
Vol.:(0123456789)

Machine Learning (2021) 110:857–879
https://doi.org/10.1007/s10994-021-05949-0

1 3

Bayesian optimization with approximate set kernels

Jungtaek Kim1 · Michael McCourt2 · Tackgeun You1 · Saehoon Kim3 · Seungjin Choi4

Received: 19 September 2020 / Revised: 15 January 2021 / Accepted: 23 January 2021 /
Published online: 22 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
We propose a practical Bayesian optimization method over sets, to minimize a black-box
function that takes a set as a single input. Because set inputs are permutation-invariant,
traditional Gaussian process-based Bayesian optimization strategies which assume vector
inputs can fall short. To address this, we develop a Bayesian optimization method with set
kernel that is used to build surrogate functions. This kernel accumulates similarity over set
elements to enforce permutation-invariance, but this comes at a greater computational cost.
To reduce this burden, we propose two key components: (i) a more efficient approximate
set kernel which is still positive-definite and is an unbiased estimator of the true set ker-
nel with upper-bounded variance in terms of the number of subsamples, (ii) a constrained
acquisition function optimization over sets, which uses symmetry of the feasible region
that defines a set input. Finally, we present several numerical experiments which demon-
strate that our method outperforms other methods.

Keywords Global optimization · Bayesian optimization · Set optimization

1 Introduction

Bayesian optimization is an effective method to optimize an expensive black-box function.
It has proven useful in several applications, including hyperparameter optimization (Snoek
et al. 2012; Hutter et al. 2011), neural architecture search (Zoph and Le 2017; Kandasamy
et al. 2018), material design (Frazier and Wang 2016; Haghanifar et al. 2019), and syn-
thetic gene design (González et al. 2014). Classic Bayesian optimization assumes a search
region X ⊂ ℝ

d and a black-box function f evaluated in the presence of additive noise � , i.e.,
y = f (�) + � for � ∈ X .

Editors: Annalisa Appice, Sergio Escalera,Jose A. Gamez, Heike Trautmann

 * Jungtaek Kim
 jtkim@postech.ac.kr

1 POSTECH, Pohang, Republic of Korea
2 SigOpt, an Intel company, San Francisco, USA
3 Kakao Brain, Seongnam, Republic of Korea
4 BARO AI, Seoul, Republic of Korea

http://orcid.org/0000-0002-1905-1399
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05949-0&domain=pdf

858 Machine Learning (2021) 110:857–879

1 3

Unlike this standard Bayesian optimization formulation, we assume that a search region
is Xset = {{�1,… , �m} | �i ∈ X ⊂ ℝ

d} for a fixed positive integer m. Thus, for � ∈ Xset , f
would take in a set containing m elements, all of length d, and return a noisy function value
y:

Our motivating example comes from the soft k-means clustering algorithm over a data-
set P = {�1,… , �N} ; in particular, we aim to find the optimal initialization of such an
algorithm. The objective function for this problem is a squared loss function which takes
in the cluster initialization points {�1,… , �k} and returns the weighted distance between
the points in P and the converged cluster centers {�1,… , �k} . See Lloyd (1982) for more
details.

Some previous research has attempted to build Gaussian process (GP) models on set
data. Garnett et al. (2010) propose a method over discrete sets using stationary kernels over
the first Wasserstein distance between two sets, though the power set of fixed discrete sets
as domain space is not our interest. However, this method needs the complexity O(n2m3d)
to compute a covariance matrix with respect to n sets. Moreover, since it only considers
stationary kernels, GP regression is restricted to a form that cannot express non-stationary
models (Paciorek and Schervish 2004).

Therefore, we instead adapt and augment a strategy proposed in Gärtner et al. (2002)
involving the creation of a specific set kernel. This set kernel uses a kernel defined on the
elements � ∈ ℝ

d of the sets to build up its own sense of covariance between sets. In turn,
then, it can be directly used to build surrogate functions through GP regression, which can
power the Bayesian optimization strategy, by Lemma 1.

A key contribution of this article is the development of a computationally efficient
approximation to this set kernel. Given n total observed function values, the cost of con-
structing the matrix required for fitting the GP is O(n2m2d) where m ≥ n (see the complex-
ity analysis in Sect. 3.3). The approximate set kernel proposed in this work uses random
subsampling to reduce the computational cost to O(n2L2d) for L < m while still producing
an unbiased estimate of the expected value of the true kernel.

Another primary contribution is a constrained acquisition function optimization over
set inputs. The next query set to observe is found by optimizing the acquisition function
defined on a set � ∈ Xset . Using the symmetry of the space, this function can be efficiently
optimized with a rejection sampling. Furthermore, we provide a theoretical analysis on
cumulative regret bounds of our framework, which guarantees the convergence quality in
terms of iterations.

2 Background

In this section, we briefly introduce previous studies, notations, and related work necessary
to understand our algorithm.

2.1 Bayesian optimization

Bayesian optimization seeks to minimize an unknown function f which is expensive to
evaluate, �⋆ = arg min�∈Xf (�) , where X ⊂ ℝ

d is a compact space. It is a sequential optimi-
zation strategy which, at each iteration, performs the following three computations:

(1)y = f (�) + �.

859Machine Learning (2021) 110:857–879

1 3

1. Using the n data presently available, {(�i, yi)} for i ∈ [n] , build a probabilistic surrogate
model sn meant to approximate f.

2. Using the surrogate model sn , compute an acquisition function an , which represents the
utility of next acquiring data at some new point �.

3. Observe yn+1 from a true function f at the location �n+1 = arg max�∈Xan(�).

After exhausting a predefined budget T, Bayesian optimization returns the best point, �† ,
that has the minimum observation. The benefit of this process is that the optimization of
the expensive function f has been replaced by the optimization of much cheaper and better
understood acquisition functions an.

In this paper, we use GP regression (Rasmussen and Williams 2006) to produce the
surrogate function sn ; from sn , we use the Gaussian process upper confidence bound (GP-
UCB) criterion (Srinivas et al. 2010): an(�) = −�n(�) + �n�n(�) , where �n(⋅) and �2

n
(⋅) are

posterior mean and variance functions computed by sn , and �n is a trade-off hyperparam-
eter for exploration and exploitation at iteration n. See Brochuet al. (2010), Shahriari et al.
(2016), and Frazier (2018) for the details.

2.2 Set kernel

We introduce the notation required for performing kernel approximation of functions on
sets. A set of m vectors is denoted as � = {�1,… , �m} , where �i is in a compact space
X ⊂ ℝ

d . In a collection of n such sets (as will occur in the Bayesian optimization setting),
the kth set would be denoted �(k) = {�

(k)

1
,… , �(k)

m
} . Note that we are restricting all sets to

be of the same size |�(k)| = m.1
To build a GP surrogate, we require a prior belief of the covariance between elements

in Xset = {{�1,… , �m} | �i ∈ X ⊂ ℝ
d} . This belief is imposed in the form of a positive-

definite kernel kset ∶ Xset × Xset → ℝ ; see Schölkopf and Smola (2002), Fasshauer and
McCourt (2015) for more discussion on approximation with kernels. In addition to the
symmetry kset(�(i),�(j)) = kset(�

(j),�(i)) required in standard kernel settings, kernels on
sets require an additional property: the ordering of elements in � should be immaterial
(since sets have no inherent ordering).

