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Abstract
Graph Neural Architecture Search (Graph-NAS) methods have shown great potential in 
finding better graph neural network designs compared to handcrafted designs. However, 
existing Graph-NAS frameworks are based on complex algorithms and fail to maintain low 
costs for high scalability with high performance. They require full training of thousands of 
graph neural networks to inform the search process, resulting in a prohibitive computational 
cost, which is not necessarily affordable for the users interested. Due to the computation 
cost, many researchers have limited the search space exploration ability, which may lead 
to a local optimum solution. In this paper, we propose a performance predictor-based 
graph neural architecture search (PGNAS) framework. The proposed approach consists of 
three conceptually much simpler and basic phases, and can broadly explore a search space 
with a much cheaper computation cost. We train n sampled architectures from a search 
space to generate n (architecture, validation accuracy) pairs used to train a performance 
distributions learner where the features are represented by the architecture description 
and the validation accuracy denotes the target. Next, we use this performance distribution 
learner to predict the validation accuracies of architectures in the search space. Finally, we 
train the top-K predicted architectures and choose the architecture with the best validation 
result. Although our approach seems simple, it is efficient and scalable; experiment results 
show that PGNAS outperforms existing both handcrafted and Graph-NAS models on four 
benchmark datasets.
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1  Introduction

Graph neural networks (GNNs) have become a powerful approach for graph data 
processing as they achieve great performances in various tasks (Wu et al., 2021; Liu et al., 
2020). GNN models are usually handcraft-built models. However, a handcraft-built GNN 
model is time-consuming and requires expert experience and unwritten rules of thumb 
because of the availability of multiple-choice combinations for the selection of GNN 
components, which are sensitive to variation. The complexity of GNN model architectures 
has brought significant challenges to the existing GNN efficiencies. As response, many 
studies have attempted to apply neural architecture search(NAS) approaches to graph 
representation learning. Generally, NAS frameworks work in two iterative stages. The first 
step is to generate a child model from a search space, and the second step is to evaluate 
it. The evaluation in each  iteration  serves as a benchmark for the comparison in the 
following iterations. The difference between the different frameworks, therefore, lies in 
three essential points, which are: (1) how to design the search space, (2) how to evaluate a 
generated architecture, and (3) how to optimize the search for finding the best architecture 
efficiently. The above challenges are commonly solved through three main panels: search 
space, search strategy, and optimization strategy (Oloulade et al., 2021).

Message-passing schemes have been given much credit by researchers for their ability 
to better represent nodes’ properties. The attention function, the aggregation function, the 
attention head, and others are all components of this representation that can be learned. 
Several possibilities exist for each of these functions, which have a significant impact on 
the model’s performance. There are two broad categories of search space used in existing 
studies to discover the best combination of components. The first class defines a search 
space for the various functions but uses fixed hyper-parameters (Zhou et al., 2019; Zhao 
et al., 2020) while the second class defines a search space including functions and hyper-
parameters (Li & King, 2020). While the latter will lead to a more stable optimum solution, 
the search space scale might have supplementary computation costs. It is worth noting that 
exploring all possible GNNs architectures in the vast search space is too time-consuming 
or impossible for big graph data. This feature poses a scalability issue when searching 
for the optimal model. Thus, the main challenge is how to find a trade-off between high 
performance, low cost, and strengthened productivity through the search algorithm. Several 
search algorithms have been proposed for different frameworks, including reinforcement 
learning (RL) (Gao et  al., 2020), genetic algorithm (GA) (Zhou et  al., 2019), bayesian 
optimization (BO) (Yoon et  al., 2020), differentiable search (DS) (Cai et  al., 2021), and 
random search (RS) (You et al., 2020). These search strategies have also been combined 
(Zhou et al., 2019).

