cies distribution of the sampled GNN configurations and provide us with a curated list
of promising GNN configurations for final validation. For this purpose, we try many
regression models including AdaBoostRegressor, RandomForestRegressor, MLPRegres-
sor, and SGDRegressor. For each experience, we train each regression model and evalu-
ate their performances using three different evaluation metrics for comparison including
R2 score , spearman correlation (Myers & Sirois, 2003), and Kendall tau correlation (Ben
Jemaa et al., 2015). To avoid reinforcing method bias toward these datasets, we use the
bzr dataset in the experiment of the choice of the regression method. As seen in Table 4,

Fig. 6   Nemenyi test scores. Low score means significant difference between the performance of methods

1330	 Machine Learning (2023) 112:1315–1335

1 3

MLPRegressor performs the best on most datasets, though not by a large margin. For the
rest of this paper, we use MLPRegressor unless otherwise specified.

4.8.3 � Performance distribution learner and encoding method

To prove the effectiveness of the encoding method, we replace the on-hot encoding with a
binary encoding and compare the R2errors on two datasets using the aforementioned per-
formance distribution learner. As shown in Fig. 7, using the proposed one-hot encoding
is more beneficial for encoded model representation learning. Meanwhile, this experience
shows the power of the MLPRegressor over other models.

4.8.4 � Influence of the search space

To show the importance of the search space we replace our proposed search space with
the search space of GraphNAS and note this framework PGNAS_baseline. The GraphNAS
search space does not include hyperparameters and contains the following functions.

•	 Aggregation function containing options such as mean, max, and sum.
•	 Multi-head attention containing options such as 1, 2, 4, 6, and 8.
•	 Hidden dimensions containing options such as 8, 16, 32, 64, 128, 256, and 512.
•	 Attention function containing options such as gat, gcn, cos, const,sym-gat, linear, and

gene-linear.
•	 Activation function containing options such as tanh, sigmoid, relu, linear, relu6, elu,

leaky_relu, and softplus.

As shown in Table 3, The result using our proposed search space is better than the result
using the same search space as baselines and PGNAS still outperforms baseline models
on all four datasets for both search spaces. This result demonstrates the effectiveness of
PGNAS in searching efficiently neural architecture for graph classification and shows the
importance of great search space in a graph neural architecture search framework. Indeed,
With the proposed search space, we are able to obtain higher performance.

Table 4   Comparison of different
regressor methods on the bzr
dataset

Evaluation Metric Regression model Metric value

R
2 Score MLPRegressor 0.81

RandomForestRegressor 0.79
SGDRegressor 0.74
AdaBoostRegressor 0.23

Spearman correlation MLPRegressor 0.86
RandomForestRegressor 0.86
SGDRegressor 0.69
AdaBoostRegressor 0.09

Kendall tau correlation MLPRegressor 0.76
RandomForestRegressor 0.72
SGDRegressor 0.63
AdaBoostRegressor 0.07

1331Machine Learning (2023) 112:1315–1335	

1 3

4.8.5 � Robustness

To test the found differences between methods for statistical significance, we make
repeated runs with different values for the random seed. As shown in Fig. 8, PGNAS is
robust and can achieve great performance over repeated runs.

Fig. 7   R2 score of different performance distribution learners using different GNN’s configuration encoding
methods

1332	 Machine Learning (2023) 112:1315–1335

1 3

5 � Conclusion

In this work, we proposed an end-to-end framework, PGNAS, for the graph classification
task. PGNAS is a performance predictor-based automated graph representation learning
framework that predicts the performance of GNNs generated from the search space instead
of training them. The performance prediction capability of PGNAS saves computation
time. Moreover, PGNAS can broadly explore a search space with a cheap computation
price, which enhances its scalability and efficiency. Besides, we use parallel computation to
reduce the computation cost of the most expensive part of the framework, which is training
a few GNN configurations to build the dataset used to train the predictor. Experiment
results on the four benchmark datasets demonstrate that our proposed framework can
obtain better performance than other manual and NAS GNN models.

Author contributions  BMO: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing, review. JG: Conceptualization,
Investigation, Project administration, Supervision, Validation, review. JC: Conceptualization, Data curation,
Editing, Investigation,Resources, Validation, review. RA: Conceptualization, Investigation, Resources,
Editing, review. TL: Conceptualization, Investigation, Validation, review.

Funding  The work is supported by the National Natural Science Foundation of China (No. 61873288).

