
Mach Learn (2018) 107:969–1011
https://doi.org/10.1007/s10994-018-5697-1

An incremental off-policy search in a model-free Markov
decision process using a single sample path

Ajin George Joseph1 · Shalabh Bhatnagar1

Received: 4 October 2016 / Accepted: 27 January 2018 / Published online: 13 February 2018
© The Author(s) 2018

Abstract In this paper, we consider a modified version of the control problem in a model
free Markov decision process (MDP) setting with large state and action spaces. The control
problem most commonly addressed in the contemporary literature is to find an optimal
policy which maximizes the value function, i.e., the long run discounted reward of the MDP.
The current settings also assume access to a generative model of the MDP with the hidden
premise that observations of the system behaviour in the form of sample trajectories can be
obtained with ease from the model. In this paper, we consider a modified version, where
the cost function is the expectation of a non-convex function of the value function without
access to the generative model. Rather, we assume that a sample trajectory generated using
a priori chosen behaviour policy is made available. In this restricted setting, we solve the
modified control problem in its true sense, i.e., to find the best possible policy given this
limited information. We propose a stochastic approximation algorithm based on the well-
known cross entropy method which is data (sample trajectory) efficient, stable, robust as
well as computationally and storage efficient. We provide a proof of convergence of our
algorithm to a policy which is globally optimal relative to the behaviour policy. We also
present experimental results to corroborate our claims and we demonstrate the superiority
of the solution produced by our algorithm compared to the state-of-the-art algorithms under
appropriately chosen behaviour policy.

Keywords Markov decision process · Off-policy prediction · Control problem · Stochastic
approximation method · Cross entropy method · Linear function approximation · ODE
method · Global optimization

Editor: Alan Fern.

B Ajin George Joseph
ajin@iisc.ac.in

1 Indian Institute of Science, Bangalore 560012, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5697-1&domain=pdf

970 Mach Learn (2018) 107:969–1011

1 Summary of notation

We use x for random variable and x for deterministic variable. For set A, IA represents the
indicator function of A, i.e., IA(x) = 1 if x ∈ A and 0 otherwise. Let fθ (·) denote the
probability density function parametrized by θ . Let Eθ [·] and Pθ denote the expectation and
the induced probability measure w.r.t. fθ . For ρ ∈ (0, 1) and a scalar-valued function J , let
γρ(J, θ) denote the (1 − ρ)-quantile of J (x) w.r.t. fθ , i.e.,

γρ(J, θ) � sup{l : Pθ (J (x) ≥ l) ≥ ρ}. (1)

Let supp(f) � {x | f (x) �= 0} denote the support of f and interior(A) be the interior of
set A. LetNd(a, B) represent the multivariate Gaussian distribution with mean vector a and
covariancematrix B. A function L : IRm → IR is Lipschitz continuous, if ∃K ≥ 0 s.t. |L(x)−
L(y)| ≤ K‖x − y‖, ∀x, y ∈ IRm , where ‖ · ‖ is a norm defined on IRm . Also, for a matrix
A = [ai j]1≤i≤m,1≤ j≤n ∈ IRm×n , we define the norm ‖A‖∞ � max1≤i≤m

∑
1≤ j≤n |ai j |

and for invertible matrices, we define the condition number κ(A) � ‖A‖∞‖A−1‖∞. Also,
|A| � [|ai j |]1≤i≤m,1≤ j≤n . Similarly, for x ∈ IRm , the sup norm ‖x‖∞ is defined as ‖x‖∞ �
supi |xi | and |x | � (|xi |)1≤i≤m .

2 Introduction and preliminaries

A discrete time Markov decision process (MDP) (Sutton and Barto 1998; Bertsekas 1995)
is a 4-tuple (S, A, R, P), where S denotes the set of states and A is the set of actions. Also,
R : S×A× S → IR is the reward function where R(s, a, s′) represents the reward obtained
in state s after taking action a and transitioning to state s′. Without loss of generality, we
assume that the same choice of actions is available for all the states. We also assume that
the reward function is bounded, i.e., ‖R‖∞ < ∞. We let P : S × A × S → [0, 1] denote
the transition probability kernel, where P(s, a, s′) is the probability of next state being s

′

conditioned on the fact that the current state is s and action taken is a. We assume that the
state and action spaces are finite. A stationary random policy (SRP) π(·|s) is a probability
distribution over the action space A conditioned on state s ∈ S. A given policy π along with
the transition kernel P determines the state dynamics of the system. For a given policy π ,
the system behaves as a homogeneous Markov chain with transition probabilities

Pπ (s, s′) =
∑

a∈A
π(a|s)P(s, a, s′), s, s′ ∈ S. (2)

In this paper, we consider only stationary randomized policies. We also assume that given
an SRP π , the Markov chain induced by Pπ is ergodic, i.e., the Markov chain is irreducible
and aperiodic.

The two fundamental questions most commonly addressed in the MDP literature are: 1.
Prediction problem and 2. Control problem.

Prediction problem For a given SRP π and discount factor γ ∈ (0, 1), the objective is to
evaluate the long-run γ -discounted cost V π ∈ IR|S| which is defined as

V π (s) � Eπ

[∞∑

k=0

γ k R(sk, ak, sk+1)

∣
∣
∣s0 = s

]

, s ∈ S, (3)

123

Mach Learn (2018) 107:969–1011 971

where the random variable sk represents the state at instant k, the random variable ak repre-
sents the action chosen at instant k and the random variable sk+1 represents the transitioned
state after instant k, i.e., the state at instant k + 1. Further, Eπ [·] is the expectation w.r.t. the
probability distribution induced by Pπ with initial state s0 = s. Note that the cost evaluation
in (3) is realistic and prudent. Since MDP is a sequential decision making paradigm, the
discount factor γ controls the width of the window of future events to be considered to guide
the decision process. For γ close to 0, only the rewards pertaining to the first few transi-
tions count as the effect of the future rewards whose weights are geometric in γ is minimal.
However, the case of γ very close to 1 requires a very long window to be considered.

For a given policy π , the value function V π satisfies the following Bellman equation
(written in vector-matrix notation):

V π = T πV π , (4)

where T π called the Bellman operator is defined as T πV � Rπ + γ PπV and Rπ (s) �∑
a∈A π(a|s)∑s′∈S P(s, a, s′)R(s, a, s′). Hence V π can be directly computed as V π =

(I − γ Pπ)−1Rπ . The computational complexity of the above direct computation is O(|S|3)
and the space complexity is O(|S|2). An alternate procedure to solve the prediction problem
is value iteration that is based on the contraction mapping theorem. It is easy to see that the
Bellman operator T π is a contraction mapping with the contraction constant γ . Hence by the
contraction mapping theorem, (T π)kV → V π as k → ∞, ∀V ∈ IR|S|. The computational
complexity of this successive approximation procedure is O(|S|2) per iteration and the space
complexity is O(|S|2) as well. The state space S can be huge, for example, in cases where
the state is represented as a high-dimensional vector. The cardinality of the state space
in such a case is exponential in the dimension resulting in a corresponding exponential
upsurge in computational effort and storage requirement. In such cases, the above method
can becomewell-nigh intractable. This predicament is referred to in the literature as the curse
of dimensionality. One commonly employed heuristic to circumvent the curse is the state
aggregation (Bertsekas and Castanon 1989) technique. However, it also suffers dearly when
the state space is huge.

Control problem The objective for this problem is to find the optimal stationary policy π∗
of the MDP, where

π∗(s) ∈ argmax
π

V π (s), s ∈ S. (5)

The existence of an optimal stationary policy is proven in Puterman (2014). The opti-
mal value function V ∗(= V π∗

) satisfies the Bellman optimality equation given by:
T V ∗ = V ∗, where the Bellman optimality operator T is defined as T V (s) �
maxa∈A

∑
s′∈S P(s, a, s′)(R(s, a, s′) + γ V (s′)). The primary numerical methods which

solve the control problem are the value iteration and policy iteration. A detailed descrip-
tion of these methods is available in Puterman (2014). In a nutshell, policy iteration can be
characterized as generating a sequence of improving policies {πk}k∈N with πk converging to
π∗ after a finite number of steps. Value iteration on the other hand involves repeated appli-
cation of the Bellman optimality operator, which requires multiple extensive passes over
the state space and the convergence is only guaranteed asymptotically. The computational
complexities of policy iteration and value iteration are O(|S|2|A| + |S|3) and O(|S|2|A|)
respectively. The space complexity of both the methods is the same and it is O(|S| + |A|).
The super-linear dependency of the methods on the size of state space results in the curse of
dimensionality. A recently proposed policy iterationmethod based on stochastic factorization

123

972 Mach Learn (2018) 107:969–1011

(Barreto et al. 2014) has reduced the dependency to linear terms. However, when S is very
large, stochastic factorization also becomes intractable.

2.1 Model free algorithms

In the above section, the prediction and control algorithms are numericalmethods that assume
that the probability transition function P and the reward function R are available. In most
of the practical scenarios, it is unrealistic to assume that accurate knowledge of P and R is
realizable. However, the behaviour of the system can be observed and one needs to either
predict the value of a given policy or find the optimal control using the available observations.
The observations are in the form of a sample trajectory {s0, a0, r0, s1, a1, r1, s2, a2, . . . },
where si ∈ S is the state and ri = R(si , ai , si+1) is the immediate reward at time instant i .
Model free algorithms are basically of three types: (i) Indirect methods, (ii) Direct methods
and (iii) Policy search methods. The last of these methods searches in the policy space to find
the optimal policy where the performance measure used for comparison is the estimate of
the value function induced from the observations. Prominent algorithms in this category are
actor-critic (Konda and Tsitsiklis 2003), policy gradient (Baxter and Bartlett 2001), natural
actor-critic (Bhatnagar et al. 2009) and fast policy search (Mannor et al. 2003). Indirect
methods are based on the certainty equivalence of computing where initially the transition
matrix and the expected reward vector are estimated using the observations and subsequently,
model based approaches mentioned in the above section are applied on the estimates. A few
indirect methods are control learning (Sato et al. 1982, 1988; Kumar and Lin 1982), priority
sweeping (Moore and Atkeson 1993), adaptive real-time dynamic programming (ARTDP)
(Barto et al. 1995) and PILCO (Deisenroth and Rasmussen 2011). For the case of direct
methods which are more appealing, the model is not estimated, rather the control policy is
adapted iteratively using a shadowutility function derived from the instantiation of the internal
dynamics of theMDP. The algorithms in this class are generally referred to in the literature as
the reinforcement learning algorithms. Prominent reinforcement learning algorithms include
temporal difference (TD) learning (Sutton 1988) (prediction method), Q-learning (Watkins
1989) and SARSA (Singh and Sutton 1996) (control methods). There are two variants of
the prediction algorithm depending on how the sample trajectory is generated. They are on-
policy and off-policy algorithms. In the on-policy case, the sample trajectory is generated
using the policy π which is being evaluated, i.e., si+1 ∼ P(si , ai , ·), where ai ∼ π(·|si) and
ri = R(si , ai , si+1). In the off-policy case, the sample trajectory is generated using a policyπb

which is possibly different from the policy π that is being evaluated, i.e., si+1 ∼ P(si , ai , ·),
where ai ∼ πb(·|si) and ri = R(si , ai , si+1).

Model free algorithms are shown to be robust, stable and exhibit good convergence
behaviour under realistic assumptions. However, they suffer from the curse of dimensionality
which arises due to the space complexity. Note that the space complexity of the above men-
tioned learning algorithms is O(|S|), which becomes unmanageably large with increasing
state space.

2.2 Linear function approximation (LFA) methods for model free Markov
decision process

To tackle the curse of dimensionality and to achieve tractability, it is imperative to eliminate
the dependency both in terms of the computational and storage requirements of the learning
methods on the cardinalities of state and action spaces. An efficient approach is to compactly
yet effectively represent the system in a lower k1-dimensional space, where k1 � |S|. A well

123

Mach Learn (2018) 107:969–1011 973

understood dimensionality reduction technique is the linear function approximation. Here,
we choose a collection of prediction features {φi }k1i=1, where φi ∈ IR|S|. In this case, the
prediction task becomes a projection where

ΠV π = argmin
h∈IHΦ

‖V π − h‖2, (6)

where IHΦ � {Φx |x ∈ IRk1} ⊂ IR|S| is the space of representable functions with Φ �
(φ1, . . . , φk1) ∈ IR|S|×k1 and the norm ‖ · ‖ is chosen appropriately according to the domain.
Note that IHΦ is a linear function space. Further, we define φ(s) � (φ1(s), . . . , φk1(s))

�,
s ∈ S. Note that φi can be viewed as a function from S to IR. Similarly, the control problem
becomes π∗(s) ∈ argmax

π
ΠV π (s),∀s ∈ S. Note that in the case of large and complex

MDPs, the features are not hard-coded, instead one employs compact representations in
the form of basis functions. Examples of basis functions include radial basis functions and
Fourier basis.

To address the computational and storage concerns arising due to large action space,
a sagacious approach is to employ a parametrized class of SRPs {πw|w ∈ W ⊂ IRk2},
where k2 ∈ N, instead of an exact representation. The most commonly used is the Gibbs (or
Boltzmann) “soft-max” class of policies. In this case, for a given w ∈ W ⊂ IRk2 , the SRP
πw is defined as

πw(a|s) = exp (w�ψ(s, a)/τ)
∑

b∈A exp (w�ψ(s, b)/τ)
, (7)

where {ψ(s, a) ∈ IRk2 |s ∈ S, a ∈ A} is a given policy feature set and τ ∈ IR+ is fixed a
priori.

The accuracy of the function approximation method depends on the representa-
tional/expressive ability of IHΦ . For example, when k1 = |S|, the representational ability
is utmost, since IHΦ = IR|S|. In general, k1 � |S| and hence IHΦ ⊂ IR|S|. So for an arbi-
trary policy π , where V π /∈ IHΦ , the prediction of the value function V π shall always incur
an unavoidable approximation error (eappr) given by infh∈IHΦ ‖V π − h‖. Given IHΦ , one
cannot perform no better than eappr . The prediction features {φi } are hand-crafted using
prior domain knowledge and their choice is critical in approximating the value function.
There is an abundance of literature available on the topic. In this paper, we assume that an
appropriately chosen feature set is available a priori. Also note that the convergence of the
prediction methods is in asymptotic sense. But in most practical scenarios, the algorithm has
to be terminated after a finite number of steps. This incurs an estimation error (eest) which
however decays to zero, asymptotically.