While these frameworks have proven to outperform handcrafted GNN models, it is still 
necessary to find a robust trade-off between performance, cost, and scalability. Existing 
solutions fail to maintain low costs for high scalability and high performance (Zhang et al., 
2021; Oloulade et  al., 2021). Existing methods have to limit search space exploration 
because of the expensive computation cost. The main challenge remains how to speed 
up the child model evaluation and improve the efficiency of the evaluation process. To 
overcome this challenge,  several strategies have been proposed and have been applied 
individually and in combination. The first strategy that quickly gained consensus is the 
weight sharing, which helps prevent a newly generated child model from being trained 
from scratch to convergence. However, Zhou et  al. (2019) proved through experiments 
that weight sharing is not empirically helpful. Another strategy is the single-path one-shot 
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model proposed (Guo et al., 2020) which uses uniform sampling with only one operation 
activated between the input and output pair at each iteration. More recently, GraphPAS 
(Chen et  al., 2021) proposed parallel computation with a genetic algorithm. However, 
existing frameworks still need to train several GNN configurations, resulting in a 
prohibitive computational cost, which is not necessarily affordable for the users interested. 
Recently, the predictor-based NAS approach (White et  al., 2021, 2021), also called 
surrogate-based modeling (Search, 2020; Shi et  al., 2020, 2021) has been successfully 
used for convolutional neural networks (CNNs) architectures search. However, applying 
NAS algorithms to find GNN architectures is not trivial due to two major challenges as 
follows: (1) The search space of GNN architectures is different from the search space of 
CNN architecture. For example, only the kernel size needed to be specified for convolution 
operation in CNN while in GNN, the message passing-based convolution is characterized 
by a sequence of operations including at least an aggregation function and a combination 
operation, which makes the architecture encoding construction non-trivial. (2) CNNs are 
predominantly applied to data represented as a regular grid in the Euclidean space and 
fail to extract latent representations from graph data. This drawback is due to graphs 
being non-Euclidean data, which cannot be represented in an n-dimensional linear space. 
Thus, some important operations, such as convolutions computed in Euclidean space with 
CNN, are difficult to implement for graph data. Moreover existing NAS methods for CNN 
commonly only search for operations while in this work we consider both operations and 
hyperparameters simultaneously. We propose a simple but efficient Neural predictor for 
graph neural architecture search (PGNAS) framework to alleviate the above problems. 
In the proposed method, we first build a performance distribution learner by training n 
random GNN configurations uniformly sampled from the search space and recording their 
performance on a validation dataset. Encoding each architecture and obtaining pairs with n 
(encoded architecture, validation accuracy). Training the performance distributions learner 
using these data. Next, we predict the performance of GNN configurations in the search 
space using the performance distributions learner and select the top − k promising GNN 
configurations for the final step. Finally, we get the best configuration from the top − k by 
training them and selecting the GNN’s configuration with the highest validation accuracy. 
The workflow of our framework is illustrated in Figure  1. We use parallel computation 
to speed up the first step, a regression problem where we first generate a dataset of n 
samples to train on. The second step can be carried out efficiently as predicting a model’s 
performance is cheap. The last step is a standard validation where we only evaluate a 
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Fig. 1   Predictor-based graph neural architecture search framework. First, a neural predictor is built using 
encoded few sampled GNN configurations from the search space and their validation accuracy distribution. 
Next, the predictor is used to predict all GNN configurations in the search space
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well-curated set of k GNN configurations. While the method outlined above might seem 
straightforward, it is very effective. Our contributions are summarized as follows:

•	 To the best of our knowledge, we make the first attempt to use a performance neural 
predictor-based framework for graph neural architecture search solving the problem of 
search efficiency.

•	 We propose an efficient performance predictor-based search algorithm PGNAS for 
graph neural network architectures search. In PGNAS, we simultaneously consider 
GNN architecture components, hyperparameters, and feature engineering. We predict 
the performance of sampled GNN configurations, significantly reducing GNN 
configurations’ evaluation cost compared with existing frameworks. Moreover, we use 
the simple yet effective ranking process to choose the best model to deploy.

•	 We discuss PGNAS scalability, and we evaluate it by conducting extensive experiments 
on different types of datasets compared with existing both handcrafted and automated 
graph neural architecture search frameworks. Furthermore, experiment results show 
that PGNAS can significantly accelerate the graph neural architecture search framework 
while improving efficiency.