Given an empirical approximation of the kernel mean �� ≈ ���−1 ∑���
i=1

�(�i) , where �
is a feature map ℝd

→ ℝ
d′ and d′ is a dimensionality of projected space by � , a set ker-

nel (Gärtner et al. 2002; Muandet et al. 2017) is defined as

where k(�i, �j) = ⟨𝜙(�i),𝜙(�j)⟩ = 𝜙(�i)
⊤𝜙(�j) . Here, k ∶ X × X → ℝ is a positive-definite

kernel defined to measure the covariance between the d-dimensional elements of the sets
(e.g., a squared exponential or Matérn kernel). The kernel (2) arises when comparing a
class of functions on different probability measures with the intent of understanding if the
measures might be equal (Gretton et al. 2012).

(2)kset
�
�(1),�(2)

�
= ⟨��(1) ,��(2)⟩ = 1

��(1)���(2)�
��(1)��
i=1

��(2)��
j=1

k
�
�
(1)

i
, �

(2)

j

�
,

1 In principle, sets of varying size can be considered, but we restrict to same sized sets to simplify our
analysis.

860 Machine Learning (2021) 110:857–879

1 3

2.3 Related work

Although it has been raised in different interests, meta-learning approaches dealt with set
inputs are promising in a machine learning community, because they can generalize dis-
tinct tasks with meta-learners (Edwards and Storkey 2017; Zaheer et al. 2017; Finn et al.
2017; Garnelo et al. 2018). In particular, they propose feed-forward neural networks which
take permutation-invariant and variable-length inputs: they have the goal of obtaining fea-
tures derived from the sets with which to input to a standard (meta-)learning routine. Since
they consider modeling of set structure, they are related to our work, but they are interested
in their own specific examples such as point cloud classification, few-shot learning, and
image completion.

In Bayesian optimization literature, Garnett et al. (2010) suggest a method to find a set
that produces a global minimum with respect to discrete sets, each of which is an element
of power set of entire set. This approach solves the problem related to set structure using
the first Wasserstein distance over sets. However, for the reason why the time complex-
ity of the first Wasserstein distance is O(n2m3d) , they assume a small cardinality of sets
and discrete search space for the global optimization method. Furthermore, their method
restricts the number of iterations for optimizing an acquisition function, since the number
of iterations should increase exponentially due to the curse of dimensionality. This implies
that finding the global optimum of acquisition function is hard to achieve.

Compared to Garnett et al. (2010), we consider continuous domain space which implies
an acquired set is composed of any instances in a compact space X . We thus freely use
off-the-shelf global optimization method or local optimization method (Shahriari et al.
2016) with relatively large number of instances in sets. In addition, its structure of kernel
is kst(d(�(1),�(2))) where kst(⋅) is a stationary kernel (Genton 2001) and d(⋅, ⋅) is a distance
function over two sets (e.g., in Garnett et al. 2010 the first Wasserstein distance). Using the
method proposed in Sect. 3, a non-stationary kernel might be considered in modeling a
surrogate function.

Recently, Buathong et al. (2020) solve a similar set optimization problem using Bayes-
ian optimization with deep embedding kernels.2 Compared to our method, it employs
a kernel over RKHS embeddings as a kernel for set inputs, and shows its strict positive
definiteness.

3 Proposed method

We first propose and analyze an approximation to the set kernel (2) for GP regression in
this section. Then, we present a Bayesian optimization framework over sets, by introduc-
ing our Bayesian optimization with approximate set kernels and a constrained optimization
method for finding the next set to evaluate.

In order for (2) to be a viable kernel of a GP regression, it must be positive-definite. To
discuss this topic, we denote a list of n sets with the notation � = [�(1),… ,�(n)] ∈ Xset

n ;
in this notation, the order of the entries matters.

2 Although the work (Buathong et al. 2020) refers to our preliminary non-archival presentation (Kim et al.
2019), we mention (Buathong et al. 2020) here due to a close relationship with this work and its impor-
tance.

861Machine Learning (2021) 110:857–879

1 3

Lemma 1 Suppose we have a list � which contains distinct sets �(i) for i ∈ [n] . We define
the matrix � ∈ ℝ

n×n as

for kset defined with a chosen inner kernel k as in (2). Then, � is a symmetric positive-sem-
idefinite matrix if k is a symmetric positive-definite kernel.

This proof appears in Haussler (1999, Lemma 1), and is also discussed in Gärtner et al.
(2002).

3.1 Approximation of the set kernel

Computing (3) requires pairwise comparisons between all sets present in � , which has
computational complexity O(n2m2d) . To alleviate this cost, we propose to approximate (2)
with

where � ∶ [m] → [m] , � ∈ ℝ
d and L ∈ ℤ+ and �̃(i) is a subset of �(i) which is defined by

those three quantities (we omit explicitly listing them in �̃(i) to ease the notation).
The goal of the approximation strategy is to convert from �(i) (of size m) to �̃(i) (of

size L) in a consistent fashion during all the k̃set computations comprising � . As shown in
Fig. 1, we accomplish this in two steps:

1. Use a randomly generated vector � to impose an (arbitrary) ordering of the elements of
all sets �(i) , and

2. Randomly permute the indices [m] via a function �.

These random strategies are defined once before computing the � matrix, and then used
consistently throughout the entire computation.

(3)(�)ij = kset
(
�(i),�(j)

)
,

(4)k̃set
(
�(1),�(2);𝜋,�, L

)
= kset

(
�̃(1), �̃(2)

)
,

Fig. 1 Illustration that shows how to select L instances from sets, which originally have m instances. In this
example, m = 4 and L = 2 . (Phase 1) Two set inputs are projected onto a vector that is randomly drawn
from the standard Gaussian distribution. The points that have same color belong to same set (e.g., blue and
red). (Phase 2) The location of the projections onto the line determines the order of the instances. (Phase
3) Using the order of instances, two instances uniformly sampled are selected and they are used to compute
the approximate set kernel value (Color figure online)

862 Machine Learning (2021) 110:857–879

1 3

To impose an ordering of the elements, we use a random scalar projection � ∈ ℝ
d such

that the elements of � are drawn from the standard normal distribution. If the scalar pro-
jections of each �i are computed, this produces the set of scalar values {�⊤�1,… ,�⊤�m} ,
which can be sorted to generate an ordered list of

for an ordering of distinct indices �1,… ,�m ∈ [m] . Ties between �⊤�i values can be dealt
with arbitrarily. The function � then is simply a random bijection of the integers [m] onto
themselves. Using this, we can sample L vectors from �(i):

This process, given � , � , and L, is sufficient for computing kset , as presented in Algorithm 1.

3.2 Properties of the approximation

The covariance matrix for this approximation of the set kernel, which we denote by
(�̃)ij = k̃set(�

(i),�(j);�,𝜋, L) , should approximate the full version of covariance matrix, �
from (3). Because of the random structure introduced in Sect. 3.1, the matrix �̃ will be ran-
dom. This will be addressed in Theorem 1, but for now, �̃ represents a single realization of
that random variable, not the random variable itself. To be viable, this approximation must
satisfy the following requirements:

Property 1 The approximation satisfies pairwise symmetry:

Since �̃(i) is uniquely defined given �,�, L , this simplifies to kset(�̃(i), �̃(j)) = kset(�̃
(j), �̃(i)) ,

which is true because kset is symmetric.