Data availibility statement  All datasets used in the paper are publicly available.

Code availability  Please email oloulademoctard@csu.edu.cn to request code for the proposed method.

Declarations 

Conflict of interest  No conicts of interest or competing interests.

Ethics approval  Not applicable

Consent to participate  The manuscript is approved by all authors for publication.

Consent for publication  All authors who participated in this study give the publisher permission to publish
this work.

Fig. 8   PGNAS performance using different seed values on four benchmark datasets

1333Machine Learning (2023) 112:1315–1335	

1 3

References

Bai, L., Cui, L., Jiao, Y., Rossi, L., & Hancock, E. (2020). Learning backtrackless aligned-spatial graph
convolutional networks for graph classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44, 783–798.

Ben Jemaa, Z., Fournier-Prunaret, D., & Belghith, S. (2015). Kendall’s tau based correlation analysis of
chaotic sequences generated by piecewise linear maps. In International Journal of Bifurcation and
Chaos, 25(13), 1550177.

Borgwardt, KM., Ong, C S, Schönauer, S, Vishwanathan, S. V. N., Smola, A J., & Kriegel, H-P. (2005). Pro-
tein function prediction via graph kernels. In thirteenth international conference on intelligent systems
for molecular biology, pp. 47–56.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning:
Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18–42.

Cai, S, Li, L, Deng, J, Zhang, B, Zha, Zheng-J, Su, L, & Huang, Q. (2021). Rethinking graph neural archi-
tecture search from message-passing. In IEEE conference on computer vision and pattern recognition,
CVPR 2021, virtual, June 19–25, 2021, pp. 6657–6666. Computer Vision Foundation / IEEE.

Chen, J, Gao, J, Chen, Y, Oloulade, M B, Lyu, T, & Li, Z. (2021). Graphpas: Parallel architecture search for
graph neural networks. In SIGIR ’21: The 44th international ACM SIGIR conference on research and
development in information retrieval, Virtual Event, Canada, July 11–15, 2021, pp. 2182–2186. ACM.

Chen, J., Gao, J., Chen, Y., Moctard, O. B., Lyu, T., & Li, Z. (2022). Auto-GNAS: A parallel graph neural
architecture search framework. IEEE Transactions Parallel Distributed System, 33(11), 3117–3128.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. In Journal of Machine
Learning Research, 7, 1–30.

Dobson, P. D., & Doig, A. J. (2003). Distinguishing enzyme structures from non-enzymes without align-
ments. In Journal of molecular biology, 330(4), 771–783.

Do, K., Tran, T., Nguyen, T., & Venkatesh, S. (2019). Attentional multilabel learning over graphs: A mes-
sage passing approach. Machine Learning, 108(10), 1757–1781.

Fey, M, & Lenssen, J E. (2019). Fast graph representation learning with pytorch geometric. CoRR, arXiv:​
1903.​02428.

Gao, Y, Yang, H, Zhang, P, Zhou, C, & Hu, Y. (2020). Graph neural architecture search. In proceedings of
the twenty-ninth international joint conference on artificial intelligence, pp. 1403–1409.

García, S., Fernández, A., Luengo, Ján., & Herrera, F. (2010). Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining: Experimental
analysis of power. In Information sciences, 180(10), 2044–2064.

Garcia, S., & Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple data
sets for all pairwise comparisons. In Journal of Machine Learning Research, 9, 1–18.

Guo, Zichao, Zhan, X, Mu, H, Heng, W, Liu, Z, Wei, Y, & Sun, J. (2020). Single path one-shot neural archi-
tecture search with uniform sampling. In computer vision - ECCV 2020 - 16th European conference,
Glasgow, UK, August 23-28, 2020,In Proceedings, Part XVI, volume 12361 of lecture notes in com-
puter science, pp. 544–560. Springer.

Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for neural networks. Journal of
Big Data, 7(1), 28.

Holm, S. A. (1979). Simple sequentially rejective multiple test procedure. In Scandinavian Journal Of Sta-
tistics, pp.65–70.

Jain, B. J., & Wysotzki, F. (2004). Central clustering of attributed graphs. Machine Learning, 56(1–3),
169–207.

Kipf, T N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In 5th
international conference on learning representations, ICLR 2017, Toulon, France, April 24-26, 2017,
conference track proceedings. OpenReview.net.