2 � Related work

Existing Graph-NAS frameworks generally consist of a recursive process involving three 
components: a search space, a search strategy, and a performance estimation strategy. The 
search strategy generates architectures from a predefined search space over time based 
on the performance evaluation determined via the estimation strategy. Many methods 
based on reinforcement learning, genetic algorithm, Bayesian optimization, differentiable 
search, random search, or a combination of them have been used for building the Graph-
NAS framework. The reinforcement learning-based method uses a recurrent network as 
a controller to generate child models from a search and the reward of the child model is 
computed as feedback to optimize the expected performance of generated child models. 
This approach has been used by many works with some differences. For example, in 
GraphNAS (Gao et al., 2020) a generated child model by the controller is replaced in its 
entirety with a newly generated child model regardless of their similarities while AGNN 
(Zhou et al., 2019) uses a controller-based reinforce rule of policy gradient (Sutton et al., 
1999) to gradually validate models with small steps. Moreover, GraphNAS adopted the 
standard parameter sharing strategy while AGNN uses constrained parameter sharing using 
three constraints. It is worth noting that in the former methods it is hard for the controller 
to learn which part of a model influences the accuracy change compared to another model 
and standard parameter sharing would lead to unstable training when sharing parameters 
among heterogeneous GNNs.

Genetic algorithm-based search has been used by many works (Shi et  al., 2020; Li 
& King, 2020; Chen et  al., 2021), in which the population is represented by the search 
space and an individual is represented by a GNN architecture. The main limitation of this 
approach is the slow convergence (Oloulade et  al., 2021). To overcome these burdens, 
GraphPAS (Chen et  al., 2021) proposes a parallel genetic algorithm-based framework 
designing a parallel sharing-based evolution learning, which improves search efficiency.

In a differentiable search for Graph-NAS, the key concept is to build a supernet by 
stacking mixed operations. The output of each layer is the combination of applied mixed 
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operations. The coefficients represent selection parameters and the loss function is 
minimized for an architectural search. Operations with a higher coefficient in each layer 
are chosen to create the final GNN architecture. In existing such Graph-NAS frameworks, 
a stack is usually defined as a direct acyclic graph (Zhao et al., 2021) involving an ordered 
series of nodes. The continuous relaxation scheme depends on a parameterization trick, 
which is less noisy and easier to train compared to the previous search algorithm. Although 
this search approach can outperform the previous search approaches in terms of speed and 
search quality, the construction of the supernet makes it computationally expensive costs 
and it requires a differentiable latency approximation (Oloulade et al., 2021).

3 � Proposed framework

In this section, we first formulate the graph neural architecture search problem and present 
the predictor-based framework. Finally, we discuss the predictor-based search framework.

3.1 � Problem formulation

Considering a graph G = (V ,E) where V and E represent a set of nodes and a set of edges, 
respectively. The neural network notion of a “layer of neurons” in GNNs is translated 
into a composition of functions: the first aggregates information from the neighborhood 
of each node N(i) forming an intermediate vector hN(i) (AGG​); the second combines 
this intermediate vector with the current node representation hi (COMB); and applies a 
normalization function (NORM) and dropout (�) before applying an activation function (�) . 
The following equations describe this process:

The node’s feature vector is conventionally used as the first hidden representation, h(0)
i

= xi 
where xi represents the feature the node i (Kipf & Welling, 2017).

Given how a GNN works, the problem of searching for its architecture can be formally 
defined as follows: for a search space S of graph neural networks, a training dataset Dtrain , a 
validation dataset Dval and performance evaluation Y, the goal is to find the optimal GNN’s 
configuration gnnopt ∈ S with the best-expected performance evaluation Y on Dval , when 
its parameters �∗ are set by minimizing a loss function L on Dtrain , fixing the following 
bi-level optimization problem mathematically expressed as follows:

3.2 � Proposed search framework

Our goal is to model the validation accuracy Y of a graph neural network (GNN) configura-
tion gnn ∈ S using the description of the GNN, which is given by a one-hot-based encoder 

(1)hk
N(i)

= AGG(hk−1
j

∶ j ∈ N(i))

(2)hk
i
= �(�(NORM(COMB(h

(k−1)

i
, hk

N(i)
))))