Property 2 The “ordering” of the elements in the sets �(i),�(j) should not mat-
ter when computing k̃set . Indeed, because (5) enforces ordering based on � , and not

(5)[�1,… ,�m], �⊤�
�1

≤ … ≤ �⊤�
�m
,

(6)�̃(i) = {�
�j
| �j = 𝜋(j) for j ∈ [L]}.

(7)k̃set
(
�(i),�(j);�,𝜋, L

)
= k̃set

(
�(j),�(i);�,𝜋, L

)
.

863Machine Learning (2021) 110:857–879

1 3

whatever arbitrary indexing is imposed in defining the elements of the set, the kernel will
be permutation-invariant.

Property 3 The kernel approximation (4) reduces to computing kset on a lower cardinality
version of the data (with L elements selected from m). Because kset is positive-definite on
these L-element sets, we know that k̃set is also positive-definite.

Property 4 Since the approximation method aims to choose subsets of input sets, the com-
putational cost becomes lower than the original formulation.

Missing from these four properties is a statement regarding the quality of the approxi-
mation. We address this in Theorems 1 and 2, though we first start by stating Lemma 2.

Lemma 2 Suppose there are two sets �,� ∈ Xset . Without loss of generality, let �(i) and

�(j) denote the ith and jth of
(
m

L

)
 possible subsets containing L elements of � and � ,

respectively, in an arbitrary ordering. For L ∈ [m],

where �̄(i)
a

 and �̄(j)
b

 are the ath and bth elements of �(i) and �(j) , respectively, in an arbitrary
ordering.

Proof We can rewrite the original summation in a slightly more convoluted form, as

where I
�̄
(i)
a ,�̄

(j)

b

(�c, �d) = 1 if �̄(i)
a

= �c and �̄(j)
b

= �d , and 0 otherwise. As these are finite sum-
mations, they can be safely reordered.

The symmetry in the structure and evaluation of the summation implies that as each �c
quantity will be paired with each �d quantity the same number of times. Therefore, we need
only consider the number of times that these quantities appear.

(8)

⎛⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

L�
a=1

L�
b=1

k(�̄(i)
a
, �̄

(j)

b
) =

L2
�
m

L

�2

m2

m�
c=1

m�
d=1

k(�c, �d),

(9)

⎛⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

L�
a=1

L�
b=1

k(�̄(i)
a
, �̄

(j)

b
)

=

⎛⎜⎜⎝
m

L

⎞⎟⎟⎠�
i=1

⎛⎜⎜⎝
m

L

⎞⎟⎟⎠�
j=1

L�
a=1

L�
b=1

m�
c=1

m�
d=1

k(�̄(i)
a
, �̄

(j)

b
)I
�̄
(i)
a ,�̄

(j)

b

(�c, �d)

=

m�
c=1

m�
d=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

L�
a=1

L�
b=1

k(�̄(i)
a
, �̄

(j)

b
)I
�̄
(i)
a ,�̄

(j)

b

(�c, �d)

⎤⎥⎥⎥⎥⎥⎥⎦

,

864 Machine Learning (2021) 110:857–879

1 3

We recognize that this summation follows a pattern related to Pascal’s triangle. Among

the
(
m

L

)
 possible subsets �̄ of � , only the fraction L/m of those contain the quantity �c for

all c ∈ [m] (irrespective of how that entry may be denoted in �̄(i)
a

 terminology). Because of
the symmetry mentioned above, each of those �c quantities is paired with each of the �d

quantities the same L
m

(
m

L

)
 number of times. This result implies that

where I
�̄
(i)
a ,�̄

(j)

b

(�c, �d) = 1 if �̄(i)
a

= �c and �̄(j)
b

= �d , and 0 otherwise. Substituting (10) into
the bracketed quantity in (9) above completes the proof. ◻

We start by introducing the notation W and � to be random variables such that
W ∼ N(0, �d) and � is a uniformly random permutation of the integers between 1 and m.
These are the distributions defining the � and � quantities described above. With this,
we note that k̃set(�,�;W,𝛱 , L) is a random variable.

We also introduce the notation �L(�) to be the distribution of random subsets of �
with L elements selected without replacement, the outcome of the subset selection from
Sect. 3.1. This notation allows us to write the quantities

for �̄ ∼ 𝜎L(�), �̄ ∼ 𝜎L(�) . We have dropped the random variables from the expectation
and variance definitions for ease of notation.

Theorem 1 Suppose that we are given two sets �,� ∈ Xset and L ∈ ℤ+ . Suppose, further-
more, that � and � can be generated randomly as defined in Sect. 3.1 to form subsets �̃ and
�̃ . The value of k̃set(�,�;�,𝜋, L) is an unbiased estimator of the value of kset(�,�).

Proof Our goal is to show that �[kset(�̄, �̄)]=kset(�,�) , where �[kset(�̄, �̄)] is defined in
(11).

We first introduce an extreme case: L = m . If L = m , the subsets we are constructing are
the full sets, i.e., �m(�) contains only one element, � . Thus, k̃set(�,�;W,𝛱 ,m) = kset(�,�)
is not a random variable.

For 1 ≤ L < m , we compute this expected value from the definition (with some abuse of
notation):

(10)

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

L�
a=1

L�
b=1

k(�̄(i)
a
, �̄

(j)

b
)I
�̄
(i)
a ,�̄

(j)

b

(�c, �d) =

L2
�
m

L

�2

m2
k(�c, �d),

(11)�W,𝛱 [k̃set(�,�;W,𝛱 , L)] = ��̄,�̄[kset(�̄, �̄)] ≡ �[kset(�̄, �̄)],

(12)VarW,𝛱 [k̃set(�,�;W,𝛱 , L)] = Var�̄,�̄[kset(�̄, �̄)] ≡ Var[kset(�̄, �̄)],

(13)�[kset(�̄, �̄)] =
∑
�̄,�̄

kset(�̄, �̄)p(�̄, �̄).

865Machine Learning (2021) 110:857–879

1 3

There are
(
m

L

)
 subsets, all of which could be indexed (arbitrarily) as �̄(i) for 1 ≤ i ≤

(
m

L

)
 .

The probability mass function is uniform across all subsets, meaning that

p(�̄ = �̄(i), �̄ = �̄(j)) = 1∕

(
m

L

)2

 . Using this, we know

We apply (2) to see that

following the notational conventions used above. The expectation involves four nested
summations,

We utilize Lemma 2 to rewrite this as

 ◻

Theorem 2 Under the same conditions as in Theorem 1, suppose that k(�, ��) ≥ 0 for all
�, �� ∈ X . The variance of k̃set(�,�;�,𝜋, L) is bounded by a function of m, L and kset(�,�):

Proof The variance of kset(�̄, �̄) , defined in (12), is computed as

where Theorem 1 is invoked to produce the final line. Using (14) and (15), we can express
the first term of (19) as

(14)�[kset(�̄, �̄)] =

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

kset(�̄
(i), �̄(j))

1�
m

L

�2
.

(15)kset(�̄
(i), �̄(j)) =

1

L2

L∑
a=1

L∑
b=1

k(�̄(i)
a
, �̄

(j)

b
),

(16)�[kset(�̄, �̄)] =
1

L2

�
m

L

�2

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

L�
a=1

L�
b=1

k(�̄(i)
a
, �̄

(j)

b
).