Kolouri, S, Naderializadeh, N, Rohde, G K., & Hoffmann, H. (2021). Wasserstein embedding for graph
learning. In 9th international conference on learning representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

Li, Y, & King, I. (2020). Autograph: Automated graph neural network. In neural information processing
- 27th international conference, ICONIP 2020, Bangkok, Thailand, November 23-27, 2020, Proceed-
ings, Part II, volume 12533 of lecture notes in computer science, pp. 189–201. Springer.

Liang, J., Cui, J., Wang, J., & Wei, W. (2021). Graph-based semi-supervised learning via improving the
quality of the graph dynamically. Machine Learning, 110(6), 1345–1388.

Liu, M, Gao, H, & Ji, S. (2020). Towards deeper graph neural networks. In 26th ACM SIGKDD conference
on knowledge discovery and data mining, pp. 338–348.

http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428

1334	 Machine Learning (2023) 112:1315–1335

1 3

Myers, L., & Sirois, Maria J. (2003). Spearman correlation coefficients, differences between. In Encyclo-
pedia of statistical sciences, 12(1), 771–783.

Oloulade, B. M., Gao, J., Chen, J., Lyu, T., & Al-Sabri, R. (2021). Graph neural architecture search: A
survey. Tsinghua Science and Technology, 27(4), 692–708.

Pasa, L., Navarin, Nò., & Sperduti, A. (2021). Polynomial-based graph convolutional neural networks
for graph classification. Machine Learning, 114(4), 1205–1237.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., & Schomburg, D. (2004).
BRENDA, the enzyme database: Updates and major new developments. In Nucleic Acids Research,
32(1–3), 431–433.

Search, Evolutionary Multi-objective Surrogate-Assisted Neural Architecture. (2020). Zhichao L, Kaly-
anmoy D, Erik D. G, W Banzhaf, and V N Boddeti. NSGANetV2. In European computer vision
conference, part,I,pp. 35–51.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M. (2011). Weis-
feiler-Lehman graph kernels. In Journal Machine Learning Research, 12(1), 2539–2561.

Shi, R, Luo, J & Liu, Q. (2021). Fast evolutionary neural architecture search based on bayesian surrogate
model. In IEEE congress on evolutionary computation, pp. 1217–1224.

Shi, H, Pi, R, Xu, H, Li, Z, Kwok, J T., & Zhang, T. (2020). Bridging the gap between sample-based
and one-shot neural architecture search with BONAS. In annual conference on neural information
processing systems, pp 6–12.

Shi, M, Wilson, D A., Zhu, X, Huang, Y, Zhuang, Y, Liu, J , & Tang, Y. (2020). Evolutionary architec-
ture search for graph neural networks. CoRR, arXiv:​2009.​10199.

Sourek, G., Zelezný, F., & Kuzelka, O. (2021). Beyond graph neural networks with lifted relational neu-
ral networks. Machine Learning, 110(7), 1695–1738.

Sutherland, J. J., O’Brien, L. A., & Weaver, D. F. (2003). Spline-fitting with a genetic algorithm: A
method for developing classification structure-activity relationships. Journal of Chemistry Informa-
tion Computer Science, 43(6), 1906–1915.

Sutton, R S., McAllester, D A., Singh, S P., Mansour, Y. (1999). Policy gradient methods for reinforce-
ment learning with function approximation. In advances in neural information processing systems,
pp. 1057–1063.

Uwents, W., Monfardini, G., Blockeel, H., Gori, M., & Scarselli, F. (2011). Neural networks for rela-
tional learning: An experimental comparison. Machine Learning, 82(3), 315–349.

Wang, Y , Wang, W, Liang, Y, Cai, Y, & Hooi, B. (2021). Curgraph: Curriculum learning for graph
classification. In WWW ’21: The web conference 2021, Virtual Event / Ljubljana, Slovenia, April
19–23, 2021, pp. 1238–1248. ACM / IW3C2.

Wei, L, Zhao, H, Yao, Q, & He, Z. (2021). Pooling architecture search for graph classification. In CIKM
’21: The 30th ACM international conference on information and knowledge management, Virtual
Event, Queensland, Australia, November 1 –5, 2021, pp. 2091–2100. ACM.

White, C, Neiswanger, W, & Savani, Y. (2021). BANANAS: Bayesian optimization with neural archi-
tectures for neural architecture search. In thirty-fifth AAAI conference on artificial intelligence, pp.
10293–10301.