(3)
gnn∗ = argmax

s∈S

Y(gnn(�∗),Dval)

s.t. �∗ = argmin
�

L(gnn(�),Dtrain)
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model �(⋅) . For each GNN configuration gnn trained, we record the encoding of the con-
figuration and its final validation accuracy. We sample and train a population of n configu-
rations obtaining a set Sp = {(�(gnn1), Y1), (�(gnn2),Y2), ..., (�(gnnn),Yn)} . The obtained set 
is used to train a performance distribution learner and further used to predict the validation 
accuracy of configurations in the search space. The encoded configuration of top-k most 
promising predicted GNN configurations are decoded and the corresponding models are 
trained and validated. Next, the best GNN configuration is chosen based on the validation 
accuracy. As we shall see in the subsequent section, predicting GNN configuration perfor-
mance is a better way to improve search efficiency as the performance distribution learner 
provides a curated list of promising GNN configurations after broadly evaluating the con-
figurations in the search space. Thus, avoiding the local optimum problem. Figure 1 shows 
the predictor-based framework, which we propose to solve Eq. 3.

3.2.1 � GNN design space

A GNN architecture consists of a combination of many components. Different components 
can take different values called options. We depict a general design space of GNNs that 
consider GNN architecture components such as aggregation function and pooling function 
and hyperparameters components such as learning rate and dropout. The designed 
search space is presented in Table  1. It consists of 12 design components, resulting in 
over 33.106 possible architectures with two layers. Our objective in proposing such is to 
show how focusing on the design space can improve GNN research and how insensitive 
our framework is to the search space size. We emphasize that the design space is easily 
extendable to new design dimensions that emerge in state-of-the-art models.

3.2.2 � Sampling and encoding methods

Due to the vast size of the search space, a non-representative sample of the search space 
would be inappropriate for generalizing the predictor to the whole search space. To 
overcome this challenge, we propose a controlled stratified random sampling method. 
For each option of each component in the search space, we use a proportional stratified 
sampling method to sample s GNN configurations from the search space. Then, we force 

Table 1   GNN design space Components Choices

Aggregation function Sum, max ,mean
Convolution function Linear, GCNConv, GENConv, LEConv
Dropout False, 0.3, 0.6
Activation function ReLU6, Tanh, ELU, PReLU, Sigmoid
Normalizer BatchNorm, GraphNorm, InstanceNorm
Hidden dimension 64, 128,256
Multi-head 1,2,4,8
Learning rate 1e-2, 1e-3, 5e-3, 5e-4
Weight regulation 0, 1e-3, 5e-4
Optimizer adam, sgd
Loss criterion CrossEntropyLoss, MultiMarginLoss
Pooling type global_add_pool, global_max_pool
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the value of the current function to be the value of the current option in the loop. The 
total number of sampled GNN configurations is n = s × Topt , where Topt is the total number 
of options. The algorithm of the proposed sampling method is shown in Algorithm  1. 
Furthermore, the ablation study result presented in Sect.  4.8 shows that the proposed 
sampling method is effective compared with the random sampling method.

Upon the search space being built, n architectures were sampled from the search space 
using the sampling the aforementioned method. We transform the list of chosen options 
into a one-hot encoded sparse vector using the one-hot encoding of size equal to the total 
number of options in the search space. One-hot encoding is often used in machine learning 
algorithms for converting categorical features into numerical ones and is commonly used 
as a first step to more sophisticated representation methods (Hancock & Khoshgoftaar, 
2020). For each selected option, we use the one-hot encoding of size p, where p is the 
number of choices available for the corresponding function in the search space. Finally, we 
concatenate the encoding of each option to get the encoding of a GNN’s configuration. An 
abstract example of the encoding method is shown in Fig. 2. The built dataset is used to 
train a performance distribution learner.
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Fig. 2   GNN architecture and its encoding representation
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4 � Experiments

We apply our method to find the optimal GNN model given the graph classification task to 
answer the following four questions:

•	 How does GNN models found by PGNAS compare with state-of-the-art handcrafted 
models and the ones searched by other NAS methods?
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•	 How does the search efficiency of PGNAS compare with those of different search 
methods?