Even though LFA produces sub-optimal solutions, since the search is conducted on a
restricted subspace of IR|S|, it yields large computational and storage benefits. So some
degree of trade-off between accuracy and tractability is indeed unavoidable.

2.3 Off-policy prediction using LFA

Setup Given w,wb ∈ W and an observation of the system dynamics in the form of a sample
trajectory {s0, a0, r0, s1, a1, r1, s2, . . . }, where at each instant k, ak ∼ πwb (·|sk), sk+1 ∼
P(sk, ak, ·) and rk = R(sk, ak, sk+1), the goal is to estimate the value function V πw of the
target policy πw (that is possibly different from πwb). We assume that the Markov chains
defined by Pw and Pwb are ergodic. Further, let νw and νwb be the stationary distributions
of the Markov chains with transition probability matrices Pw and Pwb respectively, i.e.,
limk→∞ Pw(sk = s) = νw(s) and ν�

w Pw = ν�
w and likewise for νwb . Note that for brevity

123

974 Mach Learn (2018) 107:969–1011

the notations have been simplified here, i.e., Pw � Pπw and Pwb � Pπwb
. We follow the new

notation for the rest of the paper. Similarly, Vw � V πw .
In the off-policy learning case, the projection is w.r.t. the norm ‖·‖νwb

, where ‖V ‖2νwb
=<

V, V >νwb
. The inner product is defined as < V1, V2 >ν= V�

1 DνV2, where V1, V2 ∈
IR|S|, ν ∈ [0, 1]|S| is a probability mass function over S and Dν is a |S| × |S| diagonal
matrix with Dν

i i = ν(i), 1 ≤ i ≤ |S|. Thus the norm ‖ · ‖νwb
is in fact the Euclidean norm

weighted with the stationary distribution νwb of the behaviour policy πwb , i.e., ‖V ‖νwb
�

√∑
s∈S νwb (s)V

2(s). So

hw|wb � Πwb Vw = argmin
h∈IHΦ

‖Vw − h‖2νwb
, (8)

where Πwb denotes the projection operator w.r.t. ‖ · ‖νwb
whose closed form expression can

be derived as follows:

∇x‖Vw−h‖2νwb
= 0

⇒ ∇x (V
w − Φx)�Dνwb (Vw − Φx) = 0

⇒ Φ�Dνwb (Vw − Φx) = 0

⇒ Φ�Dνwb Φx = Φ�Dνwb Vw

⇒ x = (Φ�Dνwb Φ)−1Φ�Dνwb Vw

⇒ Φx = Φ(Φ�Dνwb Φ)−1Φ�Dνwb Vw.

∴ Πwb = Φ(Φ�Dνwb Φ)−1Φ�Dνwb . (9)

� Assumption (A1) The prediction features {φi }k1i=1 are linearly independent.

Algorithms The evaluation of Πwb requires knowledge of the stationary distribution νwb

which can only be derived if the transition matrix Pwb is available. However, in model
free learning Pwb is hidden and hence all the state-of-the-art methods can only derive an
approximation to the projection. Two pertinent algorithms are off-policy TD(λ) and off-policy
LSTD(λ). The algorithms return a prediction vector x ∈ IRk1 s.t. Φx ≈ hw|wb . The major
technique used in both the algorithms is to correct the discrepancies between the target and
behaviour policies using importance sampling (Glynn and Iglehart 1989). Here we introduce
the sampling ratio at time k to be ρk � πw(ak |sk)

πwb (ak |sk) , where we use the convention 0/0 = 0.

• Off-policy TD(λ)

Off-policy TD(λ) (Yu 2012, 2015), where λ ∈ [0, 1] is one of the fundamental algorithms to
approximate value function using linear architecture. The algorithm is defined as follows:

xk+1 := xk + αk+1δk+1ek, (10a)

ek+1 := γ λρkek + φ(sk), (10b)

where ek, xk ∈ IRk1 and δk+1 � ρkrk + γρkx�
k φ(sk+1)− x�

k φ(sk) is called the temporal dif-
ference error. The learning rate αk is non-negative, deterministic and satisfies

∑
k αk = ∞,∑

k α2
k < ∞. The vector ek ∈ IRk1 is called the eligibility trace and is used for variance

reduction. Eligibility traces accelerate the learning process by integrating temporal differ-
ences from multiple time steps. The convergence analysis of the off-policy TD(λ) method is
provided in Yu (2012). However, the analysis assumes that the iterates xk ∈ B̄r (0),∀k ≥ 0,

123

Mach Learn (2018) 107:969–1011 975

with r > 0 being sufficiently large. The convergence of the un-constrained case for λ close
to 1 is proved in Yu (2015).

• Off-policy LSTD(λ)

Off-policy least squares temporal difference (LSTD) with eligibility traces (Yu 2012) is
another relevant algorithm in this category. The procedure is described below:

ek+1 := γ λρkek + φ(sk), (11a)

Ak+1 := Ak + 1

k + 1

(
ek(φ(sk) − γρkφ(sk+1))

� − Ak

)
, (11b)

bk+1 := bk + 1

k + 1
(ρkrkek − bk), (11c)

xk+1 := A−1
k+1bk+1, (11d)

where Ak ∈ IRk1×k1 and ek , bk , xk ∈ IRk1 . In some cases, the matrix Ak may not be of full
rank. To avoid such singularities, initialize A0 with δ1lk1×k1 , δ > 0.

Contrary to the earlier algorithm, the off-policy LSTD(λ) is shown to be stable with well
defined limiting behaviour for all λ ∈ [0, 1] under pragmatic assumptions. The only restric-
tion imposed is that the target policy πwb is absolutely continuous (≺) w.r.t. the behaviour
policy πwb , i.e.,

πw ≺ πwb ⇔ πwb (a|s) = 0 ⇒ πw(a|s) = 0,∀a ∈ A,∀s ∈ S. (12)

The contrapositive form of the above statement implies that πw(a|s) �= 0 ⇒ πwb (a|s) �= 0,
∀a ∈ A,∀s ∈ S. This means that for a given state s ∈ S, every action feasible under the
target policy πw is also feasible under the behaviour policy πwb . The following result from
Yu (2012) characterizes the limiting behaviour of the off-policy LSTD(λ) algorithm:

Theorem 1 For a given target policy vectorw ∈ W and a behaviour policy vectorwb ∈ W,
the sequence {xk}generated by the off-policyLSTD(λ) algorithmdefined inEq. (11) converges
to the limit xw|wb with probability one, where

xw|wb = A−1
w|wb

bw|wb ,with

Aw|wb = Φ�Dνwb (I − γ λPw)−1(I − γ Pw)Φ and

bw|wb = Φ�Dνwb (I − γ λPw)−1Rw.

(13)

Here Dνwb is the diagonal matrix with D
νwb
ii = νwb (i), 1 ≤ i ≤ |S|, where νwb is

the stationary distribution of the Markov chain Pwb induced by the behaviour policy
πwb , i.e., νwb satisfies ν�

wb
Pwb = ν�

wb
and Rw(s) ∈ IR|S| is the expected reward, i.e.,

Rw � �s′∈S,a∈Aπw(a|s)P(s, a, s′)R(s, a, s′).

It is also important to note that in the on-policy LSTD(λ), where both πw and πwb are the
same, the limit point xw|w is given by xw|w = A−1

w|wbw|w, where

Aw|w = Φ�Dνw (I − γ λPw)−1(I − γ Pw)Φ and

bw|w = Φ�Dνw (I − γ λPw)−1Rw.
(14)

2.4 The control problem of interest

In this section, we define a variant of the control problem which is the topic of interest in this
paper.

123

976 Mach Learn (2018) 107:969–1011

A B 0 1 2 F1/1.0

0/1.0 0/1.0

1/1.0

0/1.0

1/1.0

Fig. 1 Self-drive system

Problem Statement
Find w∗ ∈ argmax

w∈W⊂IRk2

Eνw

[
L(hw|w)

]
, (15)

where L : IR|S| → IR|S| is a performance function. We assume that L is bounded and
continuous. Note that since hw|w ∈ IR|S|, we have L(hw|w) ∈ IR|S|, i.e., L(hw|w) can be
viewed as a mapping from the the state space S to the scalars. In the case of finite MDP (both
S and A are finite), we have Eνw

[
L(hw|w)

] = ∑
s∈S νw(s)L(hw|w)(s). Thus the objective

function in Eq. (15) is scalar-valued and hence the optimization problem defined in Eq. (15)
is indeed well-defined.

� Assumption (A2) The Markov chain under any SRP πw,w ∈ IRk2 is ergodic, i.e., irre-
ducible and aperiodic.

� Assumption (A3)W is a compact subset of IRk2 .

2.5 Motivation

We demonstrate here a practical situation where the optimization problem of the kind (15)
arises.We consider here a special case of the self-drive system (Fig. 1). The goal is to propel an
automotive (equippedwith sensors to detect the vehicular traffic) from source 0 to destination
F (where there aremultiple intersections in between) inminimum timewithout any accidents.
Here, the collection of junctions represents the state space, i.e., S = {0, 1, 2, 3, F}. The
automotive travels with a constant velocity between subsequent intersections and the choice
of the velocities is restricted to the discrete, finite set {1, 2, 3}. The velocity is chosen randomly
by the automotive from the above set at each intersection. The purpose of the randomness is
to capture the uncertainty in the traffic conditions during the subsequent stretch of the trip.
At each intersection, the automotive senses the vehicular traffic at the intersection and has to
make a choice of whether to halt or not. So the action space is A = {0 (halt), 1 (proceed)}.
Here, the performance of the task is evaluated based on the overall time the automotive takes to
cover the distance to the destination. Hence the reward function is taken as the velocity chosen
by the automotive to traverse the subsequent stretch. This indeed makes sense since the time
is directly dependent on the velocity with distance being constant. This optimization problem
can be modeled using a finite horizon cost function. Now, suppose that the task is further
rewarded based on the overall time it takes to complete the trip. In this case, the final payoff is
dependent on the value function (in this case, the value function is time), then the role of the
performance function L is to capture this particular aspect. If the payoffs are further based
on the maintenance cost incurred (which cannot be integrated into the reward function due to
the presence of multiple operating components and hence considering the net maintenance
cost at the end of the episode is more worthwhile), the performance function might not be

123

Mach Learn (2018) 107:969–1011 977

−75 −50 −25 0 25 50 75 100
w →

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

L(hw|w)

Fig. 2 S = {0, 1, 2, F}, A = {0, 1}, k1 = 1, k2 = 1, γ = 0.99, τ = 10, λ = 0.00125, ψ(s, a) =
s ∗a, Φ = (1, 0, 1, 0)�, L(hw|w)(s) = sin2 (π

2 s), P(0, 0, 0) = P(1, 0, 1) = P(2, 0, 2) = 1.0, P(0, 1, 1) =
P(1, 1, 2) = P(2, 1, F) = 1.0. The remaining transition probabilities are zero

unimodal in general. This is further confirmed by Fig. 2, where we provide the plot of the
objective function of the self-driveMDPwhich exhibits a complex landscapewithmany local
optima. This particular problem is more relevant in the context of neural computation, where
distinct neural substrates in regions of prefrontal and anterior striatum have been identified
with human habitual learning (model free reinforcement learning) (ODoherty et al. 2015;
Balleine andDickinson 1998; Lee and Shimojo 2014). The human brain is a complex network
of computing components and one is inclined to believe that the value function obtained
through the habitual learning will be further evaluated using a performance function (similar
to the activation function found in the artificial neural networks) before relaying to the
subsequent level in the network.

The control problem in Eq. (15) is harder due to the application of the performance func-
tion L on the approximate value function. Hence we cannot apply the existing direct model
free methods like LSPI or off-policy Q-learning (Maei et al. 2010). Note that the LSPI algo-
rithm [Fig. 8 of Lagoudakis and Parr (2003)] is a policy iteration method, where at each
iteration an improved policy parameter is deduced from the projected Q-value of the pre-
vious policy parameter. So one cannot directly incorporate the operator Eνw into the LSPI
iteration. Similar compatibility issues are found with the off-policy Q-learning also (Maei
et al. 2010). However, policy search methods are a direct match for this problem. Not all
policy search methods can provide quality solutions. The pertinent issue is the non-convexity
of Eνw

[
L(hw|w)

]
which presents a landscape with many local optima. Any gradient based

method like the state-of-the-art simultaneous perturbation stochastic approximation (SPSA)
(Spall 1992) algorithmor the policy gradientmethods can only provide sub-optimal solutions.
In this paper, we try to solve the control problem in its true sense, i.e., find a solution close
to the global optimum of the optimization problem (15). We employ a stochastic approxima-
tion variant of the well known cross entropy (CE) method proposed in Joseph and Bhatnagar
(2016b, c, a) to achieve the true sense behaviour. The CE method has in fact been applied to
the model free control setting before in Mannor et al. (2003), where the algorithm is termed
the fast policy search. However, the approach inMannor et al. (2003) has left several practical
and computational challenges uncovered. Themethod inMannor et al. (2003) assumes access

123

978 Mach Learn (2018) 107:969–1011

to a generative model, i.e., the real MDP system itself or a simulator/computational model
of the MDP under consideration, which can be configured with moderate ease (with time
constraints) and the observations recorded. The existence of generative models for extremely
complex MDPs is highly unlikely, since it demands accurate knowledge about the transition
dynamics of the MDP. Now regarding the computational aspect, the algorithm in Mannor
et al. (2003) maintains an evolving |S| × |A| matrix P(t) � (P(t)

sa)s∈S,a∈A, where P(t)
sa is the

probability of taking action a in state s at time t . At each discrete time instant t , the algorithm
generates multiple sample trajectories using P(t), each of finite length, but sufficiently long.
For each trajectory, the discounted cost is calculated and then averaged over those multiple
trajectories to deduce the subsequent iterate P(t+1). This however is an expensive operation,
both computation and storage wise. Another pertinent issue is the number of sample tra-
jectories required at each time instant t . There is no analysis pertaining to finding a bound
on the trajectory count. This implies that a brute-force approach has to be adopted which
further burdens the algorithm. A more recent global optimization algorithm called the model
reference adaptive search (MRAS) has also been applied in the model free control setting
(Chang et al. 2013). However, it also suffers from similar issues as the earlier approach.