(17)�[kset(�̄, �̄)] =
1

L2

(
m

L

)2

L2
(
m

L

)2

m2

m∑
c=1

m∑
d=1

k(�c, �d) =
1

m2

m∑
c=1

m∑
d=1

k(�c, �d).

(18)Var
[
k̃set(�,�;�,𝜋, L)

]
≤

(
m4

L4
− 1

)
kset(�,�)

2.

(19)

Var
[
kset(�̄, �̄)

]
= �

[(
kset(�̄, �̄) − �

[
kset(�̄, �̄)

])2]

= �
[
kset(�̄, �̄)

2
]
+ kset(�,�)

2 − 2kset(�,�)�
[
kset(�̄, �̄)

]

= �
[
kset(�̄, �̄)

2
]
− kset(�,�)

2,

866 Machine Learning (2021) 110:857–879

1 3

At this point, we invoke the fact that k(�, ��) ≥ 0 to state

which is true because the summation to m terms contains all of the elements in the summa-
tion to L terms, as well as other (nonnegative) elements. Using this, we can bound (20) by

Therefore, with (22), (19) can be written as

which concludes this proof. ◻

The restriction k(�, ��) ≥ 0 is satisfied by many standard covariance kernels (such as
the Gaussian, the Matérn family and the multiquadric) as well as some more interesting
choices (such as the Wendland or Wu families of compactly supported kernels). It does,
however, exclude some oscillatory kernels such as the Poisson kernel as well as kernels
defined implicitly which may have an oscillatory behavior. More discussion on different
types of kernels and their properties can be found in the kernel literature (Fasshauer and
McCourt 2015).

By Theorem 2, we can naturally infer the fact that the upper bound of the variance
decreases quickly, as L is close to m.

(20)�
�
kset(�̄, �̄)

2
�
=

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

�
1

L2

L�
a=1

L�
b=1

k(�̄(i)
a
, �̄

(j)

b
)

�2

1�
m

L

�2
.

(21)0 ≤

L∑
a=1

L∑
b=1

k(�̄(i)
a
, �̄

(j)

b
) ≤

m∑
a=1

m∑
b=1

k(�a, �b),

(22)

�
�
kset(�̄, �̄)

2
�
≤

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

i=1

⎛
⎜⎜⎝
m

L

⎞
⎟⎟⎠�

j=1

�
1

L2

m�
a=1

m�
b=1

k(�a, �b)

�2

1�
m

L

�2

=
m4

�
m

L

�2

L4

⎛⎜⎜⎝
m

L

⎞⎟⎟⎠�
i=1

⎛⎜⎜⎝
m

L

⎞⎟⎟⎠�
j=1

�
1

m2

m�
a=1

m�
b=1

k(�a, �b)

�2

=
m4

�
m

L

�2

L4

�
m

L

�2

kset(�,�)
2 =

m4

L4
kset(�,�)

2.

(23)Var
[
kset(�̄, �̄)

]
≤

m4

L4
kset(�,�)

2 − kset(�,�)
2 =

(
m4

L4
− 1

)
kset(�,�)

2,

867Machine Learning (2021) 110:857–879

1 3

3.3 Bayesian optimization over sets

For Bayesian optimization over Xset , the goal is to identify the set � ∈ Xset such that a
given function f ∶ Xset → ℝ is minimized. As shown in Algorithm 2, Bayesian optimiza-
tion over sets follows similar steps as laid out in Sect. 2, except that it involves the space of
set inputs and requires a surrogate function on Xset . As we have already indicated, we plan
to use a GP surrogate function, with prior covariance defined either with (2) or (4) and a
Matérn 5/2 inner kernel k.

A GP model requires computation on the order of O(n3) at the nth step of the Bayesian
optimization because the � matrix must be inverted. Compared to the complexity for com-
puting a full version of the set kernel O(n2m2d) , the complexity of computing the inverse is
smaller if roughly m ≥ n (that is, computing the matrix can be as costly or more costly than
inverting it). Because Bayesian optimization is efficient sampling-based global optimiza-
tion, n is small and the situation m ≥ n is reasonable. Therefore, the computation reduction
by our approximation can be effective in reducing complexity of all steps for Bayesian opti-
mization over sets.

In addition, since the Cholesky decomposition, instead of matrix inverse is widely used
to compute posterior mean and variance functions (Rasmussen and Williams 2006), the
time complexity for inverting a covariance matrix can be reduced. But still, if m is rela-
tively large, our approximation is effective. In this paper, we compute GP surrogate using
the Cholesky decomposition. See the effects of L in Sect. 4.1.

3.4 Acquisition function optimization over sets

An acquisition function optimization step is one of the primary steps in Bayesian opti-
mization, because this step is for finding an acquired example, which exhibits the highest
potential of the global optimum. Compared to generic vector-input Bayesian optimization
methods, our Bayesian optimization over sets needs to find a query set � on Xset , optimiz-
ing the acquisition function over sets.

Since m is fixed when we find � , off-the-shelf optimization methods such as L-BFGS-
B (Liu and Nocedal 1989), DIRECT (Jones et al. 1993), and CMA-ES (Hansen 2016) can
be employed where a set is treated as a concatenated vector. However, because of the sym-
metry of the space Xset , these common optimization methods search more of the space than is
required. For instance, if we optimize the function on {1, 2, 3} , we would not need to consider
such the sets {1, 3, 2}, {2, 1, 3},… , {3, 2, 1} . Therefore, we suggest a constrained acquisition

868 Machine Learning (2021) 110:857–879

1 3

function optimization with rejection sampling algorithm. The sample complexity of this
method decreases by a factor of m!.

First of all, we sample all instances of the sets to initialize acquisition function optimization
from uniform distribution. By the rejection sampling, some of the sets sampled are rejected if
each of them is located outside of the symmetric region. The optimization method (i.e., CMA-
ES) finds the optimal set of the acquisition function, starting from those initial sets selected
from the aforementioned step. In the optimization step, our optimization strategy forces every
optimization result to locate in the symmetric search space. Finally, we pick the best one
among the converged sets as the next set to observe.

3.5 Regret analysis

To produce a regret bound on Bayesian optimization with our approximation as well as one of
Bayesian optimization with the set kernel, we follow the framework to prove the regret bounds
of the multi-armed bandit-like acquisition function in Srinivas et al. (2010). To simplify the
analysis, we discuss only the Matérn kernel for 𝜈 > 2 as a base kernel for GP.

Inspired by Kandasamy et al. (2015), we assume that our objective function f can be
expressed as a summation of functions over instances and they can be collected to a function
that can take a single vector with the i.i.d. property of instances in a set:

which implies that h can take md-dimensional concatenated inputs. Thus, we can state our
Bayesian optimization with the set kernel follows the cumulative regret bound proposed by
Srinivas et al. (2010) and Kandasamy et al. (2015). Given T available sets {�(1),… ,�(T)} ,
let � ∈ (0, 1) and trade-off hyperparameter for GP-UCB �t ∈ O(md log t) . A cumulative
regret bound RT is

with the probability at least 1 − � , under the mild assumptions: (i) kset(�,��) ≤ 1 ; (ii) the
bounded reproducing kernel Hilbert space (RKHS) norm ‖f‖kset < b where b > 0 . Moreo-
ver, k̃set(�,��;�,𝜋, L) ≤ 1 and ‖f‖k̃set < b are naturally satisfied by their definitions.