•	 Whether or not the model encoding strategy effectively helps the predictor GNN’s 
configuration to learn model performance distribution?

•	 How well does the neural predictor model learn GNN configurations performance 
distribution?

•	 How does the proposed sampling method perform compared with random sampling?

This section presents more details about the datasets, baseline methods, experimental 
settings, and results. We conduct extensive performance, efficiency, and analysis 
experiments to evaluate the effectiveness and the scalability of PGNAS.

4.1 � Datasets

We use four benchmark datasets in this work, including the  proteins dataset, enzymes 
dataset, imdb-b dataset, and dd datasets. The statistics of dataset characteristics are 
summarized in Table 2.

4.2 � Baseline methods

We compare GNNs architecture identified by our model against baselines, including the 
state-of-art handcrafted architectures such as WEGL (Kolouri et al., 2021), BASGCN (Bai 
et  al., 2020), DiffPool (Ying et  al., 2018), CurGraph (Wang et  al., 2021), PGCN (Pasa 
et al., 2021) and NAS methods such as GraphNAS (Gao et al., 2020), Genetic-GNN (Shi 
et al., 2020), and Auto-GNAS (Chen et al., 2022).

4.3 � Experiment settings

The GNN architectures designed by PGNAS are implemented by the Pytorch-Geometric 
library(Fey & Lenssen, 2019). We evaluate our model on graph classification tasks 
with inductive settings. For all experiments, we use a consistent setup, where random 
80%∕10%∕10% train/val/test splits are used for dataset split, we use the accuracy metric 
for GNN performance evaluation. The total number of sampled configurations for 
each function in the search space s is set to 12, and  the total number of sampled GNN 
configurations is given by n = s × n0 where n0 is the total number of choices in the search 

Table 2   Benchmark datasets.

NG Number of Graphs; AN Average Nodes; NF Node features; NC Number of Classes

Dataset NG AN NF NC Field Source

enzymes 600 32.63 21 6 Chemical dataset (Borgwardt et al., 2005; Schomburg et al., 2004)
imdb-b 1000 19.77 – 2 Social dataset (Yanardag & Vishwanathan, 2015)
proteins 1113 39.06 4 2 Chemical dataset (Borgwardt et al., 2005; Dobson & Doig, 2003)
 dd 1178 284.32 – 2 Chemical dataset (Dobson & Doig, 2003; Shervashidze et al., 2011)
 bzr 405 35.75 3 2 Chemical dataset (Sutherland et al., 2003)
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space, which is 50. The number of times zinit a sampled GNN’s configuration should be 
trained before recording its performance in the first step is set to 1, the number of best-
predicted GNN configurations k to keep for final evaluation is set to 20, the number of 
time zfinal the predicted best GNN configurations are trained before ranking their average 
performance is set to 5, and the number of time t the best GNN’s configuration is tested 
before we report its average performance is set to 10. We set the number of epochs to 200 
for all experiments.

4.4 � Performance distribution learner evaluation

For evaluating the ability of the performance distribution learner to learn the sampled 
model performances’ distribution, we evaluate the predictor’s generalization ability to the 
whole search space. We use R2 metric for both evaluations. Figure 3 shows the power of the 
performance distribution learner to learn graph neural network performance distribution.

4.5 � Evaluation on graph classification task

To validate the performance of our model, we compare the GNN models discovered by 
PGNAS with handcrafted models and those designed by other search approaches. The 
performance of the graph classification task is summarized in Table 3. We report the test 
accuracy of baseline handcrafted models from the original work. Results of NAS-based 
baseline models are replicated using the Auto-GNAS1 framework with the search space 
proposed by GraphNAS (Gao et  al., 2020). For a  fair comparison, we reduce the search 
space defined in 3.2.1 to the same search space. We use “global_add_pooling” operation 
for graph pooling. The best result for each group of our baselines is underlined, and the 
best result on each dataset is in boldface. Looking only at the handcrafted  methods, we 
notice that there is no clear winner over the considered datasets. For example, WELG is the 
best model for the proteins dataset while PGCN is the best model for the enzymes dataset 
and BASGCN achieves the best performance on the dd dataset. Considering that these 
datasets are from different fields, it shows the need for adaptive graph neural architecture 
for graph classification. Besides, the result indicates that PGNAS can achieve competitive 
results on all four datasets, which demonstrates the effectiveness of PGNAS in searching 
efficiently neural architecture for graph classification and proving its scalability ability to 
different types of networks.