Here, we illustrate using a real life scenario, the hardness incurred in assuming a generative
model. We consider a legacy water delivery system (Feinberg and Shwartz 2012; Fracasso
et al. 2014; Ikonen and Bene 2011; Ertin et al. 2001). The legacy water delivery systems
in most cases are not electronically controlled, which implies that a manual intervention
is required to adjust the various throughput levels. The reservoir operators have to rely on
agreed upon rules, their judgement and experience to calibrate the network. Figure 3 shows
a water delivery network where there is a web of manual controllers. The state space is the
net output (quantity of water delivered) of the delivery system. Intuitively, one might expect
the dynamics of the system to be Markovian in character since the immediate future output
is indeed dependent on the current quantity of the reservoir and its current consumption rate.
So the state variable takes real values and the underlying MDP is continuous. The reward
function is a complex function with positive weights on profits from effective utilization
(agriculture, drinking purpose, power generation, etc) and negative weights on spill overs,
kinetic energy losses and factors engendering physical damage to the network like excessive
pipe pressure. The objective is to find a configuration for the network of controllers (which
is indeed a vector with each co-ordinate deciding the amount of calibration required for the
corresponding controller) which provides optimum expected discounted reward. Here the
configurations represent the action space and thus are also continuous. The reconfiguration
of the whole system as and when demanded by the algorithm requires heavy human labor,
which is a luxury one cannot afford. On the other hand, developing a simulator for this system
requires understanding all the sources of water for the reservoir which depends on a wide
variety of environmental factors and also the consumption statistics of the end users, both
of which require observations for a long period of time notwithstanding the human labor
incurred. Therefore, it is hard in general to develop a simulator/generative model for MDPs
with large state and action spaces with complex, opaque and perplexing transition dynamics.
Examples where similar issues arise can be found in manual human control, social sciences,
biological systems, unmanned aerial vehicles (Bagnell and Schneider 2001) and mechanical
systems which wear out quickly like low-cost robots (Deisenroth and Rasmussen 2011).

A few relevant work in the literature which do not assume the availability of a genera-
tive model include Bellman-residual minimization based fitted policy iteration using a single
trajectory (Antos et al. 2008) and value-iteration based fitted policy iteration using a single
trajectory (Antos et al. 2007). However, those approaches fall prey to the curse of dimen-
sionality arising from large action spaces. Also, they are abstract in the sense that a generic

123

Mach Learn (2018) 107:969–1011 979

Fig. 3 Water delivery network: the system consists of a water reservoir and a web of manual controllers.
The quantity of water in the reservoir is stochastic in nature and so is the consumption of the water by the
end users. The end usage of the system includes agriculture, household activities, power generation etc. The
reward function is a complex function with positive weights on profits from effective utilization and negative
weights on spill overs

function space is considered and the value function approximation step is expressed as a for-
mal optimization problem. In the above methods which are almost similar in their approach,
considerable effort is dedicated to addressing the approximation power of the function space
and sample complexity.

In this paper, we address the above mentioned practical and computational concerns. We
focus on two key objectives:

1. To reduce the total number of policy evaluations.
2. To find a high performing policy without presuming an unlimited access to the generative

model.

By accomplishing the above mentioned objectives, we try to chisel down the requirements
inherent in most of the reinforcement learning algorithms and thus enable them to operate in
real-time scenarios. We provide here a brief narrative of the approach we follow to realize
the above objectives.

To accomplish the former objective, the ubiquitous choice is to employ the stochastic
approximation (SA) version of theCEmethod instead of the naiveCEmethod used inMannor
et al. (2003). The SA version of CE is a zero-order optimizationmethodwhich is incremental,
adaptive, robust and stable with the additional attractive attribute of convergence to the
global optimum of the objective function. It has been demonstrated empirically in Joseph and
Bhatnagar (2016a, b) that themethod exhibits efficient utilizationof the samples andpossesses
better rate of convergence than the naive CEmethod. The effective sample utilization implies
that the method requires minimum number of objective function evaluations. These attributes
are appealing in the context of the control problem we consider here, especially in effectively
addressing the former objective. The adaptive nature of the algorithm apparently eliminates
any brute-force approach which has a detrimental impact on the performance of the naive
CE method.

The latter objective is achieved by employing the off-policy LSTD(λ) for policy evaluation
which is defined in Sect. 2.3. The advantage of this method lies in its ability to approximate
the value function of an arbitrary policy (called the target policy) using the observations of the
MDP under a possibly different policy (called the behaviour policy), with the only restriction

123

980 Mach Learn (2018) 107:969–1011

Generative Model
based Algorithms

Single Trajectory
based Algorithms

Model based Algorithms

LSPI, Actor-critic, Natural actor-critic,
Off-policy Q-learning, Policy-gradient,

Value iteration, Policy iteration, PILCO,

Bellman-residual minimization based fitted PI,
Value iteration based fitted PI.

Fast policy search, MRAS, SARSA.

Stochastic factorization based policy iteration.

argmaxw∈Whw|w

LSPI, Actor-critic, Natural actor-critic,
Off-policy Q-learning, Policy-gradient,
Fast policy search, MRAS, SARSA.
Bellman-residual minimization based fitted PI,
Value iteration based fitted PI.

argmaxw∈WEνw[L(hw|w)]
Fast policy search, MRAS, SPSA.

(a) (b)

Fig. 4 a Information pyramid. b Optimization box

being the absolute continuity between the target and behaviour policies. This implies that
we optimize the approximate objective function given by Eνwb

[
L(Φxw|wb)

]
(where xw|wb

is the solution generated by the off-policy LSTD(λ)) instead of the true objective function
Eνw

[
L(hw|w)

]
. Here, νwb is the steady state distribution of the Markov chain induced by

the behaviour policy πwb . This is the best approximation possible under the absence of the
generative model since νw is the long-run steady state marginal distribution of the Markov
chain induced by the policy πw and one cannot correct the long-run discrepancies arising due
to the restriction that the available sample trajectory is generated using the behaviour policy.
However, hidden deep under the appealing characteristic of the single sample trajectory
approach is the painful Achilles heel of choice, where one cannot forget that the quality of
the solution contrived by the algorithm depends on the choice of the sample trajectory which
is directly dependent on the behaviour policy that generates it. The additional approximation
error incurred due to this particular information restrictive setting is indeed unavoidable. In
order to choose the behaviour policy wisely, it is imperative to provide a quantitative analysis
of the cost incurred in the choice of the behaviour policy. In this paper, we provide a bound on
the approximation error of the off-policy LSTD(λ) solution of an arbitrary target policy with
respect to the deviation of the target policy from the behaviour policy. The practical aspect
of the approach can be further improved by reconsidering the same sample trajectory for
all value function evaluations. This implies that our algorithm just requires a single sample
trajectory to solve the optimization problem defined in Eq. (15). Since the access to the
generative model is forbidden, in order to reuse the trajectory, one has to find provisions in
terms of memory to store the transition stream.

Goal of the Paper To solve the control problem defined in Eq. (15) without having
access to any generative model. Formally stated, given an infinitely long sample trajec-
tory {s0, a0, r0, s1, a1, r1, s2, . . . } generated using the behaviour policy πwb (wb ∈ IRk2),
solve the control problem in (15).

� Assumption (A4) The behaviour policy πwb , where wb ∈ W, satisfies the following
condition: πwb (a|s) > 0, ∀s ∈ S,∀a ∈ A.

A few remarks are in order: We can classify the reinforcement learning algorithms based
on the information made available to the algorithm in order to seek the optimal policy. We
graphically illustrate this classification as a pyramid in Fig. 4. The bottom of the pyramid
contains the classical methods, where the entire model information, i.e., both P and R are

123

Mach Learn (2018) 107:969–1011 981

available, while in the middle, we have the model free algorithms, where both P and R are
assumed hidden, however an access to the generative model/simulator is presumed. In the top
of the pyramid, we have the single trajectory approaches, where a single sample trajectory
generated using a behaviour policy is made available, however, the algorithms have no access
to the model information or simulator. Observe that as one goes up the pyramid, the mass of
the information vested upon the algorithm reduces considerably. The algorithm we propose
in this paper belongs to the top of the information pyramid and to the upper half of the
optimization box which makes it a unique combination.

3 Proposed algorithm

In this section, we propose an algorithm to solve the control problem defined in Eq. (15). We
employ a stochastic approximation variant of the Gaussian based cross entropy method to
find the optimal policy.We delay the discussion of the algorithm until the next subsection.We
now focus on the objective function estimation. The objective function valuesEνw

[
L(hw|w)

]

which are required to efficiently guide the search for w∗ are estimated using the off-policy
LSTD(λ) method. In LFA, given w ∈ W, the best approximation of Vw one can hope
for is the projection ΠwVw . Theorem 1 of Tsitsiklis and Roy (1997) shows that the on-
policy LSTD(λ) solution Φxw|w is indeed an approximation of the projection ΠwVw . Using
Babylonian–Pythagorean theorem and Theorem 1 of Tsitsiklis and Roy (1997) along with

a little arithmetic, we obtain ‖Φxw|w − ΠwVw‖νw ≤
√

(1−λ)γ (γ+γ λ+2)
1−γ

‖ΠwVw − Vw‖νw .
Hence for λ = 1, we have Φxw|w = ΠwVw, i.e., the on-policy LSTD(1) provides the exact
projection. However for λ < 1, only approximations to it are obtained. Now when off-policy
LSTD(λ) is applied, it adds one more level of approximation, i.e., Φxw|w is approximated
by Φxw|wb . Hence to evaluate the performance of the off-policy approximation, we must
quantify the errors incurred in the approximation procedure and we believe a capacious
analysis had been far overdue.

3.1 Choice of the behaviour policy

Thebehaviour policy is often an exploration policywhichpromotes the exploration of the state
and action spaces of the MDP. Efficient exploration is a precondition for effective learning.
In this paper, we operate in a minimalistic MDP setting, where the only information available
for inference is the single stream of transitions and payoffs generated using the behaviour
policy. So the choice of the behaviour policy is vital for a sound inductive reasoning. The
following theoremwill provide a bound on the approximation error incurred in the off-policy
LSTD(λ) method. The provided bound can be beneficial in choosing a good behaviour policy
and also supplements in understanding the stability and usefulness of the proposed algorithm.

Theorem 2 For a given w ∈ W, the target policy vector, and wb ∈ W, the behaviour policy
vector, let xw|w and xw|wb be the solutions of the on-policy and off-policy versions of LSTD(λ),
respectively, with λ ∈ [0, 1].

If sup
s∈S,a∈A

∣
∣
∣

πw(a|s)
πwb (a|s) − 1

∣
∣
∣ < ε2, then

∥
∥xw|w−xw|wb

∥
∥

∞‖xw|w‖∞ ≤

O
(
(|S|2ε22 + |S|ε2) (1+γ)(1+γ λ)

(1−γ)(1−γ λ)
‖Dνwb ‖∞‖(Dνwb)−1‖∞

)
. (16)

123

982 Mach Learn (2018) 107:969–1011

Also, ‖Φxw|wb − Vw‖νwb
≤ γ−2γ λ+1

1−γ
‖Vw − Vwb‖νwb

+ ε2(1−γ λ)‖R‖∞
(1−γ)2

+ 1−γ λ
1−γ

‖Πwb Vw − Vw‖νwb
, (17)

where Vw and Vwb are the true value functions corresponding to the SRPs πw and πwb

respectively. Also, νwb is the stationary distribution of the Markov chain defined by Pwb and
Dνwb is the diagonal matrix defined in Theorem 1.

Proof Given w ∈ W, we have

Pw(s, s′) =
∑

a∈A
πw(a|s)P(s, a, s′), s, s′ ∈ S,

Pwb (s, s
′) =

∑

a∈A
πwb (a|s)P(s, a, s′), s, s′ ∈ S.

Therefore,

Pw = Pwb + F, where F = Pw − Pwb .

Hence, for s, s′ ∈ S,

|F(s, s′)| =
∣
∣
∣
∑

a∈A

(
πw(a|s) − πwb (a|s)) P(s, a, s′)

∣
∣
∣,

=
∣
∣
∣
∑

a∈A

(
πw(a|s)
πwb (a|s) − 1

)

πwb (a|s)P(s, a, s′)
∣
∣
∣,

≤
∑

a∈A
ε2πwb (a|s)P(s, a, s′),

= ε2Pwb (s, s
′). (18)

The above bound of the deviation matrix F in terms of Pwb compels us to apply the result
from Xue (1997), which provides a sensitivity analysis of the stationary distribution of a
Markov chain w.r.t. its probability transition matrix. In particular, by appealing to Theorem
1 of Xue (1997) along with Eq. (18), we obtain the following:

∣
∣
∣
νw(s) − νwb (s)

νwb (s)

∣
∣
∣ ≤ 2(|S| − 1)ε2 + O(ε22), s ∈ S.