By Theorems 1 and 2, we can define Corollary 1, which is related to the aforementioned
regret bound.

Corollary 1 Suppose that 0 < 𝛿 ≪ 1 . R(L)

T
 is a cumulative regret computed by the approxi-

mate set kernel with L of m instances in each set. By Theorems 1 and 2, �L[R
(L)

T
] = RT , is

satisfied with the probability at least 1 − �.

Proof Since our approximation is an unbiased estimator of original set kernel kset with
bounded variance as discussed in Theorems 1 and 2, the expectation of cumulative regrets
with the approximation is equal to RT . ◻

(24)f (�) =
1

m

m∑
i=1

g(�i) = h([�1,… , �m]),

(25)RT = O(md2dT
�+d(d+1)

2�+d(d+1)),

869Machine Learning (2021) 110:857–879

1 3

4 Experiments

In this section, we present various experimental results, to show unique applications
of our method as well as the motivating problems. First, we conduct our method on
the experiments regarding set kernel approximation and constrained acquisition func-
tion optimization, in order to represent the effectiveness of our proposed method. Then,
we optimize two synthetic functions and clustering algorithm initialization, which take
a set as an input. Finally, we present the experimental results on active nearest neighbor
search for point clouds.

We define the application-agnostic baseline methods, Vector and Split:
Vector A standard Bayesian optimization is performed over a md-dimensional space

where, at the nth step, the available data �n ∈ Xset
n is vectorized to [�1,… , �n] for

�i ∈ ℝ
md with associated function values. At each step, the vectorized next location �n+1

is converted into a set �n+1.
Split Individual Bayesian optimization strategies are executed on the m components

comprising X . At the nth step, the available data �n ∈ Xset
n is decomposed into m sets

of data, the ith of which consists of [�(i)
1
,… , �(i)

n
] with associated data. The m vectors

produced during each step of the optimization are then collected to form �n+1 at which
to evaluate f.

For Vector and Split baselines, to satisfy the permutation-invariance property, we
determine the order of elements in a set as the ascending order by the l2 norm of the
elements.

We use Gaussian process regression (Rasmussen and Williams 2006) with a set kernel
or Matérn 5/2 kernel as a surrogate function. Because computing the inverse of covariance
matrix needs heavy computations, we employ the Cholesky decomposition instead (Ras-
mussen and Williams 2006). For the experiments with set kernel, Matérn 5/2 kernel is
used as a base kernel. All Gaussian process regression models are optimized by mar-
ginal likelihood maximization with the BFGS optimizer, to find kernel hyperparameters.
We use Gaussian process upper confidence bound criterion (Srinivas et al. 2010) as an
acquisition function for all experiments. CMA-ES (Hansen 2016) and its constrained ver-
sion are applied in optimizing the acquisition function. Furthermore, five initial points are
given to start a single round of Bayesian optimization. Unless otherwise specified, most of
experiments are repeated 10 times. For the results on execution time, all the results include
the time consumed in evaluating a true function. All results are run via CPU computa-
tions. All implementations which will be released as open source project are written in
Python. Thanks to Pedregosa et al. (2011), we use scikit-learn in many parts of our
implementations.

4.1 Set kernel approximation

We study the effect of L for the set kernels. Using a set generated from the standard nor-
mal distribution, which has 1000 50-dimensional instances, we observe the effects of L as
shown in Fig. 2a. kset converges to the true value as L increases, and the variance of kset
value is large when L is small, as discussed in Sect. 3.2. Moreover, the consumed time
increases as L increases. We use Matérn 5/2 kernel as a base kernel. Table 1 shows the
effects of L for set kernels. As L increases, kset value is converged to the true value and
execution time increases.

870 Machine Learning (2021) 110:857–879

1 3

4.2 Constrained acquisition function optimization

We demonstrate the effects of the constrained acquisition function optimization, compared
to the vanilla optimization method that concatenates a set to a single vector. In this paper,
we use CMA-ES (Hansen 2016) as an acquisition function optimization method, which
is widely used in Bayesian optimization (Bergstra et al. 2011; Wang et al. 2014). As we
mentioned in Sect. 3.4, the constrained CMA-ES is more sample-efficient than the vanilla
CMA-ES. Fig. 2b (i.e., a minimization problem) represents that the function values deter-
mined by the constrained method are always smaller than the values by the unconstrained
method, because we fix the number of initial samples (i.e., 5). Moreover, the variance of
them decreases, as m is large. For this experiment, we measure the acquisition performance
where 20 fixed historical observations are given, and Synthetic 1 described in Sect. 4.3 is
used. Note that the kernel approximation is not applied.

(a) (b)

Fig. 2 Results on the effects of L for set kernels and constrained optimization for acquisition functions. The
mean and standard deviation of each quantity are plotted, computed over 10 trials. (left) The lines with x
and o indicate kernel values and consumed times, respectively. The dashed line is the true set kernel value.
(right) �u and �c are the acquired sets obtained by the acquisition function optimization w/o and w/con-
straints, respectively

Table 1 The effects of L for set
kernels

All settings follow the settings in Fig. 2a. The numerical results are
rounded to the three decimals, to show the effects precisely

L k
set

Time (s)

1 1.057 × 10
−5 ± 1.387 × 10

−6 (2.776 ± 0.877) × 10
−4

2 1.045 × 10
−5 ± 4.512 × 10

−7 (3.131 ± 0.118) × 10
−4

5 1.019 × 10
−5 ± 1.168 × 10

−7 (9.283 ± 0.089) × 10
−4

10 1.023 × 10
−5 ± 9.980 × 10

−8 (3.133 ± 0.822) × 10
−3

20 1.025 × 10
−5 ± 9.305 × 10

−8 (9.150 ± 3.169) × 10
−3

50 1.028 × 10
−5 ± 4.955 × 10

−8 (5.487 ± 1.075) × 10
−2

100 1.026 × 10
−5 ± 3.030 × 10

−8 (2.282 ± 0.134) × 10
−1

200 1.027 × 10
−5 ± 1.961 × 10

−8 (9.253 ± 0.490) × 10
−1

500 1.027 × 10
−5 ± 1.372 × 10

−8 (5.887 ± 0.159) × 10
0

1000(= m) 1.027 × 10
−5 (2.295 ± 0.027) × 10

1

871Machine Learning (2021) 110:857–879

1 3

4.3 Synthetic functions

We test two synthetic functions to show Bayesian optimization over sets is a valid approach
to find an optimal set that minimizes an objective function f ∶ Xset → ℝ . In each setting,
there is an auxiliary function g ∶ X → ℝ , and f is defined as f (�) = 1

m

∑m

i=1
g(�i) . The g

functions are designed to be multi-modal, giving the opportunity for the set � to contain �i
values from each of the modes in the domain. Additionally, as is expected, f is permutation
invariant (any ordering imposed on the elements of � is immaterial).

Synthetic 1 We consider d = 1 , m = 20 and choose g to be a simple periodic function:

Synthetic 2 We consider d = 2 , m = 20 and a g function which is the sum of probability
density functions:

where p is the normal density function with �i depicted in Fig. 3 and Σi = �2.
As shown in Fig. 3, both of these functions have a clear multimodal structure, allow-

ing for optimal sets to contain points which are clustered in a single local minima or to be
spread out through the domain in several local minima. Fig. 4 shows that Vector and Split
strategies have difficulty optimizing the functions. On the other hand, our proposed method

(26)g(�) = sin(2‖�‖2) + �0.05‖�‖2�.