4.6 � Efficiency of PGNAS

To show that PGNAS is efficient and effective, we do a supplementary experi-
ment with different values for n where we use random search instead of our search 
algorithm and note this framework as PGNAS_RSe . Since the total number ntotal of 
trained and validated GNN configurations by PGNAS in the whole search process is 
ntotal = n ∗ zinit + k ∗ zfinal , we train and validate ntotal GNN configurations for  a fair 
comparison. As shown in Fig.  4, PGNAS significantly outperforms random search. 
Meanwhile, it is shown that when the number of samples increases, the performance 

1  https://github.com/AutoMachine0/Auto-GNAS
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of PGNAS increases, but PGNAS can already achieve very competitive results with 
600 GNN configuration samples. For simplicity, we make the experiment only on two 
datasets, the proteins dataset, and the dd dataset . It is worth noting that existing NAS 
methods trained a larger number of models before stopping exploring search space. 
For example, GraphNAS (Gao et  al., 2020) and GraphPAS (Chen et  al., 2021) stop 
the search process after training 2000 models. However, even if this number is larger, 
it still limits the search efficiency because it represents only 0.2% of the search space 
of GraphNAS and GraphPAS, which limits the search space exploration and leads to 
a sub-optimal solution. GPNAS can train only 600 models for a whole search process 
and perform better because of its huge search space exploration capability.

Fig. 3   The ability of the neural predictor to learn graph neural network performance distributions



1326	 Machine Learning (2023) 112:1315–1335

1 3

Ta
bl

e 
3  

P
er

fo
rm

an
ce

 c
om

pa
ris

on
 b

et
w

ee
n 

PG
N

A
S 

an
d 

ot
he

r m
et

ho
ds

 o
n 

fo
ur

 d
at

as
et

s

M
od

el
s

Pr
ot

ei
ns

 d
at

as
et

En
zy

m
es

 d
at

as
et

im
db

-b
 d

at
as

et
dd

 d
at

as
et

H
an

dc
ra

fte
d 

M
od

el
s

W
EG

L 
(K

ol
ou

ri 
et

 a
l.,

 2
02

1)
76

.5
 ±

 4
.2

60
.5

 ±
 5

.9
75

.4
 ±

 5
.0

–
BA

SG
C

N
 (B

ai
 e

t a
l.,

 2
02

0)
76

.5
 ±

 0
.5

9
–

73
.8

6 
±

 0
.9

2
80

.7
1 

±
 0

.9
9

D
iff

Po
ol

 (Y
in

g 
et

 a
l.,

 2
01

8)
76

.2
5

62
.5

3
–

80
.6

4
C

ur
G

ra
ph

 (W
an

g 
et

 a
l.,

 2
02

1)
75

.4
 ±

 3
.1

64
.8

 ±
 3

.3
73

.4
 ±

 3
.2

78
.6

 ±
 3

.0
PG

C
N

 (P
as

a 
et

 a
l.,

 2
02

1)
75

.3
1 

±
 0

.3
1

70
.5

 ±
 1

.7
7

72
.6

0 
±

 3
.8

0
79

.4
5 

±
 0

.2
9

N
A

S 
M

od
el

s
G

ra
ph

N
A

S 
(G

ao
 e

t a
l.,

 2
02

0)
75

.2
0 

±
 0

.0
25

–
73

.6
0 

±
 0

.0
46

76
.7

4 
±

 0
.0

45
SN

A
G

 (Z
ha

o 
et

 a
l.,

 2
02

0)
70

.5
3 ±

0
.0
3
1
1

–
72

.5
0 ±

0
.0
4
6

72
.2

3 
±
0
.0
3
8

PA
S 

(C
he

n 
et

 a
l.,

 2
02

2)
76

.6
4 

±
 0

.0
32

–
75

.1
0 

±
 0

.0
53

78
.9

6±
0.