�⇒
∣
∣
∣
νw(s) − νwb (s)

νwb (s)

∣
∣
∣ ≤ O(|S|ε2), s ∈ S. (19)

Let ε3 = O(|S|ε2). Then from (19), we get

|νw(s) − νwb (s)| ≤ ε3|νwb (s)| ≤ ε3(|νw(s) − νwb (s)| + |νw(s)|)
�⇒ |νw(s) − νwb (s)|

|νw(s)| ≤ ε3

1 − ε3
= O(ε3 + ε23) = O(|S|ε2 + |S|2ε22). (20)

For the policy πw , recall that the on-policy approximation isΦxw|w , where xw|w is the unique
solution to the linear system Aw|wx = bw|w . Analogously, the off-policy approximation is
given by Φxw|wb , where xw|wb is the unique solution to the linear system Aw|wb x = bw|wb .
Now using the bound in (20) and the definitions of Aw|w, Aw|wb , bw|w and bw|wb in (14) and
(13), it is easy to verify that

|Aw|wb − Aw|w| ≤ O(|S|2ε22 + |S|ε2)|Aw|w| and

123

Mach Learn (2018) 107:969–1011 983

|bw|wb − bw|w| ≤ O(|S|2ε22 + |S|ε2)|bw|w|.
Hence the off-policy linear system Aw|wb x = bw|wb can be viewed as a perturbed version of
the on-policy system Aw|wx = bw|w . Let ε4 = O(|S|2ε22 + |S|ε2). Now we make use of the
norm bound on the solutions of perturbed linear system of equations provided in Theorem
2.2 of Higham (1994). In particular, using the remark following Theorem 2.2 of Higham
(1994), we have

∥
∥xw|w − xw|wb

∥
∥∞

‖xw|w‖∞
≤ 2ε4κ(Aw|w)

1 − ε4κ(Aw|w)
, (21)

where κ(Aw|w) = ‖Aw|w‖∞‖A−1
w|w‖∞ (condition number κ(·) is defined in Sect. 1). Using

the definition of Aw|w in (14),we obtain A−1
w|w = Φ−1(I−γ Pw)−1(I−γ λPw)(Dνw)−1Φ−�,

whereΦ−1 is the left inverse ofΦ andΦ−� is the right inverse ofΦ�. Therefore ‖A−1
w|w‖∞ ≤

‖Φ−1‖∞‖(I −γ Pw)−1‖∞‖I −γ λPw‖∞‖(Dνw)−1‖∞‖Φ−�‖∞. Now by arguing along the
same lines as (31), one can show that ‖(I − γ Pw)−1‖∞ ≤ 1

1−γ
. Also ‖I − γ λPw‖∞ =

1 + γ λ. And the feature matrix Φ is presumed to be constant. A forteriori, ‖A−1
w|w‖∞ =

O(
1+γ λ
1−γ

‖(Dνw)−1‖∞). Also from (19), we have νw(s) ≥ (1−ε3)νwb (s), s ∈ S. Henceforth,

‖A−1
w|w‖∞ = O(

1+γ λ
(1−γ)(1−ε3)

‖(Dνwb)−1‖∞). Similarly, one can show that

‖Aw|w‖∞ = O(
(1 + γ)(1 + ε3)

(1 − γ λ)
‖Dνwb ‖∞).

Hence

κ(Aw|w) = O
((1 + ε3)(1 + γ)(1 + γ λ)

(1 − γ)(1 − γ λ)(1 − ε3)
‖Dνwb ‖∞‖(Dνwb)−1‖∞

)
,

= O
((1 + ε3)

2(1 + γ)(1 + γ λ)

(1 − γ)(1 − γ λ)
‖Dνwb ‖∞‖(Dνwb)−1‖∞

)
.

Consequently from (21), we get
∥
∥xw|w − xw|wb

∥
∥∞

‖xw|w‖∞
≤ O(ε4κ(Aw|w) + ε24κ

2(Aw|w))

= O
(
(|S|2ε22 + |S|ε2) (1+γ)(1+γ λ)

(1−γ)(1−γ λ)
‖Dνwb ‖∞‖(Dνwb)−1‖∞

)
.

This completes the proof of (16). ��

Now to prove (17), here we define an operator T (λ)
w|wb

[referred to as the TD(λ] operator in
Tsitsiklis and Roy (1997)) as follows:

T (λ)
w|wb

V = (1 − λ)

∞∑

i=0

λi

⎛

⎝
i∑

j=0

(γ Pwb)
j Rw(s j) + (γ Pwb)

i+1V

⎞

⎠ (22)

with Pwb (s, s
′) �

∑

a∈A
πwb (a|s)P(s, a, s′)

and Rw(s) �
∑

s′∈S

∑

a∈A
πw(a|s)P(s, a, s′)R(s, a, s′). (23)

Before we proceed any further, a few observations are in order:

123

984 Mach Learn (2018) 107:969–1011

Observation 1 For V ∈ IR|S| and w ∈ W , we have

‖ΠwV ‖νw ≤ ‖V ‖νw . (24)

Proof Using< ΠwV − V,ΠwV >νw= 0 and by the Babylonian–Pythagorean theorem, we
have ‖V ‖2νw

= ‖ΠwV − V ‖2νw
+ ‖ΠwV ‖2νw

,⇒ ‖ΠwV ‖νw ≤ ‖V ‖νw . This proves (24). ��
Observation 2 For w ∈ W, s ∈ S,

if sup
a∈S

∣
∣
∣

πw(a|s)
πwb (a|s) − 1

∣
∣
∣ < ε2 then |Rw(s) − Rwb (s)| ≤ ε2‖R‖∞. (25)

Proof From (23), we have,

|Rw(s) − Rwb (s)| = ∣
∣
∑

s′∈S

∑

a∈A

(
πw(a|s) − πwb (a|s))P(s, a, s′)R(s, a, s′)

∣
∣,

≤
∑

s′∈S

∑

a∈A

∣
∣πw(a|s) − πwb (a|s))∣∣P(s, a, s′)R(s, a, s′),

≤
∑

s′∈S
ε2Pwb (s, s

′)‖R‖∞,

≤ ε2‖R‖∞. (26)

This proves (25). ��
Observation 3 For V1, V2 ∈ IR|S|,

‖T (λ)
w|wb

V1 − T (λ)
w|wb

V2‖νwb
≤ γ (1 − λ)

1 − γ λ
‖V1 − V2‖νwb

.

Proof Refer Lemma 4 of Tsitsiklis and Roy (1997).

Observation 4

∣
∣T (λ)

w|wb
V (s) − T (λ)

wb|wb
V (s)

∣
∣ ≤ ε2‖R‖∞

1 − γ
. (27)

Proof From (22) and observation 2, we have
∣
∣T (λ)

w|wb
V (s) − T (λ)

wb|wb
V (s)

∣
∣

=
∣
∣
∣(1 − λ)

∞∑

i=0

λi
i∑

j=0

γ j
∑

s′∈S
P j

wb
(s, s′(Rw(s′) − Rwb (s′)

)∣
∣
∣,

≤ (1 − λ)

∞∑

i=0

λi
i∑

j=0

γ j
∑

s′∈S
P j

wb
(s, s′)‖R‖∞ε2,

= (1 − λ)

∞∑

i=0

λi
i∑

j=0

γ jε2‖R‖∞,

≤ ε2‖R‖∞
1 − γ

.

This proves (27).

123

Mach Learn (2018) 107:969–1011 985

Observation 5 Φxw|wb = Πwb T (λ)
w|wb

Φxw|wb . This is the off-policy projected Bellman equa-
tion. Detailed discussion is available in Yu (2012). For the on-policy case, similar equation
exists which is as follows: Φxw|w = ΠwT (λ)

w|wΦxw|w. For the proof of the above equation,
refer Theorem 1 of Tsitsiklis and Roy (1997). A few other relevant fixed point equations are
T (λ)

w|wVw = Vw and T (λ)
wb|wb

Vwb = Vwb . The proof of the above equations is provided in
Lemma 5 of Tsitsiklis and Roy (1997).

This completes the observations. Now we will prove (17). Using the triangle inequality
and the above observations, we have

‖Φxw|wb − Vw‖νwb
≤ ‖Φxw|wb − Πwb Vwb‖νwb

+ ‖Πwb Vwb − Vw‖νwb
,

=1‖Πwb T (λ)
w|wb

Φxw|wb − Πwb T (λ)
wb|wb

Vwb‖νwb
+ ‖Πwb Vwb − Vw‖νwb

,

≤2 ‖T (λ)
w|wb

Φxw|wb − T (λ)
wb|wb

Vwb‖νwb
+ ‖Πwb Vwb − Vw‖νwb

,

≤3 ‖T (λ)
w|wb

Φxw|wb − T (λ)
w|wb

Vwb‖νwb
+ ‖T (λ)

w|wb
Vwb − T (λ)

wb|wb
Vwb‖νwb

+
‖Πwb Vwb − Vw‖νwb

,

≤4
γ (1 − λ)

1 − γ λ
‖Φxw|wb − Vwb‖νwb

+ ‖T (λ)
w|wb

Vwb − T (λ)
wb|wb

Vwb‖νwb

+‖Πwb Vwb − Vw‖νwb
,

≤5
γ (1 − λ)

1 − γ λ
‖Φxw|wb − Vw‖νwb

+ γ (1 − λ)

1 − γ λ
‖Vw − Vwb‖νwb

+
ε2‖R‖∞
1 − γ

+ ‖Πwb Vwb − Vw‖νwb
,

Note that =1 follows from Observation 5; ≤2 follows from Observation 1; ≤3 follows
from the triangle inequality; ≤4 follows from Observation 3; ≤5 follows from Observation
4 and the triangle inequality. This further implies

1 − γ

1 − γ λ
‖Φxw|wb − Vw‖νwb

≤ γ (1 − λ)

1 − γ λ
‖Vw − Vwb‖νwb

+ ε2‖R‖∞
1 − γ

+ ‖Πwb Vwb − Vw‖νwb
,

≤ γ (1 − λ)

1 − γ λ
‖Vw − Vwb‖νwb

+ ε2‖R‖∞
1 − γ

+ ‖Πwb Vwb − Πwb Vw‖νwb
+

‖Πwb Vw − Vw‖νwb
,

≤ γ (1 − λ)

1 − γ λ
‖Vw − Vwb‖νwb

+ ε2‖R‖∞
1 − γ

+ ‖Vwb − Vw‖νwb

+‖Πwb Vw − Vw‖νwb
.

Therefore

‖Φxw|wb − Vw‖νwb
≤ γ − 2γ λ + 1

1 − γ
‖Vw − Vwb‖νwb

+ ε2(1 − γ λ)‖R‖∞
(1 − γ)2

+
1 − γ λ

1 − γ
‖Πwb Vw − Vw‖νwb

.

This completes the proof of (17). ��

123

986 Mach Learn (2018) 107:969–1011

The implications of the bounds given in Theorem 2 are indeed significant. The quantity

sups∈S,a∈A
∣
∣
∣

πw(a|s)
πwb (a|s) − 1

∣
∣
∣ given in the hypothesis of the theorem can ostensibly be viewed

as a measure of the closeness of the SRPs πw and πwb , with the minimum value of 0 being

achieved in the on-policy case. Under the hypothesis that sups∈S,a∈A
∣
∣
∣

πw(a|s)
πwb (a|s) − 1

∣
∣
∣ < ε2, we

obtain in (16) an upper bound on the relative error of the on-policy and off-policy solutions.
The bound is predominantly dominated by the hypothesis bound ε2, the eligibility factor λ,
the discount factor γ and ‖(Dνwb)−1‖∞‖Dνwb ‖∞. Note that ‖Dνwb ‖∞ = maxs νwb (s) and
‖(Dνwb)−1‖∞ = (mins νwb (s))

−1. If the behaviour policy is chosen in such a way that all the
states are equally likely under its stationary distribution, then ‖(Dνwb)−1‖∞‖Dνwb ‖∞ ≈ 1.
Consequently, the upper bound can be reduced to O

(
(|S|2ε22 + |S|ε2) (1+γ)(1+γ λ)

(1−γ)(1−γ λ)

)
.

Now regarding the latter bound provided in Eq. (17), given w ∈ W, by using triangle
inequality and Eq. (17), we obtain a proper quantification of the distance between the solution
of the off-policy LSTD(λ), i.e., Φxw|wb and the projection Πwb Vw in terms of ‖ · ‖νwb
and ε2. The above bound can be further improved by obtaining an expedient bound for
‖Vw − Vwb‖νwb

as follows:

Corollary 1 Let w ∈ W, λ ∈ [0, 1] and γ ∈ (0, 1). Let the assumptions of Theorem 2 hold.
Also, assume that ε2 which is defined in Theorem 2 satisfy ε2

1+γ
1−γ

< 1. Then ∃K1 > 0, s.t.

‖Φxw|wb − Vw‖νwb
≤ K1(γ − 2γ λ + 1)(1 + γ)ε2

(1 − γ)(1 − γ − ε2(1 + γ))
+ ε2(1 − γ λ)‖R‖∞

(1 − γ)2
+

1 − γ λ

1 − γ
‖Πwb Vw − Vw‖νwb

,

Proof Given w ∈ W, the value function Vw satisfies the linear system given by the Bellman
equation as shown in Eq. (4), i.e.,

(I − γ Pw)Vw = Rw. (28)

Similarly, for the behaviour policy wb, we have

(I − γ Pwb)V
wb = Rwb . (29)

Now, note that

(I − γ Pw) = (I − γ Pwb) + F, where F = γ (Pwb − Pw).

Rw = Rwb + b, where b = Rw − Rwb .

By arguing along the same lines as (26), one can show that |b(s)| ≤ ε2|Rwb (s)|, ∀s ∈ S.
Similarly, |F(s, s′)| ≤ ε2γ |Pwb (s, s

′)| ≤ ε2|(I − γ Pwb)(s, s
′)|, ∀s, s′ ∈ S. [The proof is

similar to that of (18)]. Hence the on-policy linear system given by (28) can be viewed as
a perturbed version of the linear system (29) of the behaviour policy. So, using the remark
following Theorem 2.2 of Higham (1994), we obtain the following:

‖Vw − Vwb‖νwb

‖Vwb‖νwb

≤ 2ε2κ(I − γ Pwb)

1 − ε2κ(I − γ Pwb)
. (30)

where κ(I −γ Pwb) = ‖I −γ Pwb‖∞‖(I −γ Pwb)
−1‖∞ (condition number κ(·) is defined in

Sect. 1). It is also easy to verify that ‖I−γ Pwb‖∞ = 1+γ . Now to bound ‖(I−γ Pwb)
−1‖∞,

we use the Ahlberg–Nilson–Varah bound fromVarga (1976). In particular, by using Theorem
A of Varga (1976), we have

123

Mach Learn (2018) 107:969–1011 987

‖(I − γ Pwb)
−1‖∞ ≤ 1

min1≤i≤|S|
{
|(I−γ Pwb)i i |−∑|S|

j=1, j �=i |(I−γ Pwb)i j |
} ,

= 1
1−γ

, (31)

where (·)i j is the (i, j) entry of the matrix.
By putting together the above facts, we get κ(I − γ Pwb) ≤ 1+γ

1−γ
. Consequently from Eq.

(30) and the assumption that ε2
1+γ
1−γ

< 1, we obtain

‖Vw − Vwb‖νwb

‖Vwb‖νwb

≤ 2ε2(1 + γ)

1 − γ − ε2(1 + γ)
.