White, C, Zela, A, Ru, R, Liu, Y, & Hutter, F. (2021). How Powerful are performance predictors in
neural architecture search?. In annual conference on neural information processing systems, pp.
28454–28469.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2021). A comprehensive survey on graph
neural networks. IEEE Transactions Neural Networks Learning System, 32(1), 4–24.

Yanardag, P, & Vishwanathan, S. V. N. (2015). Deep graph kernels. In 21th ACM SIGKDD international
conference on knowledge discovery and data mining. pp. 1365–1374.

Ying, Z , You, J, Morris, C, Ren, X, Hamilton, W L., & Leskovec, J. (2018). Hierarchical graph rep-
resentation learning with differentiable pooling. In advances in neural information processing
systems 31: Annual conference on neural information processing systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 4805–4815.

Ying, R, You, J, Morris, C, Ren, X, Hamilton, W L., & Leskovec, J. (2018). Hierarchical graph represen-
tation learning with differentiable pooling. arXiv preprint arXiv:​1806.​08804.

Yoon, M, Gervet, Théo, Hooi, B, & Faloutsos, C. (2020). Autonomous graph mining algorithm search
with best speed/accuracy trade-off. In 20th IEEE international conference on data mining, ICDM
2020, Sorrento, Italy, November 17–20, 2020, pp. 751–760. IEEE.

Yoshida, T., Takeuchi, I., & Karasuyama, M. (2021). Distance metric learning for graph structured data.
Machine Learning, 110(7), 1765–1811.

http://arxiv.org/abs/2009.10199
http://arxiv.org/abs/1806.08804

1335Machine Learning (2023) 112:1315–1335	

1 3

You, J, Ying, Z, & Leskovec, J. (2020). Design space for graph neural networks. In advances in neural
information processing systems 33: Annual conference on neural information processing systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Zhang, Z, Wang, X, & Zhu, W. (2021). Automated machine learning on graphs: A survey. In proceedings of
the thirtieth international joint conference on artificial intelligence, IJCAI 2021, Virtual Event / Mon-
treal, Canada, 19–27 August 2021, pp. 4704–4712. ijcai.org.

Zhao, H, Wei, L, & Yao, Q. (2020). Simplifying architecture search for graph neural network. In Proceed-
ings of the CIKM 2020 Workshops co-located with 29th ACM international conference on information
and knowledge management (CIKM 2020), Galway, Ireland, October 19-23, 2020, volume 2699 of
CEUR Workshop Proceedings. CEUR-WS.org.

Zhao, H, Yao, Q, & Tu, W. (2021). Search to aggregate neighborhood for graph neural network. In 37th
IEEE international conference on data engineering, ICDE 2021, Chania, Greece, April 19-22, 2021,
pp. 552–563. IEEE.

Zhou, K, Song, Q, Huang, X, & Hu, X. (2019). Auto-gnn: Neural architecture search of graph neural net-
works. CoRR, arXiv:​1909.​03184.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Babatounde Moctard Oloulade1 · Jianliang Gao1 · Jiamin Chen1 · Raeed Al‑Sabri1 ·
Tengfei Lyu1

	 Babatounde Moctard Oloulade
	 oloulademoctard@csu.edu.cn

	 Jiamin Chen
	 chenjiamin@csu.edu.cn

	 Raeed Al‑Sabri
	 alsabriraeed@csu.edu.cn

	 Tengfei Lyu
	 tengfeilyu@csu.edu.cn

1	 School of Computer Science and Engineering, Central South University, Changsha 410083, China

http://arxiv.org/abs/1909.03184

	Neural predictor-based automated graph classifier framework
	Abstract
	1 Introduction
	2 Related work
	3 Proposed framework
	3.1 Problem formulation
	3.2 Proposed search framework
	3.2.1 GNN design space
	3.2.2 Sampling and encoding methods

	4 Experiments
	4.1 Datasets
	4.2 Baseline methods
	4.3 Experiment settings
	4.4 Performance distribution learner evaluation
	4.5 Evaluation on graph classification task
	4.6 Efficiency of PGNAS
	4.7 Statistical significance analysis
	4.8 Ablation studies
	4.8.1 Sampling method
	4.8.2 Choice of regression method
	4.8.3 Performance distribution learner and encoding method
	4.8.4 Influence of the search space
	4.8.5 Robustness

	5 Conclusion
	References