03
36

PG
N

A
S_

ba
se

lin
e

76
.8

2 
±
2
.4
8

70
.8

3 
±

 2
.9

6
75

.1
2 
±
1
.8
1

80
.6

3 
±

 1
.7

1
PG

N
A

S
77

.5
6 

±
 1

.1
71

.1
3 

±
 4

.8
75

.1
8 
±
3
.2

82
.8

6 
±

 2
.7

7



1327Machine Learning (2023) 112:1315–1335	

1 3

4.7 � Statistical significance analysis

We make statistical tests and discuss the results of the statistical significance of the found 
differences.

Firstly, we use the  Friedman test (Demsar, 2006) to verify the hypothesis of equal 
performance among compared methods. Before calculating the family-wise p-value, 
it is needed to reject the null hypothesis, which is then compared  to methods that  have 
equal performance. We apply non-parametric tests that are known to be suitable for 
comparing predictive models based on multiple data samples (Demsar, 2006; Garcia & 
Herrera, 2008). Compared to the parametric tests, the non-parametric tests require fewer 
assumptions (Demsar, 2006). In this experiment, we make the analysis with seven methods 
(PGNAS, BASGCN, PAS, CurGraph, PGCN, GraphNAS, and SNAG) and three datasets 
(the proteins dataset, imdb-b dataset, and dd dataset). We use the Friedman ranking test 
(García et  al., 2010) to access the statistical significance of differences in the model’s 
performance on multiple datasets, based on the average accuracy after repeated runs on 

Fig. 4   Efficiency comparison
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each dataset. The overall performance ranking of compared methods to the accuracy metric 
is presented in Fig. 5. It can be seen that the proposed PGNAS ranks first position.

Then, we obtain family-wise p-values with Bonferroni correction. We calculate the chi-
square as shown in Eq. 4,

where N is the number of datasets, k is the number of methods, and Rj the average ranking 
of the jth method. With N=3 and k=7, we can get X2

F
= 14.36 Next, we calculate FF as 

shown in Eq. 5.

In this experiment with seven algorithms and three datasets, FF = 7.8 . FF is distributed 
according to the F-distribution with 7 − 1 = 6 and (7 − 1) × (3 − 1) = 12 degrees of free-
dom. According to the F-distribution table, the critical value (CV) of FF is 2.33 for � = 0.1 . 
As a result, the hypothesis of “equal” performance among compared methods is clearly 
rejected as FF > CV .

Consequently, we use the Bonferroni correction (Holm, 1979) as a post-hoc test to 
compute family-wise p-values. In this computation, we set PGNAS as the control method 
and compute the family-wise p-values. The family-wise p-values between PGNAS and 
baseline methods are 0.0006672, 0.014019, 0.03763531, 0.03763531, 0.34470422, and 
0.3447042 for SNAG, GraphNAS, CurGraph, PGCN, BASGCN, and PAS, respectively. 
It is revealed from the family-wise p-values that PGNAS shows significantly better 
performance over existing graph neural architecture search baseline frameworks with 
� = 0.1.

Finally, we make the Nemenyi test (Demsar, 2006) to see how other baselines methods 
perform against each other. The Nemenyi test shows that every baseline method has 
significantly better performance over at most one other method. Figure 6 shows that every 
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∑
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Fig. 5   Average Friedman ranking 
values of PGNAS and baseline 
methods. Average Friedman 
ranking values of PGNAS and 
baseline methods. PGNAS ranks 
first
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baseline method has significantly better performance over at most one other method, which 
confirm the superiority of PGNAS among compared methods.

4.8 � Ablation studies

4.8.1 � Sampling method

To show that the sampling method is effective, we replace the sampling method with 
random sampling and note this framework as PGNAS_RSa . This means that we use 
random sampling instead of the controlled stratified random sampling described above. As 
shown in Fig.  4 PGNAS outperforms PGNAS_RSa . This result also indicates that GNN 
configurations sampled by PGNAS_RSa is not sufficiently representative of the global 
population and thus does not effectively represent the search space. Hence, the proposed 
sampling method is effective and should be used.