Therefore ‖Vw − Vwb‖νwb
≤ K1ε2(1 + γ)(1 − γ − ε2(1 + γ))−1, K1 > 0. The corollary

now easily follows from the above bound and from (17) of Theorem 2. ��
The note worthy result on the upper bound of the approximation error of the on-policy

LSTD(λ) provided in Tsitsiklis and Roy (1997) can be easily derived from the above result
as follows:

Corollary 2 For w ∈ W, λ ∈ [0, 1] and γ ∈ (0, 1),

‖Φxw|w − Vw‖νw ≤ 1 − γ λ

1 − γ
‖ΠwVw − Vw‖νw .

Proof In the on-policy case, wb = w. Hence ε2 = 0. The corollary directly follows from
direct substitution of these values in (17). ��
3.2 Estimation of the objective function

The objective function of the control problem defined in Eq. (15) is

J (w) = Eνw

[
L(hw|w)

]
. (32)

In this paper,we employoff-policyLSTD(λ) to approximatehw|w for a givenpolicyparameter
w ∈ W. A sample trajectory {s0, a0, r0, s1, a1, r1, s2, . . . } (fixed for the algorithm) generated
using the behaviour policy πwb is provided.

The procedure to estimate the objective function J is formally defined in Algorithm 1.
The Predict procedure in Algorithm 1 is almost the same as the off-policy LSTD algorithm.
The additional recursion (step 10) estimates the objective function defined in Eq. (32) as
follows:

�w
k+1 = �w

k + αk+1

(
L(x�

k φ(sk+1)) − �w
k

)
, (33)

where αk = 1/k. The above choice of αk is merely a recommendation and not a strict
requirement. This, however, alleviates the extra burden of decidingαk during implementation.

For a given w ∈ W, �w
k attempts to find an approximate value of the objective function

J (w). The following lemma formally characterizes the limiting behaviour of the iterates �w
k .

Lemma 1 For a given w ∈ W,

�w
k → �w∗ = Eνwb

[
L(x�

w|wb
φ(s))

]
as k → ∞ w.p. 1. (34)

Proof We begin the proof by defining the filtration {Fk}k∈N, where the σ -field Fk �
σ({xi , �w

i , si , ai , ri , 0 ≤ i ≤ k}).

123

988 Mach Learn (2018) 107:969–1011

Now recalling the recursion (33),

�w
k+1 := �w

k + αk+1

(
L(x�

k φ(sk+1)) − �w
k

)

:= �w
k + αk+1

(
h(�w

k) + Mk+1 + ck
)
,

where Mk+1 � L(x�
w|wb

φ(sk+1)) − E

[
L(x�

w|wb
φ(sk+1))

∣
∣Fk

]
,

h(z) � Eνwb

[
L(x�

w|wb
φ(sk+1))

]
− z and ck � L(x�

k φ(sk+1)) − L(x�
w|wb

φ(sk+1))+
E

[
L(x�

w|wb
φ(sk+1))

∣
∣Fk

]
− Eνwb

[
L(x�

w|wb
φ(sk+1))

]
.

We state here a few observations:

1. {Mk, k ≥ 1} is a martingale difference noise sequence w.r.t. {Fk}, i.e., Mk is Fk-
measurable, integrable and E[Mk+1|Fk] = 0 a.s., ∀k ≥ 0.

2. h(·) is a Lipschitz continuous function.
3. ∃K > 0 s.t. E[|Mk+1|2|Fk] ≤ K (1 + |�k |2) a.s., ∀k ≥ 0.
4. By Theorem 1, ck → 0 as k → ∞ w.p. 1. This directly follows by considering the

following facts: (a) by Eq. (1), the off-policy LSTD(λ) iterates {xk} converges almost
surely to the off-policy solution xw|wb (b) by assumption (A2), Pwb (sk = s) → νwb (s)
as k → ∞ and (c) L(·) and φ(·) are bounded.

5. For a givenw ∈ W, the iterates {�w
k }k∈N are stable, i.e., supk |�w

k | < ∞ a.s.A brief proof
is provided here: For c > 0, we define

hc(z) � h(cz)

c
=

Eνwb

[
L(x�

w|wb
φ(s))

]

c
− z. (35)

Now consider the following ODE corresponding to the following ∞-system:

ż(t) = h∞(z(t)) � lim
c→∞ hc(z(t)). (36)

Note that h∞(z) = −z. It can be easily verified that the above ODE is globally asymp-
totically stable to the origin. This further implies the stability of the iterates {�w

k } using
Theorem 2, Chapter 3 of Borkar (2008).

Now by appealing to the third extension of Theorem 2, Section 2.2, Chapter 2 of Borkar
(2008) and from the above observations, we can henceforth conclude almost surely that the
iterates {�w

k } asymptotically track the ODE given by:

ż(t) = h(z(t)). (37)

This further implies that the limit points of the iterates {�w
k } are indeed contained in the limit

set of the ODE (37) almost surely. However, it is easy to verify that Eνwb

[
L(x�

w|wb
φ(s))

]
is

the unique globally asymptotically stable equilibrium of the ODE (37). Hence limk→∞ �w
k =

Eνwb

[
L(x�

w|wb
φ(s))

]
a.s. This completes the proof of (34). ��

Remark 1 By the above lemma, for a given w ∈ W, the quantity �w
k tracks Eνwb

[
L(x�

w|wb

φ(s))
]
. This is however different from the true objective function value J (w) =

Eνw

[
L(hw|w)

]
, when w �= wb. This additional approximation error incurred is the extra

cost one has to pay for the dearth in information (in the form of generative model) about
the underlying MDP. Nevertheless, from Eqs. (16) and (19), we know that the relative errors

123

Mach Learn (2018) 107:969–1011 989

in the solutions xw|w and xw|wb as well as in the stationary distributions νw and νwb are
bounded. We also know thatΦxw|w ≈ hw|w. Further, if we can restrict the smoothness of the
performance function L , then we can contain the deviation of L(y)when the input variable y
is perturbed slightly. All these factors further affirm the fact that the approximation proposed
in (33) is well-conditioned. This is indeed significant, considering the restricted setting we
operate in, i.e., non-availability of the generative model.

Algorithm 1 Predict Procedure
1: Input parameters: w ∈ W, N ∈ N � Input policy vector, Trajectory length
2: Data: A priori chosen sample trajectory {s0, a0, r0, s1, a1, r1, s2, . . . } generated using the

behaviour policy πwb
3: function Predict(w, N)
4: k := 0; � Iteration count initialized to 0
5: while k < N do
6: ek+1 := γ λρkek + φ(sk);� The sampling ratio ρk = πw(ak |sk)

πwb (ak |sk)
7: Ak+1 := Ak + 1

k+1

(
ek (φ(sk) − γρkφ(sk+1))

� − Ak

)
;

8: bk+1 := bk + 1
k+1 (ρkrkek − bk);

9: xk+1 := A−1
k+1bk+1; � Prediction vector

10: �w
k+1 := �w

k + αk+1

(
L(x�

k φ(sk+1)) − �w
k

)
; � Objective func estimation

11: k := k + 1;
12: end while
13: return �w

N ; � Outputs after N iterations
14: end function

3.3 Stochastic approximation version of Gaussian cross entropy method and its
application to the control problem

Cross entropy method (Rubinstein and Kroese 2013; Kroese et al. 2006) solves optimization
problems where the objective function does not possess good structural properties, such as
possibly discontinuous, non-differentiable, i.e., those of the kind:

Find x∗ ∈ argmax
x∈X⊂IRd

J (x), (38)

where J : X → IR is a bounded Borel measurable function.
CE is a model based search method (Zlochin et al. 2004) used to solve the global opti-

mization problem. CE is a zero-order method (a.k.a. gradient-free method) which implies the
algorithm does not require gradient or higher-order derivatives of the objective function. This
remarkable feature of the algorithm makes it a suitable choice for the “black-box” optimiza-
tion setting, where neither a closed form expression nor structural properties of the objective
function J are available. CE method has found successful application in diverse domains
which include continuous multi-extremal optimization (Rubinstein 1999), buffer allocation
(Alon et al. 2005), queueing models (de Boer 2000), DNA sequence alignment (Keith and
Kroese 2002), control and navigation (Helvik and Wittner 2001), reinforcement learning
(Mannor et al. 2003; Menache et al. 2005) and several NP-hard problems (Rubinstein 2002,
1999). We would also like to mention that there are other model based search methods in
the literature, a few pertinent ones include the gradient-based adaptive stochastic search for
simulation optimization (GASSO) (Zhou et al. 2014), estimation of distribution algorithm
(EDA) (Mühlenbein and Paass 1996) and model reference adaptive search (MRAS) (Hu

123

990 Mach Learn (2018) 107:969–1011

et al. 2007). However, in this paper, we do not explore the possibility of employing the above
algorithms in a MDP setting.

The Gaussian based cross entropy method generates a sequence of Gaussian distributions
{θ j = (μ j , � j)

� ∈ � ⊂ IRd(d+1)} j∈N parametrized by its mean vector μ j ∈ IRd and the

covariancematrix� j ∈ IRd×d , with the property that the support of themultivariateGaussian
probability density function given by

fθ j+1(x) = (2π |� j+1|)−d/2 exp (−1

2
(x − μ j+1)

��−1
j+1(x − μ j+1))

satisfies (P1) below.

Property (P1) supp(fθ j+1) ⊆ {x |J (x) ≥ γρ(J, θ j)},
where ρ ∈ (0, 1) is fixed a priori. Note that γρ(J, θ j) is the (1 − ρ)-quantile of J w.r.t. the
distribution fθ j . Hence it is easy to verify that the threshold sequence {γρ(J, θ j)} j∈N is a
monotonically non-decreasing sequence. The intuition behind this recursive generation of
the model sequence is that by assigning greater weight to the higher values of J at each itera-
tion, the expected behaviour of the model sequence should improve. We make the following
assumption on the model parameter space �:

� Assumption (A5) The parameter space � is a compact subset of IRd(d+1).

The invariant in each iteration of the CE method is property (P1). At each instant j + 1, the
CE method seeks the distribution which is proximally optimal to maintaining the invariant
by solving the following optimization problem:

θ j+1 = argmax
θ∈�

� j (θ, γρ(J, θ j)), (39)

where � j (θ, γ) � Eθ j

[
ϕ(J (x))I{J (x)≥γ } log fθ (x)

]
and ϕ : IR → IR+ is a positive, strictly

monotonically increasing function. This recursive equation forms the basis of the cross
entropy method and is referred to as the model update procedure.

Note that the solution to Eq. (39) is obtained by equating ∇� j to 0:

∇ϑθ
1
� j (θ, γ) = 0 ⇒ μ = Eθ j

[
g1

(
J (x), x, γ

)]

Eθ j

[
g0(J (x), γ)

] � ϒ1(θ j , γ), (40)

∇ϑθ
2
� j (θ, γ) = 0 ⇒ � = Eθ j

[
g2

(
J (x), x, γ, μ

)]

Eθ j

[
g0

(
J (x), γ

)] � ϒ2(θ j , γ), (41)

where g0(y, γ) � ϕ(y)I{y≥γ }, (42a)

g1(y, x, γ) � xϕ(y)I{y≥γ }, (42b)

g2(y, x, γ, μ) � ϕ(y)(x − μ)(x − μ)� I{y≥γ } (42c)

(ϑθ
1 , ϑθ

2)� = (�−1μ,− 1
2�

−1)�. (42d)

The mapping of (μ,�)� �→ (�−1μ, −1
2 �−1)� is a bijective transformation and it makes

the algebra a lot simpler. Also it is not hard to verify that ϒ1 and ϒ2 are well defined.
Now from (40) and (41), we can rewrite the recursion (39) as

θ j+1 = (
ϒ1
(
θ j , γρ(J, θ j)

)
, ϒ2

(
θ j , γρ

(
J, θ j

)))�
. (43)

123

Mach Learn (2018) 107:969–1011 991

The above update rule for recursively generating model sequence {θ j } is commonly referred
to as the ideal version of the standard CE method. However, in this paper, we employ an
extended version of the CE method proposed in Joseph and Bhatnagar (2016a, b, c) whose
update rule is slightly different. In the extendedversion, amixturePDF f̂θ j = (1−ζ) fθ j +ζ fθ0
(with ζ ∈ (0, 1) and θ0 is the initial distribution parameter) is employed to compute γρ , ϒ1

and ϒ2 instead of the original PDF fθ j . In this case, the update rule is defined as follows:

θ j+1 = (
ϒ1
(
θ̂ j , γρ(J, θ̂ j)

)
, ϒ2

(
θ̂ j , γρ

(
J, θ̂ j

)))�
. (44)

Here γρ(J, θ̂) is defined as the (1 − ρ)-quantile of J w.r.t. the mixture distribution f̂θ .
Similarly we define ϒ1(θ̂ , ·) and ϒ2(θ̂ , ·) respectively. This extended version is shown to
exhibit global optimum convergence (Joseph and Bhatnagar 2016a, b, c).

However, there are certain tractability concerns. The quantities γρ(J, θ̂ j), ϒ1(θ̂ j , ·) and
ϒ2(θ̂ j , ·) involved in the update rule are intractable, i.e. computationally hard to compute
(and hence the tag name ‘ideal’). To overcome this, a naive approach usually found in the
literature is to employ sample averaging, with sample size increasing to infinity. However,
this approach suffers from hefty storage and computational complexity which is primarily
attributed to the accumulation and processing of huge number of samples. In Joseph and
Bhatnagar (2016a, b, c), a stochastic approximation variant of the extended cross entropy
method has been proposed. The proposed approach is efficient both computationally and
storage wise, when compared to the rest of the state-of-the-art CE tracking methods (Hu
et al. 2012; Wang and Enright 2013; Kroese et al. 2006). It also integrates the mixture
approach (44) and henceforth exhibits global optimum convergence.