(27)g(�) = −

8∑
i=1

p(�;�i,Σi),

(a) (b) (c)

(d) (e) (f)

Fig. 3 Examples of one of the best acquisition results (i.e., purple stars indicate instances in the acquired
set) via Vector, Split, and Ours (w/o approximation). For Synthetic 1 (first row) and Synthetic 2 (second
row), m is set to 20 (Color figure online)

872 Machine Learning (2021) 110:857–879

1 3

finds optimal outcomes more effectively.3 We study the impact of L when optimizing these
two synthetic functions; a smaller L should yield faster computations, but also a worse
approximation �̃ to the true � matrix (when L = m).

Table 2 represents a convergence quality and its execution time for the synthetic func-
tions defined in this work. As expected, the execution time decreases as L decreases.

4.4 Clustering algorithm initialization

We initialize clustering algorithms for dataset P = [�1,… , �N] with Bayesian optimization
over sets. For these experiments, we add four additional baselines for clustering algorithms:

Random This baseline randomly draws k points from a compact space ⊂ ℝ
d.

0 10 20 30 40 50

Iteration

−0.8

−0.6

−0.4

−0.2

0.0

M
in
im
um

Fu
nc
tio

n
V
al
ue

Vector
Split
Ours (w/o app.)

Ours (L = 10)
Ours (L = 5)

Ours (L = 2)
Ours (L = 1)

(a) Synthetic 1

0 10 20 30 40 50

Iteration

−0.15

−0.14

−0.13

−0.12

−0.11

−0.10

−0.09

−0.08

−0.07

M
in
im
um

Fu
nc
tio

n
V
al
ue

Vector
Split
Ours (w/o app.)

Ours (L = 10)
Ours (L = 5)

Ours (L = 2)
Ours (L = 1)

(b) Synthetic 2

Fig. 4 Results on optimizing two synthetic functions. As presented in Fig. 3, m is set to 20. All experiments
are repeated 10 times

Table 2 Convergence quality and its execution time on two synthetic functions where m = 20

All settings follow the settings in Figs. 3 and 4

L Synthetic 1 Synthetic 2

Minimum Time (103 s) Minimum Time (103 s)

1 −0.133 ± 0.052 5.682 ± 0.279 −0.074 ± 0.004 6.468 ± 0.130

2 −0.146 ± 0.071 8.003 ± 0.156 −0.074 ± 0.005 9.768 ± 0.136

5 −0.266 ± 0.090 16.299 ± 0.253 −0.087 ± 0.006 20.451 ± 0.033

10 −0.516 ± 0.052 31.010 ± 0.810 −0.115 ± 0.006 40.099 ± 0.085

20(= m) −0.858 ± 0.019 91.589 ± 2.339 −0.147 ± 0.004 85.266 ± 0.297

3 While not our concern here, it is possible that some amount of distance between points in the set � would
be desired. If that were the case, such a desire could be enforced in the function f.

873Machine Learning (2021) 110:857–879

1 3

Data This baseline randomly samples k points from a dataset P . It is widely used in ini-
tializing a clustering algorithm.

(k-means only) k-means++ (Arthur and Vassilvitskii 2007) This is a method for
k-means clustering with the intuition that spreading out initial cluster centers is better than
the Data baseline.

(GMM only) k-means This baseline sets initial cluster centers as the results of k-means
clustering.

To fairly compare the baselines to our methods, the baselines are trained by the
whole datasets without splitting. To compare with the baselines fairly, Random, Data,
k-means++ (Arthur and Vassilvitskii 2007), k-means are run 1000 times. In Bayesian opti-
mization settings, we split a dataset to training (70%) and test (30%) datasets. After finding
the converged cluster centers {�1,… , �k} with training dataset, the adjusted Rand index
(ARI) is computed by test dataset. The algorithms are optimized over 1 − ARI . All cluster-
ing models are implemented using scikit-learn (Pedregosa et al. 2011).

We test two clustering algorithms for synthetic datasets: (i) k-means clustering and (ii)
Gaussian mixture model (GMM). In addition, two real-world datasets are tested to initial-
ize k-means clustering: (i) Handwritten Digits dataset (Dua and Graff 2019) and (ii) NIPS
Conference Papers dataset (Perrone et al. 2017). As shown in Figs. 5 and 6, our meth-
ods outperform other application-agnostic baselines as well as four baselines for clustering
methods.

Synthetic datasets We generate a dataset sampled from Gaussian distributions, where
N = 500 , d = 5 , and k = 10.

Real-world datasets Two real-world datasets are tested: (i) Handwritten Digits
dataset (Dua and Graff 2019) and (ii) NIPS Conference Papers dataset (Perrone et al.
2017). Handwritten Digits dataset contains 0–9 digit images that can be expressed as
N = 1797 , d = 64 , and k = 10 . NIPS Conference Papers dataset is composed of the
papers published from 1987 to 2015. The features of each example are word frequen-
cies, and this dataset can be expressed as N = 5811 , d = 11463 , and k = 20 . However,
without any techniques for reducing the dimensionality, this dataset is hard to apply the

0.24

0.26

0 10 20 30 40 50

0.06

0.08

0.10

0.12

Iteration

1
−

A
R
I

Random
Data
k-means++

Vector
Split
Ours (w/o app.)

Ours (L = 5)
Ours (L = 2)
Ours (L = 1)

(a) k-means clustering

0.375

0.400

0 10 20 30 40 50

0.200

0.225

0.250

0.275

Iteration

1
−

A
R
I

Random
Data
k-means

Vector
Split
Ours (w/o app.)

Ours (L = 5)
Ours (L = 2)
Ours (L = 1)

(b) Gaussian mixture model

Fig. 5 Results on initializing clustering algorithms: k-means clustering and Gaussian mixture model for
synthetic datasets

874 Machine Learning (2021) 110:857–879

1 3

clustering algorithm. We choose 200 dimensions in random when creating the dataset
for these experiments, because producing the exact clusters for entire dimensions is not
our interest in this paper.

Because the real-world datasets for clustering are difficult to specify truths, we
determine truths as class labels for Handwritten Digits dataset (Dua and Graff 2019)
and clustering results via Ward hierarchical clustering (Ward 1963) for NIPS Confer-
ence Papers dataset (Perrone et al. 2017).

The function of interest in the k-means clustering setting is the converged clustering
residual

where {�1,… , �k} is the set of proposed initial cluster centers, {�1,… , �k} is the set of
converged cluster centers (Lloyd 1982), and wij are softmax values from the pairwise dis-
tances. Here, the fact that �j is a function of � and P is omitted for notational simplicity.
The set of converged cluster centers is determined through an iterative strategy which is
highly dependent on the initial points � to converge to effective centers.

In contrast to k-means clustering, the GMM estimates parameters of Gaussian dis-
tributions and mixing parameters between the distributions. Because it is difficult to
minimize negative log-likelihood of the observed data, we fit the GMM using expecta-
tion-maximization algorithm (Dempster et al. 1977). Similarly to k-means clustering,
this requires initial guesses � to converge to cluster centers {�1,… , �k}.