4.8.2 � Choice of regression method

Here, we describe our results for conducting the final neural network performance. 
The objective of the performance distributions learner is to learn the validation accura-
cies distribution of the sampled GNN configurations and provide us with a curated list 
of promising GNN configurations for final validation. For this purpose, we try many 
regression models including AdaBoostRegressor, RandomForestRegressor, MLPRegres-
sor, and SGDRegressor. For each experience, we train each regression model and evalu-
ate their performances using three different evaluation metrics for comparison including 
R2 score , spearman correlation (Myers & Sirois, 2003), and Kendall tau correlation (Ben 
Jemaa et  al., 2015). To avoid reinforcing method bias toward these datasets, we use the 
bzr dataset in the experiment of the choice of the regression method. As seen in Table 4, 

Fig. 6   Nemenyi test scores. Low score means significant difference between the performance of methods
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MLPRegressor performs the best on most datasets, though not by a large margin. For the 
rest of this paper, we use MLPRegressor unless otherwise specified.

4.8.3 � Performance distribution learner and encoding method

To prove the effectiveness of the encoding method, we replace the on-hot encoding with a 
binary encoding and compare the R2errors on two datasets using the aforementioned per-
formance distribution learner. As shown in Fig.  7, using the proposed one-hot encoding 
is more beneficial for encoded model representation learning. Meanwhile, this experience 
shows the power of the MLPRegressor over other models.

4.8.4 � Influence of the search space

To show the importance of the search space we replace our proposed search space with 
the search space of GraphNAS and note this framework PGNAS_baseline. The GraphNAS 
search space does not include hyperparameters and contains the following functions.

•	 Aggregation function containing options such as mean, max, and sum.
•	 Multi-head attention containing options such as 1, 2, 4, 6, and 8.
•	 Hidden dimensions containing options such as 8, 16, 32, 64, 128, 256, and 512.
•	 Attention function containing options such as gat, gcn, cos, const,sym-gat, linear, and 

gene-linear.
•	 Activation function containing options such as tanh, sigmoid, relu, linear, relu6, elu, 

leaky_relu, and softplus.

As shown in Table 3, The result using our proposed search space is better than the result 
using the same search space as baselines and PGNAS still outperforms baseline models 
on all four datasets for both search spaces. This result demonstrates the effectiveness of 
PGNAS in searching efficiently neural architecture for graph classification and shows the 
importance of great search space in a graph neural architecture search framework. Indeed, 
With the proposed search space, we are able to obtain higher performance.

Table 4   Comparison of different 
regressor methods on the bzr 
dataset

Evaluation Metric Regression model Metric value

R
2 Score MLPRegressor 0.81

RandomForestRegressor 0.79
SGDRegressor 0.74
AdaBoostRegressor 0.23

Spearman correlation MLPRegressor 0.86
RandomForestRegressor 0.86
SGDRegressor 0.69
AdaBoostRegressor 0.09

Kendall tau correlation MLPRegressor 0.76
RandomForestRegressor 0.72
SGDRegressor 0.63
AdaBoostRegressor 0.07
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4.8.5 � Robustness

To test the found differences between methods for statistical significance, we make 
repeated runs with different values for the random seed. As shown in Fig. 8, PGNAS is 
robust and can achieve great performance over repeated runs.

Fig. 7   R2 score of different performance distribution learners using different GNN’s configuration encoding 
methods
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5 � Conclusion

In this work, we proposed an end-to-end framework, PGNAS, for the graph classification 
task. PGNAS is a performance predictor-based automated graph representation learning 
framework that predicts the performance of GNNs generated from the search space instead 
of training them. The performance prediction capability of PGNAS saves computation 
time. Moreover, PGNAS can broadly explore a search space with a cheap computation 
price, which enhances its scalability and efficiency. Besides, we use parallel computation to 
reduce the computation cost of the most expensive part of the framework, which is training 
a few GNN configurations to build the dataset used to train the predictor. Experiment 
results on the four benchmark datasets demonstrate that our proposed framework can 
obtain better performance than other manual and NAS GNN models.
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