The goal of the stochastic approximation (SA) version of Gaussian CE method is to find
a sequence of Gaussian model parameters {θ j = (μ j , � j)

�} (where μ j is the mean vector
and � j is the covariance matrix) which tracks the ideal CE method. The algorithm effi-
ciently accomplishes the goal by employing multiple stochastic approximation recursions.
The algorithm is shown to exhibit global optimum convergence, i.e., the model sequence {θ j }
converges to the degenerate distribution concentrated on any of the global optima of the objec-
tive function (Fig. 5), in both deterministic (when the objective function is deterministic) and
stochastic settings, i.e., when noisy versions of the objective function are available. Successful
application of the stochastic approximation version of CE in stochastic settings is appealing
to the control problem we consider in this paper, since the off-policy LSTD(λ) method only
provides estimates of the value function. The SA version of CE is a discrete evolutionary pro-
cedure where the model sequence {θ j } is adapted to the degenerate distribution concentrated
at global optima, where at each discrete step of the evolution a single sample from the solution
space is used. This unique nature of the SAversion is appealing to settingswhere the objective
function values are hard to obtain, especially to the MDP control problem we consider in this
paper. The single sample requirement attribute which is unique to the SA version implies that
one does not need to scale the computingmachine for unnecessary value function evaluations.

Our algorithm which attempts to solve the control problem defined in Eq. (15) is formally
illustrated in Algorithm 2.

A few remarks about the algorithm are in order:

1. The learning rates {β j }, {β j } and the mixing weight ζ are deterministic, non-increasing
and satisfy the following:

ζ ∈ (0, 1),β j > 0, β j > 0,
∞∑

j=1

β j = ∞,

∞∑

j=1

β j = ∞,

∞∑

j=1

(
β2
j + β̄2

j

)
< ∞.

(45)

123

992 Mach Learn (2018) 107:969–1011

−100 −50 0 50 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

objective function

Fig. 5 Illustration of the sequence {θ j } generated by the CE method

2. In our algorithm, the objective function is estimated in (50) using the Predict procedure
which is defined in Algorithm 1. Even though an infinitely long sample trajectory is
assumed to be available, the Predict procedure has to practically terminate after process-
ing a finite number of transitions from the trajectory. Hence a user configured trajectory
length rule {N j ∈ N \ {0}} j∈N with N j ↑ ∞ is used. At each iteration j of the cross
entropy method, when Predict procedure is invoked to estimate the objective function
L(hw j |w j), the procedure terminates after processing the first N j transitions in the tra-
jectory. It is also important to note that the same sample trajectory is reused for all
invocations of Predict. This eliminates the need for any further observations of the MDP.

3. Recall that we employ the stochastic approximation (SA) version of the extended CE
method to solve our control problem (15). The SA version (hence Algorithm 2) main-
tains three variables: γ j , ξ

(0)
j and ξ

(1)
j , with γ j tracking γρ(·, θ̂ j), while ξ

(0)
j and ξ

(1)
j

track ϒ1(θ̂ j , ·) and ϒ2(θ̂ j , ·) respectively. Their stochastic recursions are defined in Eqs.
(51), (52) and (53) of Algorithm 2. The increment terms for their respective stochastic
recursions are defined recursively as follows:

�γ j (y) � −(1 − ρ)I{y≥γ j } + ρ I{y≤γ j }. (46)

�ξ
(0)
j (x, y) � g1(y, x, γ j) − ξ

(0)
j g0(y, γ j). (47)

�ξ
(1)
j (x, y) � g2(y, x, γ j , ξ

(0)
j) − ξ

(1)
j g0(y, γ j). (48)

4. The initial distribution parameter θ0 is chosen by hand such that probability density
function fθ0 has strictly positive values for every point in the solution space W, i.e.,
fθ0(w) > 0,∀w ∈ W.

5. The stopping rule we adopt here for the control problem is to terminate the algorithm
when the model sequence {θ j } is sufficiently close consequently for a finitely long time,
i.e., ∃ j̄ ≥ 0 s.t. ‖θ j − θ j+1‖ < δ1, j̄ ≤ ∀ j ≤ j̄ + N (δ1), where δ1 ∈ IR+, N (δ1) ∈ N

are decided a priori.
6. The quantile factor ρ is also a relevant parameter of the CEmethod. An empirical analysis

in Joseph and Bhatnagar (2016b) has revealed that the convergence rate of the algorithm
is sensitive to the choice of ρ. The paper also recommends that [0.01, 0.3] is the most
suitable choice of ρ.

123

Mach Learn (2018) 107:969–1011 993

7. We also extended the algorithm to include Polyak averaging of the model sequence {θ j }.
The sequence {θ j }maintains the Polyak averages of the sequence {θ j } and its update step
is given in (57). Note that the Polyak averaging Polyak and Juditsky (1992) is a double
averaging technique which does not cripple the convergence of the original sequence
{θ j }, however it reduces the variance of the iterates and accelerates the convergence of
the sequence.

Algorithm 2

1: Input parameters: ε, ρ ∈ (0, 1), β̄ j , β j , ζ, c j ∈ (0, 1), c j → 0, θ0 := (μ0, �0)
�,

{N j , j ∈ N} � Trajectory length rule chosen a priori

2: Initialization: j := 0, γ0 := 0, ξ(0)
0 := 0k2×1, ξ

(1)
0 := 0k2×k2 , T0 := 0, θ p = NULL , γ p

0 := −∞.

3: while stopping criteria not satisfied do

4: Mixture distribution generation: f̂θ j := (1 − ζ) fθ j + ζ fθ0 ; (49)

5: Sample generation: w j+1 ∼ f̂θ j (·);

6: Objective function estimation: Ĵ (w j+1) := Predict (w j+1, N j+1); (50)

7: Tracking γρ(Ĵ , θ̂ j): γ j+1 := γ j − β j�γ j (Ĵ (w j+1)); (51)

8: Tracking ϒ1(θ̂ j , γρ(Ĵ , θ̂ j)): ξ
(0)
j+1 := ξ

(0)
j + β j�ξ

(0)
j (w j+1, Ĵ (w j+1)); (52)

9: Tracking ϒ2(θ̂ j , γρ(Ĵ , θ̂ j)): ξ
(1)
j+1 := ξ

(1)
j + β j�ξ

(1)
j (w j+1, Ĵ (w j+1)); (53)

10: if θ p �= NULL then

11: wp
j+1 ∼ f̂θ p := (1 − ζ) fθ p + ζ fθ0 ;

12: γ
p
j+1 := γ

p
j − β j�γ

p
j (Ĵ (wp

j+1));
13: end if

14: Threshold comparison: Tj+1 := Tj + c

(

I{γ j>γ
p
j } − I{γ j≤γ

p
j } − Tj

)

; (54)

15: if Tj+1 > ε then

16: Save old model and old threshold: θ
p
j+1 := θ j ; γ

p
j+1 := γ j ;

17: Model parameter update: θ j+1 := θ j + β j

(
(ξ

(0)
j , ξ

(1)
j)� − θ j

)
; (55)

18: Reset parameters: Tj := 0; c := c j ; (56)

19: Weighted Polyak averaging: θ j+1 := θ j + β j
(
θ j+1 − θ j

) ; (57)

20: else

21: γ
p
j+1 = γ

p
j ; θ j+1 = θ j ;

22: end if

23: j := j + 1;

24: end while

123

994 Mach Learn (2018) 107:969–1011

3.4 Convergence analysis of Algorithm 2

The convergence analysis of the generalized variant of Algorithm 2 is already addressed in
Joseph and Bhatnagar (2016c) and its application to the prediction problem is given in Joseph
and Bhatnagar (2016b). However, for completeness, we will restate the results here. We do
not give proof of those results, however, provide references for the same. The additional
Polyak averaging (step 19 of Algorithm 2) requires analysis, which is covered below.

Note that Algorithm 2 employs the off-policy prediction method for estimating the
objective function. In particular, in step 6 of Algorithm 2, we have Ĵ (w j+1) :=
Predict (w j+1, N j+1), which converges toEνwb

[
L(x�

w|wb
φ(s))

]
almost surely as N j → ∞

(by Lemma 1). Hence the objective function optimized by Algorithm 2 is Jb(w) �
Eνwb

[
L(x�

w|wb
φ(s))

]
, where wb ∈ W is the chosen behaviour policy vector.

Also note that the model parameter θ j in Algorithm 2 is not updated at each iteration
j . Rather it is updated whenever Tj hits the ε threshold (step 15 of Algorithm 2), where
ε ∈ (0, 1) is a constant. So the update of θ j only happens along a sub-sequence { j(n)}n∈N of
{ j} j∈N. Between j = j(n) and j = j(n+1), the model parameter θ j remains constant and the
variable γ j estimates (1 − ρ)-quantile of Jb w.r.t. f̂θ j(n)

.

Notation We denote by γρ(Jb, θ̂), the (1 − ρ)-quantile of Jb w.r.t. the mixture distribution
f̂θ and let Eθ̂ [·] be the expectation w.r.t. f̂θ .
Since the model parameter θ j remains constant between j = j(n) and j = j(n+1), the

convergence behaviour of γ j , ξ
(0)
j and ξ

(1)
j can be studied by keeping θ j constant.

Lemma 2 Let θ j ≡ θ,∀ j . Also, assume sup j |γ j | < ∞ a.s. Then the stochastic sequence
{γ j } defined in Eq. (51) satisfies lim j→∞ γ j = γρ(Jb, θ̂) a.s.

Proof Refer Lemma 3 of Joseph and Bhatnagar (2016b). ��
Lemma 3 Assume θ j ≡ θ,∀ j . Then almost surely,

(i)
lim
j→∞ ξ

(0)
j = ξ (0)∗ = Eθ̂

[
g1
(
Jb(x), x, γρ(Jb, θ̂)

)]

Eθ̂

[
g0
(
Jb(x), γρ(Jb, θ̂)

)] .

(ii) lim
j→∞ ξ

(1)
j = ξ (1)∗ =

Eθ̂

[
g2
(
Jb(x), x, γρ(Jb, θ̂), ξ

(0)∗
)]

Eθ̂

[
g0
(
Jb(x), γρ(Jb, θ̂)

)] .

(iii) Tj defined in Eq. (54) satisfies −1 < Tj < 1,∀ j .

(iv) If γρ(Jb, θ̂) > γρ(Jb, θ̂ p), then Tj , j ≥ 1 in (54) satisfy lim j→∞ Tj = 1 a.s.

Proof For (i), (i i) and (iv), refer Lemma 4 of Joseph and Bhatnagar (2016b). For (i i i) refer
Proposition 1 of Joseph and Bhatnagar (2016b). ��
Notation For the subsequence { j(n)}n>0 of { j} j∈N, we denote j−(n) � j(n) − 1 for n > 0.

Along the subsequence { j(n)}n≥0 with j0 = 0 the updating of θ j can be expressed as
follows:

θ j(n+1) := θ j(n)
+ β j(n)

�θ j(n)
, (58)

where �θ j(n)
= (ξ

(0)
j−
(n+1)

, ξ
(1)
j−
(n+1)

)� − θ j(n)
.

We now present our main result. The following theorem shows that the model sequence
{θ j } and the averaged sequence {θ j } generated by Algorithm 2 converge to the degenerate
distribution concentrated on the global maximum of the objective function Jb.

123

Mach Learn (2018) 107:969–1011 995

Theorem 3 Let ϕ(x) = exp(r x), r ∈ IR. Let ρ, ζ ∈ (0, 1). Let the learning rates {β j } and
{β j } satisfy Eq. (45). Assume Jb ∈ C2. Let {θ j = (μ j , � j)} j∈N and {θ j = (μ j , � j)} j∈N be
the sequences generated by Algorithm 2 and also assume θ j ∈ �, ∀ j ∈ N. Let β j = o(β j).
Let wb ∈ W be the chosen behaviour policy vector. Also, let the assumptions (A1–A5) hold.
Then

θ j → (wb∗, 0k2×k2)
� as j → ∞ w.p.1, (59)

θ j → (wb∗, 0k2×k2)
� as j → ∞ w.p.1, (60)

where wb∗ ∈ argmax
w∈W

Jb(w) with Jb(w) � Eνwb

[
L(x�

w|wb
φ(s))

]
.

Proof Since β j = o(β j), β j → 0 faster than β j → 0. This implies that the updates of θ j in
(55) are larger than those of θ j in (57). Hence the sequence {θ j } appears quasi-convergent
when viewed from the timescale of {θ j } sequence.

Theorem2of Joseph andBhatnagar (2016b) analyses the limiting behaviour of the stochas-
tic recursion (55) of Algorithm 2 in great detail. The analysis discloses the global optimum
convergence of the algorithm under limited regularity conditions. It is shown that the model
sequence {θ j } converges almost surely to the degenerate distribution concentrated on the
global optimum. The proposed regularity conditions for the global optimum convergence
are that the objective function belongs to C2 and the existence of a Lyapunov function on
the neighbourhood of the degenerate distribution concentrated on the global optimum. This
justifies the hypothesis Jb ∈ C2 in the statement of the theorem and we further assume
the existence of a Lyapunov function on the neighbourhood of the degenerate distribution
(wb∗, 0k2×k2)

�. Then by Theorem 2 of Joseph and Bhatnagar (2016b), we deduce that {θ j }
converges to (wb∗, 0k2×k2)

�. This completes the proof of (59).
For brevity, lets define θ∗ � (wb∗, 0k2×k2)

�. We also define the filtration {F j } j∈N, where
the σ -field F j � σ(θi , θ i , 0 ≤ i ≤ j}). Now recalling recursion (57),

θ j+1 := θ j + β j+1
(
θ j+1 − θ j

)
,

:= θ j + β j+1
(
θ j − E

[
θ j+1|F j

]+ E
[
θ j+1|F j

]− θ∗ + θ∗ − θ j
)
,

:= θ j + β j+1

(
M j+1 + b j + h(θ j)

)
,

where M j+1 � θ j+1 − E
[
θ j+1|F j

]
, b j � E

[
θ j+1|F j

]− θ∗ and h(x) � θ∗ − x .
Here we make the following observations:

1. b j → 0 almost surely as j → ∞. This follows from the hypothesis β j = o(β j) and by
considering the fact that θ j → θ∗ almost surely.

2. h is Lipschitz continuous.
3. {M j } is a martingale difference sequence.
4. {θ j } is stable, i.e., sup j ‖θ j‖ < ∞.