Table 3 shows convergence qualities and their execution time on k-means clustering
algorithm and GMM for synthetic datasets, and Table 4 represents the qualities and
their execution for Handwritten Digits and NIPS Conference Papers datasets. Similar
to Table 1, the computational cost increases as L increases.

(28)k-means({�1,… , �k}) =

N�
i=1

k�
j=1

wij‖�i − �j‖22,

0 10 20 30 40 50

Iteration

0.33

0.34

0.35

0.36

0.37

0.38

0.39

1
−
A
R
I

Random
Data
k-means++

Vector
Split
Ours (L = 5)

Ours (L = 2)
Ours (L = 1)

(a) Handwritten Digits

0.68

0.69

0.70

0.71

0.72

0 10 20 30 40 50
0.62

0.63

Iteration

1
−
A
R
I

Random
Data
k-means++

Vector
Split
Ours (L = 5)

Ours (L = 2)
Ours (L = 1)

(b) NIPS Conference Papers

Fig. 6 Results on initializing k-means clustering for Handwritten Digits and NIPS Conference Papers data-
sets

875Machine Learning (2021) 110:857–879

1 3

4.5 Active nearest neighbor search for point clouds

ModelNet40 dataset (Wu et al. 2015) contains 40 categories of 12,311 3D CAD models.
Point cloud representation is obtained by sampling uniformly 1,024 points from the surface
of each 3D model using Open3D (Zhou et al. 2018). Nearest neighbor search for point
clouds requires large number of Chamfer distance calculations, which is a time-consuming
task, in particular when the size of dataset is large. We employ our Bayesian optimiza-
tion over sets to actively select a candidate whose Chamfer distance from the query is to
be computed, while the linear scan requires the calculation of Chamfer distance from the
query to every other data in the dataset:

where |�| = |�| = m and each element in � and � is a three-dimensional real vector.
For this experiment, we use one oracle and three additional baselines:
Ground-truth (worst) It is the worst case to achieve the ground-truth. The best retrieval

case is to find the ground-truth at once, and the usual case would be between the best and
the worst.

DeepSets (�) / DeepSets (max) / DeepSets (+) These baselines are implemented to
embed point clouds to a single vector using DeepSets (Zaheer et al. 2017), and measure l2
distance between the embeddings. Because we can access to class information of Model-
Net40 dataset (Wu et al. 2015), these neural networks can be trained to match the infor-
mation. We use three fully-connected layers with batch normalization (Ioffe and Szegedy
2015) as an instance-wise network, and four fully-connected layers with batch normali-
zation as a network after aggregation. ReLU is employed as an activation function. The
choice of global aggregation methods determines each baseline: (i) mean aggregation is � ;

(29)dChamfer(�,�) =
�
�∈�

min
�∈�

‖� − �‖2

Table 3 Convergence quality and its execution time on k-means clustering and Gaussian mixture model

All settings follow the settings in Fig. 5

L k-means clustering Gaussian mixture model

1−ARI Time (103 s) 1−ARI Time (103 s)

1 0.051 ± 0.024 3.140 ± 0.051 0.202 ± 0.011 2.364 ± 0.178

2 0.058 ± 0.030 5.034 ± 0.145 0.197 ± 0.038 3.873 ± 0.148

5 0.050 ± 0.022 13.891 ± 0.327 0.194 ± 0.033 13.105 ± 0.675

10(= m) 0.073 ± 0.038 45.527 ± 2.475 0.205 ± 0.030 49.134 ± 1.469

Table 4 Convergence quality and
its execution time on k-means
clustering for Handwritten Digits
and NIPS Conference Papers
datasets

All settings follow the settings in Fig. 6

L Handwritten digits NIPS conference papers

1−ARI Time (103 s) 1−ARI Time (103 s)

1 0.343 ± 0.007 39.347 ± 6.533 0.621 ± 0.006 4.757 ± 0.138

2 0.334 ± 0.013 47.550 ± 1.832 0.620 ± 0.007 9.410 ± 0.260

5 0.340 ± 0.016 177.170 ± 43.063 0.620 ± 0.007 38.521 ± 1.551

876 Machine Learning (2021) 110:857–879

1 3

(ii) max aggregation is max; and (iii) sum aggregation is + . Because retrieving 1-nearest
neighbor with these methods is hard to obtain the nearest neighbor, we choose the nearest
neighbor from 3-nearest neighbors to fairly compare with our methods.

Experiments with two different settings were carried out: (i) the size of point clouds is
100; (ii) full-size point clouds (the cardinality is 12,311). In the case of DeepSets, point
clouds are embedded into a low-dimensional Euclidean space, so that Euclidean distance is
used to search a nearest neighbor (i.e., approximate search). On the other hand, our method
actively selects a candidate gradually in the point cloud dataset. The nearest neighbor
determined by our method, given the query, is shown in Fig. 7. About 20 iterations of the
procedure is required to achieve the better performance, compared to DeepSets (Fig. 7a, b).

0 10 20 30 40 50

Iteration

40

60

80

100

120

C
ha
m
fe
r
di
st
an
ce

GT (worst)
DeepSets (µ)
DeepSets (m)
DeepSets (+)

Vector
Ours (L = 20)
Ours (L = 10)

Ours (L = 5)
Ours (L = 2)
Ours (L = 1)

(a) 100 examples

0 10 20 30 40 50

Iteration

60

80

100

120

C
ha
m
fe
r
di
st
an
ce

GT (worst)
DeepSets (µ)
DeepSets (m)
DeepSets (+)

Vector
Ours (L = 20)
Ours (L = 10)

Ours (L = 5)
Ours (L = 2)
Ours (L = 1)

(b) Entire examples

(c) Query 1 (d) NN 1 (e) Query 2 (f) NN 2 (g) Query 3 (h) NN 3

Fig. 7 Nearest neighbor search results on ModelNet40 point clouds. GT and DeepSets (m) indicate the
ground-truth and DeepSets (max), respectively. Query and NN pairs are the query and its nearest neighbor
examples found by our method

Table 5 Convergence quality and its execution time on nearest neighbor retrieval for ModelNet40 point
clouds

All settings follow the settings in Fig. 7

L 100 examples Entire examples

Chamfer distance Time (103 s) Chamfer distance Time (103 s)

1 63.720 ± 23.780 1.133 ± 0.049 59.095 ± 10.629 1.071 ± 0.067

2 59.079 ± 25.610 1.844 ± 0.109 61.783 ± 10.000 1.835 ± 0.094

5 41.072 ± 15.807 6.568 ± 0.485 53.820 ± 5.643 6.456 ± 0.372

10 38.422 ± 12.807 21.156 ± 1.360 49.798 ± 3.121 23.482 ± 1.111

20 38.422 ± 12.807 104.330 ± 5.045 49.054 ± 2.614 97.179 ± 3.882

877Machine Learning (2021) 110:857–879

1 3

4.6 Empirical analysis on computational cost

The computational costs from Tables 1, 2, 3, 4 and 5 are presented as a function of
L. These results are measured using a native implementation of set kernels written in
Python. As mentioned in Sect. 3, the computational costs follow our expectation,
which implies that the complexity for computing a covariance matrix over sets is the
major computations in the overall procedure.