5. The ODE defined by θ̇ (t) = h(θ(t)) is globally asymptotically stable at θ∗.
All the above facts are easy to verify.Nowby appealing to the third extension ofTheorem2,

Section 2.2, Chapter 2 of Borkar (2008) and from the above observations, we can henceforth
conclude that θ j → θ∗ almost surely as j → ∞. This completes the proof of (60). ��

4 Experimental illustrations

The performance of our algorithm is evaluated on four different MDP settings:

123

996 Mach Learn (2018) 107:969–1011

1. Chain walk MDP.
2. Linearized cart-pole balancing.
3. 5-link actuated pendulum balancing.
4. Random MDP.

Our algorithm is compared against the state-of-the-art algorithms such as least squares
policy iteration (LSPI), fast policy search method, model reference adaptive search (MRAS)
and simultaneous perturbation stochastic approximation (SPSA). In each setting, the results
shown are averages over 10 independent sample sequences generated by the algorithms
with different initial conditions. The function ϕ(·) used here is ϕ(x) = exp(r x), where
r ∈ IR+.

4.1 Experiment 1: chain walk

This particular setting (Fig. 6) which has been proposed in Koller and Parr (2000) demon-
strates the unique scenario where policy iteration is non-convergent when approximate value
functions are employed instead of true ones. This particular example is also utilized to empir-
ically evaluate the performance of LSPI in Lagoudakis and Parr (2003). Here, we compare
the performance of our algorithm against LSPI and also against the stable Q-learning algo-
rithmwith linear function approximation (called Greedy-GQ) proposed inMaei et al. (2010).
This particular demonstration is pertinent in two ways: (1) when LSPI was evaluated on this
setting, the maximum state space cardinality considered was 50. We consider here a larger
MDP with 450 states and (2) the stable Greedy-GQ algorithm is only evaluated over a small
experimental setting in Maei et al. (2010). Here, by applying it on a relatively harder setting,
we attempt to assess its applicability and robustness.

SetupWe consider a Markov decision process with |S| = 450,A = {L , R}, k1 = 5, k2 = 10
and the discount factor γ = 0.99.

Reward function R(·, ·, 150) = R(·, ·, 300) = 1.0 and zero for all other transitions. This
implies that only the transitions to states 150 and 300 will acquire a positive payoff, while
the rest are nugatory transitions.

Transition dynamics The transition probability kernel is defined as follows:

For 1 < s < |S|
{
P(s, L , s + 1) = 0.1, P(s, L , s − 1) = 0.9,

P(s, R, s + 1) = 0.9, P(s, R, s − 1) = 0.1.
P(1, L , 2) = 0.1, P(1, L , 1) = 0.9,

P(1, R, 2) = 0.9, P(1, R, 1) = 0.1,

P(|S|, L , |S|) = 0.1, P(|S|, L , |S| − 1) = 0.9,

P(|S|, R, |S|) = 0.9, P(|S|, R, |S| − 1) = 0.1,

Feature set We employ radial basis functions (RBF) as both policy and prediction features.
We utilize 5 RBFs for prediction and 10 for policy features, i.e., k1 = 5 and k2 = 10. Note
that RBFs are Gaussian kernels which are parametrized by the centroid m ∈ IR and spread
v ∈ IR+ and are expressed as:

b(s) = e
− (s−m)2

2.0v2 . (61)

In our experiments, we initially tried to employ polynomials for features and found that the
approximations they produced were quite poor. However, with RBFs one can indeed obtain
decent performance by uniformly distributing the centroids in the state or state-action space

123

Mach Learn (2018) 107:969–1011 997

Fig. 6 Chain walk MDP

and by considering the spread to be the half of the distance between subsequent centroids.
In this way, one can indeed cover the respective spaces reasonably well. The policy features
and the prediction features are defined as follows:

Policy features Prediction features

ψ(s, a) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I{a=L}e
− (s−m1)2

2.0v21

.

.

.

I{a=L}e
− (s−m5)2

2.0v25

I{a=R}e
− (s−m1)2

2.0v21

.

.

.

I{a=R}e
− (s−m5)2

2.0v25

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. φi (s) = e
− (s−mi)

2

2.0v2i ,

where mi = 5 + 10(i − 1), vi = 5, 1 ≤ i ≤ 5.

Behaviour policy This is the most important choice and one has to be discreet while choos-
ing the behaviour policy. For this setting, we prefer a policy which is unbiased and which
uniformly covers the action space to provide sufficient exploration. Henceforth, by choosing
wb = (0, 0, . . . , 0)� we obtain a uniform distribution over action space for every state in S.

Performance function Note that both LSPI and Q-learning seek in the policy parameter
space to find the optimal or sub-optimal policy by recalibrating the parameter vector at each
iteration in the direction of the improved value function. But the objective function that we
consider in this paper is a more generalized version involving the performance function L
and scalarization using Eνw [·]. So the predicament, the above algorithms attempt to resolve
becomes a special instance of our generalized version and hence to compare our algorithm
against them, we consider the objective function to be the weighted Euclidean norm of the
approximate value function (with weight being the stationary distribution νw). Therefore,
the performance function L is defined as L(hw|w) = h2w|w (where squaring of the vector is
defined as squaring of each of its components). Note that, in our algorithm, we approximate
hw|w using the behaviour policy and the true approximation and the stationary distribution
involved areΦxw|wb and νwb respectively. However, since the behaviour policy chosen is the

123

998 Mach Learn (2018) 107:969–1011

Table 1 Algorithm parameter
values used in the chain walk
experiment

β j 0.2

β j 0

ζ 0

c j 0.08

ρ 0.05

ε 0.9

τ 1.0

r 0.01

0 50 100 150 200 250 300 350 400 450

state

0

1

2

3

4

5

6

7

8

9
LSPI Q-learning Algorithm2

Fig. 7 The plot of the respective optimal value functions contrived by LSPI, Q-learning and Algorithm 2 for
the chain walk MDP setting. The optimal solutions of various algorithms are being developed by averaging
over 10 independent trials. For Algorithm 2, we averaged the various optimal solutions obtained for different
sample trajectories generated using the same behaviour policy, but with different initial states which are chosen
randomly. Our approach (Algorithm 2) literally surpassed other algorithms in terms of its quality. The random
choice of the initial state effectively favoured sufficient exploration of the state space which directly assisted
in generating high quality solutions

uniform distribution over the action space for each state in S, one can easily deduce that the
underlyingMarkov chain of the behaviour policy is a uniform randomwalk and its stationary
distribution is the uniform distribution over the state space S.

The various parameter values employed and the results obtained in the experiment are
provided in Table 1 and Fig. 7 respectively.

4.2 Experiment 2: linearized cart-pole balancing (Dann et al. 2014)

Setup A pole with mass m and length l is connected to a cart of mass M . It can rotate in
the interval [−π, π] with negative angle representing the rotation in the counter clockwise
direction. The cart is free to move in either direction within the bounds of a linear track and
the distance lies in the region [−4.0, 4.0] with negative distance representing the movement

123

Mach Learn (2018) 107:969–1011 999

to the left of the origin.In our experiment, we have m = 0.5, M = 0.5, l = 20.5 and the
discount factor γ = 0.1.

Goal To bring the cart to the equilibrium position, i.e., to balance the pole upright and the
cart at the centre of the track.

State space The state is the 4-tuple (x, ẋ, ψ, ψ̇)� where ψ is the angle of the pendulum
w.r.t. the vertical axis, ψ̇ is the angular velocity, x the relative cart position from the centre
of the track and ẋ is its velocity. For better tractability, we restrict ẋ ∈ [−5.0, 5.0] and
ψ̇ ∈ [−5.0, 5.0], respectively.
Control (Policy) space The controller applies a horizontal force a on the cart parallel to the
track. The stochastic policy used in this setting corresponds to π(a|s) = N (a|ϑ�s, σ 2) (nor-
mal distribution with mean ϑ�s and standard deviation σ). Here the policy is parametrized
by ϑ ∈ IR4 and σ ∈ IR.

System dynamics The dynamical equations of the system are given by

ψ̈ = −3mlψ̇2 sinψ cosψ + (6M + m)g sinψ − 6(a − bψ̇) cosψ

4l(M + m) − 3ml cosψ
, (62)

ẍ = −2mlψ̇2 sinψ + 3mg sinψ cosψ + 4a − 4bψ̇

4(M + m) − 3m cosψ
. (63)

Bymaking further assumptions on the initial conditions, the system dynamics can be approx-
imated accurately by the linear system

⎡

⎢
⎢
⎣

xt+1

ẋt+1

ψt+1

ψ̇t+1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

xt
ẋt
ψt

ψ̇t

⎤

⎥
⎥
⎦+ �t

⎡

⎢
⎢
⎢
⎣

ψ̇t
3(M+m)ψt−3a+3bψ̇t

4Ml−ml
ẋt

3mgψt+4a−4bψ̇t
4M−m

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
0
0
z

⎤

⎥
⎥
⎦ , (64)

where b is the friction coefficient of the cart on the floor, g = 9.81 m
sec2

is the gravitational
constant, �t is the integration time step, i.e., the time difference between two transitions
and z is a standard Gaussian noise on the velocity of the cart. In our experiment, we set
b = 0.1Newton(msec)−1 and �t = 0.1sec, respectively.

Reward function R(s, a) = R(ψ, ψ̇, x, ẋ, a) = −4ψ2 − x2 − 0.1a2. The reward function
can be viewed as assigning penalty which is directly proportional to the deviation from the
equilibrium state.

Prediction features φ(s ∈ IR4) = (1, s21 , s
2
2 . . . , s1s2, s1s3, . . . , s3s4)� ∈ IR11.

Behaviour policy πb(a|s) = N (a|ϑ�
b s, σ 2

b), where ϑb = (3.684, 3.193, 4.252, 3.401)�
and σb = 5.01. The behaviour policy is determined by vaguely solving the problem using
true value functions and then choosing the behaviour policy vector ϑb by perturbing each
component of the vague solution so obtained. The margin of perturbation we considered is
chosen randomly from the interval [− 5.0, 5.0].
Performance function The performance function L is defined as under: We randomly
select (from the given intervals described in the definition of the state space), s0 =
(0.235, 3.581, 2.276, 1.069)�. Now, define

L(hw|w)(s) =
{
0.1hw|w(s0), for s = s0
0,∀s ∈ S \ {s0}. (65)

123

1000 Mach Learn (2018) 107:969–1011

Table 2 Algorithm parameter
values used in the experiments

Cart-pole experiment Actuated pendulum balancing

β j 0.7 0.7

β j j−1
(n)

j−1
(n)

ζ j−1
(n)

j−1
(n)

λ 0.1 0.1

c j 0.1 0.1

ρ 0.01 0.01

ε 0.9 0.9

r 0.01 0.01

N j 4000,∀ j 4000,∀ j

Note that { j(n)} is the
subsequence of { j} when
recursion (57) is executed

Here s0 is the initial state of the cart-pole system which implies that the cart is initially
stationed at a distance of 0.235 from the centre and the pendulum is at an angle of 2.276
(= π

1.38) from the vertical position. The initial velocity of the cart and the angular velocity of
the pendulum are 3.581 and 1.069 respectively. The goal is to find the optimal policy (which
corresponds to the parameters of the horizontal force) to bring the cart to the equilibrium
position, i.e., cart at the centre of the track and the pendulum in the vertical position. The
nature of the performance function L in Eq. (65) is to explicitly capture this aspect of the
problem, i.e., to find the optimal policy that takes the cart from s0 to the equilibrium position
and hence, only the cumulative cost incurred starting from s0 is considered. Note that s0 is
chosen arbitrarily for the experiment and thus does not render any particular advantage to
any of the algorithms.

The various parameter values employed and the results obtained in the experiment are
provided in Table 2 and Fig. 8 respectively.

4.3 Experiment 3: 5-link actuated pendulum balancing (Dann et al. 2014)

Setup 5 independent poles each with massm and length l with the top pole being a pendulum
connected using 5 rotational joints. In our experiment, we take m = 1.5, l = 10.0 and the
discount factor γ = 0.1.

Goal To keep all the poles in the horizontal position by applying independent torques at
each joint.

State space The state s = (q, q̇)� ∈ IR10 where q = (ψ1, ψ2, ψ3, ψ4, ψ5) ∈ IR5 and
q̇ = (ψ̇1, ψ̇2, ψ̇3, ψ̇4, ψ̇5) ∈ IR5 with ψi being the angle of the pole i w.r.t. the horizontal
axis and ψ̇i is the angular velocity. In our experiment, we consider the following bounds on
the state space: ψi ∈ [−π, π], ∀1 ≤ i ≤ 5 and ψ̇i ∈ [−5.0, 5.0], ∀1 ≤ i ≤ 5.

Control space The action a = (a1, a2, . . . , a5)� ∈ IR5 where ai is the torque applied to the
joint i . The stochastic policy used in this setting corresponds to

π(a|s) = N5(a|As, B) where A ∈ IR5×10, B ∈ IR5×5. (66)

We assume that the torques ai applied at each joint are independent and hence B is a
diagonal matrix. The policy parameter space W is defined as W = {w ∈ IR55|w =
(A00, A01, A02, . . . , A48, A49, B00, B11, . . . , B44)

�}.

123

Mach Learn (2018) 107:969–1011 1001

x

ψ

a

y

x

g

M

m

l

0 50 100 150 200 250 300

time (secs)

−35

−30

−25

−20

−15

−10

−5

0

5

E
ν w
[L

(x
w

| w
φ
(s

))
]

SPSA

Algorithm 2

Fast Policy Search

MRAS

(a) (b)

Fig. 8 a The cart-pole system: the goal is to keep the pole in the upright position and the cart at the centre of
the track by applying a force a either to the right or to the left. The system is parametrized by the position x
of the cart, the angle of the pole ψ , the velocity ẋ and the angular velocity ψ̇ . b Cart-pole results. Here, for

Algorithm 2, we plot Eνwb

[
L
(
x�
μ j |wb

φ(s)
)]

, where μ j is the mean vector of the Polyak averaged model

sequence {θ j }, i.e., θ j = (μ j , � j)
�. For the other algorithms, i.e., SPSA, MRAS and fast policy search,

we plot Eνw j

[
L
(
x�
w j |w j

φ(s)
)]

, where {w j ∈ W} is the iterative sequence generated by the respective

algorithms. This implies that Algorithm 2 operates in the off-policy setting, while the rest of the algorithms
utilize on-policy value function approximations to generate the optimal policy vector. With this advantage, the
algorithms SPSA, MRAS and fast policy search are expected to perform better as they have complete access
to the generative model unlike Algorithm 2 which has access only to the sample trajectory generated by the
behaviour policy. Also, note that x-axis is time in seconds relative to the start of the algorithm since MRAS
and fast policy search are batch based approaches, while Algorithm 2 and SPSA are incremental schemes.
Regarding the accuracy of the solution obtained by our algorithm, note that the global optimum is indeed zero,
since the reward function is defined as the negative penalty with respect to the deviation from the equilibrium
position and the goal is to bring the cart to the equilibrium position

System dynamics The state equations representing the approximate linear system dynamics
are given by [

qt+1

q̇t+1

]

=
[

I �t I
−�tM−1U I

] [
qt
q̇t

]

+ �t

[
0

M−1

]

a + z (67)

where �t is the integration time step, i.e., the time difference between two transitions and M
is the mass matrix in the horizontal position with Mi j = l2(6−max(i, j))m.U is a diagonal
matrix with Uii = −gl(6− i)m, where g is the gravitational constant. Each component of z
is a standard Gaussian noise. In our experiment, we take �t = 0.1 and g = 9.8.