5 Conclusion

In this paper, we propose the Bayesian optimization method over sets, which takes a
set as an input and produces a scalar output. Our method based on GP regression mod-
els a surrogate function using set-taking covariance functions, referred to as set kernel.
We approximate the set kernel to the efficient positive-definite kernel that is an unbi-
ased estimator of the original set kernel. To find a next set to observe, we employ a
constrained acquisition function optimization using the symmetry of the feasible region
defined over sets. Moreover, we provide a simple analysis on cumulative regret bounds
of our methods. Our experimental results demonstrate our method can be used in some
novel applications for Bayesian optimization.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

References

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of
the ACM-SIAM symposium on discrete algorithms (SODA), pp. 1027–1035. New Orleans, Louisi-
ana, USA.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization.
In Advances in neural information processing systems (NeurIPS), vol. 24, pp. 2546–2554. Granada,
Spain.

Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv: 1012. 2599

Buathong, P., Ginsbourger, D., & Krityakierne, T. (2020) Kernels over sets of finite sets using RKHS
embeddings, with application to Bayesian (combinatorial) optimization. In Proceedings of the
international conference on artificial intelligence and statistics (AISTATS), pp. 2731–2741. Virtual.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.

Dua, D., & Graff, C. (2019). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml
Edwards, H., & Storkey, A. (2017). Towards a neural statistician. In Proceedings of the international

conference on learning representations (ICLR). Toulon, France.
Fasshauer, G. E., & McCourt, M. M. (2015). Kernel-based approximation methods using matlab. Singa-

pore: World Scientific.

http://arxiv.org/abs/1012.2599
http://archive.ics.uci.edu/ml

878 Machine Learning (2021) 110:857–879

1 3

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the international conference on machine learning (ICML), pp. 1126–
1135. Sydney, Australia.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv: 1807. 02811
Frazier, P. I., & Wang, J. (2016). Bayesian optimization for materials design. In Information science for

materials discovery and design, pp. 45–75. Springer.
Garnelo, M., Rosenbaum, D., Maddison, C. J., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W., Rezende,

D. J., & Eslami, S. M. A. (2018). Conditional neural processes. In Proceedings of the international
conference on machine learning (ICML), pp. 1690–1699. Stockholm, Sweden.

Garnett, R., Osborne, M. A., & Roberts, S. J. (2010). Bayesian optimization for sensor set selection. In
ACM/IEEE international conference on information processing in sensor networks (IPSN), pp. 209–
219. Stockholm, Sweden.

Gärtner, T., Flach, P. A., Kowalczyk, A., & Smola, A. J. (2002). Multi-instance kernels. In Proceedings of
the international conference on machine learning (ICML), pp. 179–186. Sydney, Australia.

Genton, M. G. (2001). Classes of kernels for machine learning: A statistics perspective. Journal of Machine
Learning Research, 2, 299–312.

González, J., Longworth, J., James, D. C., & Lawrence, N. D. (2014). Bayesian optimization for synthetic
gene design. In Neural information processing systems workshop on Bayesian optimization (Bayes-
Opt). Montreal, Quebec, Canada.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. J. (2012). A kernel two-sample
test. Journal of Machine Learning Research, 13, 723–773.

Haghanifar, S., McCourt, M., Cheng, B., Wuenschell, J., Ohodnicki, P., & Leu, P. W. (2019). Creating glass-
wing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostruc-
tured glass through Bayesian learning and optimization. Materials Horizons, 6(8), 1632–1642.

Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv preprint arXiv: 1604. 00772
Haussler, D. (1999). Convolution kernels on discrete structures. Tech. rep.: Department of Computer Sci-

ence, University of California at Santa Cruz.
Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algo-

rithm configuration. In Proceedings of the international conference on learning and intelligent optimi-
zation (LION), pp. 507–523. Rome, Italy.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing inter-
nal covariate shift. In Proceedings of the international conference on machine learning (ICML), pp.
448–456. Lille, France.

Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz
constant. Journal of Optimization Theory and Applications, 79(1), 157–181.

Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., & Xing, E.P. (2018). Neural architecture search
with Bayesian optimisation and optimal transport. In Advances in neural information processing sys-
tems (NeurIPS), vol. 31, pp. 2016–2025. Montreal, Quebec, Canada.

Kandasamy, K., Schneider, J., & Póczos, B. (2015). High dimensional Bayesian optimisation and bandits
via additive models. In Proceedings of the international conference on machine learning (ICML), pp.
295–304. Lille, France.

Kim, J., McCourt, M., You, T., Kim, S., & Choi, S. (2019). Bayesian optimization over sets. In International
conference on machine learning workshop on automated machine learning (AutoML). Long Beach,
California, USA.

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Math-
ematical Programming, 45(3), 503–528.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2),
129–137.

Muandet, K., Fukumizu, K., Sriperumbudur, B., & Schölkopf, B. (2017). Kernel mean embedding of distri-
butions: A review and beyond. Foundations and Trends in Machine Learning, 10(1–2), 1–141.

Paciorek, C. J., & Schervish, M. J. (2004). Nonstationary covariance functions for Gaussian process regres-
sion. In Advances in neural information processing systems (NeurIPS), vol. 17, pp. 273–280. Vancou-
ver, BC, Canada.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

Perrone, V., Jenkins, P. A., Spano, D., & Teh, Y. W. (2017). Poisson random fields for dynamic feature mod-
els. Journal of Machine Learning Research, 18, 1–45.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT
Press.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.

http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1604.00772

879Machine Learning (2021) 110:857–879

1 3

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148–175.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algo-
rithms. In Advances in neural information processing systems (NeurIPS), vol. 25, pp. 2951–2959. Lake
Tahoe, Nevada, USA.

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian process optimization in the bandit set-
ting: No regret and experimental design. In Proceedings of the international conference on machine
learning (ICML), pp. 1015–1022. Haifa, Israel.

Wang, Z., Shakibi, B., Jin, L., & de Freitas, N. (2014). Bayesian multi-scale optimistic optimization. In
Proceedings of the international conference on artificial intelligence and statistics (AISTATS), pp.
1005–1014. Reykjavik, Iceland.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statis-
tical Association, 58(301), 236–244.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D ShapeNets: A deep rep-
resentation for volumetric shapes. In Proceedings of the IEEE international conference on computer
vision and pattern recognition (CVPR), pp. 1912–1920. Boston, MA, USA.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets.
In Advances in neural information processing systems (NeurIPS), vol. 30, pp. 3391–3401. Long Beach,
CA, USA.

Zhou, Q., Park, J., & Koltun, V. (2018). Open3D: A modern library for 3D data processing. arXiv preprint
arXiv: 1801. 09847

Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. In Proceedings of the
international conference on learning representations (ICLR). Toulon, France.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1801.09847

	Bayesian optimization with approximate set kernels
	Abstract
	1 Introduction
	2 Background
	2.1 Bayesian optimization
	2.2 Set kernel
	2.3 Related work

	3 Proposed method
	3.1 Approximation of the set kernel
	3.2 Properties of the approximation
	3.3 Bayesian optimization over sets
	3.4 Acquisition function optimization over sets
	3.5 Regret analysis

	4 Experiments
	4.1 Set kernel approximation
	4.2 Constrained acquisition function optimization
	4.3 Synthetic functions
	4.4 Clustering algorithm initialization
	4.5 Active nearest neighbor search for point clouds
	4.6 Empirical analysis on computational cost

	5 Conclusion
	References