Reward function R(q, q̇, a) = −q�q . The reward function can be viewed as assigning
penalty (negative reward) with respect to the deviation from the optimal pole position (the
unique positionwith zero deviation from the horizontal position and hence attracts no penalty,
i.e., highest reward).

Feature vectors φ(s ∈ IR10) = (1, s21 , s
2
2 . . . , s1s2, s1s3, . . . , s9s10)� ∈ IR46.

Behaviour policy The behaviour policy considered in the experiment is given by πb(a|s) =
N5(a|Abs, Bb), where

123

1002 Mach Learn (2018) 107:969–1011

ψ3

ψ2
ψ1

a1

a3

a2

z

y

x

g

0 500 1000 1500 2000 2500

time (secs)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

E
ν

w
[L
(x

w
|w

φ
(s
))
]

SPSA

Algorithm 2

Fast Policy Search

MRAS

(a) (b)

Fig. 9 aEach rotational joint i , 1 ≤ i ≤ 3 is independently actuated by a torque ai . The system is parametrized
by the angle ψi against the horizontal direction and the angular velocity ψ̇i . The goal is to balance the pole in
the horizontal direction, i.e., all ψi should be as close to 0 as possible by actuating Gaussian torques ai [Eq.

(66)]. b Here, for Algorithm 2, we plot Eνwb

[
L
(
x�
μ j |wb

φ(s)
)]

, where μ j is the mean vector of the Polyak

averaged model sequence {θ j }, i.e., θ j = (μ j , � j)
�. For the other algorithms, i.e., SPSA, MRAS and fast

policy search, we plot Eνw j

[
L
(
x�
w j |w j

φ(s)
)]

, where {w j ∈ W} is the iterative sequence generated by the

respective algorithms. This implies that Algorithm 2 operates in the off-policy setting, while the rest of the
algorithms utilize on-policy value function approximations to generate the optimal policy vector. With this
advantage, the algorithms MRAS, SPSA and fast policy search are expected to perform better as they have
unrestricted access to the generative model unlike Algorithm 2 which has access only to a sample trajectory
generated by the behaviour policy. Also, note that x-axis is time in seconds relative to the start of the algorithm
since MRAS and fast policy search are batch based approaches, while Algorithm 2 and SPSA are incremental
schemes. Again, regarding the accuracy of the solution obtained by our algorithm, note that the global optimum
is indeed zero, since the reward function is defined as the negative penalty with respect to the deviation from
the equilibrium position and the goal is to bring the system to the equilibrium position. a 3-link actuated
pendulum setting. b 5-link actuated pendulum results

A�
b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5.794 2.000 6.230 4.500 6.145
4.843 5.014 2.306 2.796 7.000
6.031 6.500 6.600 8.379 4.252
6.640 3.424 5.937 5.045 3.617
8.661 3.463 4.430 3.000 4.233
5.660 3.437 7.275 7.417 5.755
3.781 2.989 4.756 6.417 6.760
3.391 3.696 4.153 5.761 3.196
5.725 2.929 3.205 3.631 8.651
1.337 4.677 8.009 3.609 5.602

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Bb =

⎛

⎜
⎜
⎜
⎜
⎝

5.0 O
5.0

5.0
5.0

O 5.0

⎞

⎟
⎟
⎟
⎟
⎠

.

The methodology employed to induce the behaviour policy in this case is similar to that
of the cart-pole setting.

Performance function The performance function L is defined as under: We randomly
select (from the given intervals described in the definition of the state space), s0 =
(− 1.515,− 2.437,− 1.386,− 3.041, 0.001, 4.510, 0.691, 1.450, 3.241, 3.535)�. Now
define

L(hw|w)(s) =
{
0.1hw|w(s0), for s = s0
0,∀s ∈ S \ {s0}. (68)

123

Mach Learn (2018) 107:969–1011 1003

The rationale behind the choice of the above particular performance function is similar to
that of Experiment 2. Also, note that s0 is chosen arbitrarily for the experiment and thus does
not accord any unfounded predisposition to any of the algorithms.

The various parameter values employed and the results obtained in the experiment are
provided in Table 2 and Fig. 9 respectively.

4.4 Experiment 4: random MDP

SetupWeconsider a randomly generatedMarkov decision process with |S| = 500, |A| = 30,
k1 = 5, k2 = 5 and γ = 0.8.

Reward function The reward function R is defined as follows:

R(s, a, s′) = ω1(s)ω1(s
′)
(
sin (a) + 2.0

(1.0 + s′)0.25

)

, s, s′ ∈ S, a ∈ A. (69)

Here ω1 ∈ [3, 5]|S| is initialized for the algorithm with ω1(s) ∼ U (1, 4).

Transition dynamics The transition probability kernel P is defined as follows:

P(s, a, s′) =
(
n

s′

)

ω2(s, a)s
′
(1.0 − ω2(s, a))n−s′ , s, s′ ∈ S, a ∈ A. (70)

Here the matrix ω2 ∈ [0, 1]S×A is initialized for the algorithm with ω2(s, a) ∼ U (0, 1).

Feature set The policy features and the prediction features are as follows:

Policy features Prediction features

ψ(s, a) = B[s|A| + a] φi (s) = e
− (s−mi)

2

2.0v2i

where B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
.
.
.

. . .
.
.
.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

15000×5

where mi = 5 + 10(i − 1), vi = 5.

In this experimental setting, we employ the Gibbs “softmax” policies defined in Eq. (7).

Behaviour policy The behaviour policy vector wb considered for the experiment is wb =
(12.774, 15.615, 20.626, 25.877, 11.945)�.

Performance function The performance function L is defined as follows:
L(hw|w) = 0.1h2w|w (Note that squaring the vector here corresponds to co-ordinate wise

squaring).
As with the previous two experiments, Algorithm 2 was run for the off-policy case while

SPSA, MRAS and fast policy search were run for the on-policy setting.
The various parameter values employed and the results obtained in the experiment are

provided in Table 3 and Fig. 10 respectively.

123

1004 Mach Learn (2018) 107:969–1011

Table 3 Algorithm parameter
values used in the random MDP
experiment

β j 0.7

β j j−1
(n)

ζ j−1
(n)

c j 0.1

ρ 0.01

ε 0.9

τ 103

r 0.001

N j 1000,∀ j

Note that { j(n)} is the
sub-sequence of { j} when
recursion (57) is executed

0 100 200 300 400 500 600 700 800

time (secs)

650

700

750

800

850

900

E
ν w
[L
(x

w
|w

φ
(s
))
]

SPSA

Algorithm 2

Fast Policy Search

MRAS

Fig. 10 Plot of the results obtained in the random MDP experiment. Here also, x-axis is time in secs relative
to the start of the algorithm

4.5 Exegesis of the experiments

In this section, we summarize the inferences drawn from the above experiments:
(1) The proposed algorithm performed better than the state-of-the-art methods without

compromising on the rate of convergence. The choice of the underlying behaviour policy
indeed influenced this improved performance. Note that to labour high quality solutions,
the choice of the behaviour policy is pivotal. In Experiment 1, we considered a uniform
policy, where every action is equally likely to be chosen for each state in S. The results
obtained in that experiment are quite promising, since, by only utilizing a uniform behaviour
policy, we were able to grind out superior quality solutions. One has to justify the results to
add credibility, considering the fact that LSPI is shown to produce optimal policy given a
generative model. Note that in the original LSPI paper, we find that the LSPI method utilizes
a sample trajectory provided in the form of tuples {(si , ai , ri , s′

i)}i∈N, where si and ai are
drawn uniformly randomly from S andA respectively, while s′

i is the transitioned state given
si and ai by following the underlying transition dynamics of theMDP and ri is the immediate

123

Mach Learn (2018) 107:969–1011 1005

reward for that transition. One can immediately see that the information content required to
generate such a trajectory is equivalent to that of maintaining a generative model.

Further, in Lagoudakis and Parr (2003), where LSPI is being empirically evaluated, we
find that a trajectory length of 5000 is being used in the 20-state chain walk to obtain optimal
performance. However, in our experiment (Experiment 1) with 450 states, we only consider
a trajectory length of 5000 for LSPI and hence obtain the sub-optimal performance. But, one
should also consider the fact that the behaviour policy utilized by our algorithm in the same
experiment is uniform (no prior information about the MDP is being availed) and the trajec-
tory length is only half of that of LSPI. Now, regarding the performance of Q-learning, we
know [from Theorem 1 of Maei et al. (2010)] that the method can only provide sub-optimal
solutions.

In Experiments 2, 3 and 4, we surmised the behaviour policy based onmore than a passable
knowledge of the MDP. To make the comparison unbiased (since our algorithm utilized prior
information about the MDP to induce the behaviour policy), in the algorithms (MRAS, fast
policy search and SPSA) to which our method is being compared, we employed the more
accurate on-policy approximation which requires the generative model. This is contrary to
our method, where off-policy approximation is tried. Our algorithm exhibited as good a
performance as the state-of-the-art methods in the cart-pole experiment and noticeably the
finest performance in the actuated pendulum experiment. This is regardless of the fact that
our algorithm is primarily designed for the discrete, finite MDP setting, while the cart-pole
experiment and the actuated pendulum experiment are MDPs with continuous state and
action spaces. The suboptimal performance of the fast policy search and MRAS is primarily
attributed to the insufficient sample size. But the underlying computing machine which we
consider for the experiments is a 64-bit Intel i3 processor with 4GB of memory. Because of
these limited resources, there is a finite limit to which the sample size can be scaled. This
illustrates the effectiveness of our approach on a resource restricted setting. Now regarding
the random MDP experiment, the performance of our algorithm is on par (in fact superior)
to the state-of-the-art schemes.

(2) The significance of these results is further strengthened by the fact that all the base-
line algorithms considered in the experiments have access to the generative-model and the
outcome depicted above is obtained after processing a bevy of sample trajectories. This is
contrary to our method where such a privilege is not conferred.

(3) The algorithm does not seem to be heavily dependent on the discount factor γ . To
corroborate the claim, we show here the performance of the algorithm for two different, yet

123

1006 Mach Learn (2018) 107:969–1011

Fig. 11 The schematic diagram of the optimal policy generated by Algorithm 2 for the chain walk MDP with
|S| = 60, A = {L , R} and the discount factor γ = 0.01

Fig. 12 The schematic diagram of the optimal policy generated by Algorithm 2 for the chain walk MDP with
|S| = 60, A = {L , R} and the discount factor γ = 0.99.

extreme values of γ , i.e., for γ ∈ {0.01, 0.99} on the chain walk MDP with 60 states. Here,
only the transitions to states 20 and 40 incur a positive cost, while the rest are null transitions.
The optimal policies generated by our algorithm in the two cases are shown in Figs. 11 and 12
respectively. As one can observe, for γ = 0.99, the window around state 20 is wider than that
for γ = 0.01. This is the expected behaviour since the discount factor controls the relative
weights of future transitions while evaluating the discounted value function. However, note
that this is not the case with regards to state 40. This lack of accuracy in the final third is
primarily due to the fact that the behaviour policy we consider in this setting has its stationary
distribution heavily concentrated on the first half of the state space. This particular scenario
thus also illustrates the dependency of behaviour policy on the accuracy of the solution
generated by our algorithm. This is indeed revealed in Theorem 3. To exemplify it further,
we show here how the relative frequency of the states in the given trajectory generated using
the behaviour policy determines the accuracy of the solution of our algorithm. Remember
that the relative frequency of the states in the sample trajectory is indeed decided by the
stationary distribution of the Markov chain induced by the behaviour policy. The results are
shown in Figs. 13 and 14.

123

Mach Learn (2018) 107:969–1011 1007

0 10 20 30 40 50 60
state

0.0

0.1

0.2

0.3

0.4

fr
eq

ue
nc

y
ra

tio

0 10 20 30 40 50 60
state

0

5

10

15

20

25

30

35

40
(a) (b)

Fig. 13 a Frequency ratio of the states in the sample trajectory. b Optimal value function generated by
Algorithm 2. The frequency ratio of a particular state in the sample trajectory is defined as the ratio of the
number of occurrences of that state in the sample trajectory to the total number of state transitions in the sample
trajectory. For an ergodic Markov chain, this ratio will eventually converge to is stationary distribution. In this
particular example, observe that the accuracy of the value function is better for states whose relative frequency
is good

0 10 20 30 40 50 60

state

0.02

0.04

0.06

fr
eq

ue
nc

y
ra

tio

0 10 20 30 40 50 60
state

0

5

10

15

20
(a) (b)

Fig. 14 a Frequency ratio of the states in the sample trajectory. b Optimal value function generated by
Algorithm 2. In this setting, the relative frequency is better on the right half of the state space and the value
function also seems to be more accurate in that region

(4) Finally, in the experiments, we found that the parameter which required the highest
tuning is β j which is also intuitive since β j controls most of the stochastic recursions. The
other parameters required minimum tuning with almost all of them taking common values.

4.6 Data efficiency

Here, we compare the efficiency of our algorithm with respect to the state-of-the-art algo-
rithms. To measure the efficiency, we consider two benchmarks: system configuration count
and memory usage. The system configuration count denotes the number of times the algo-
rithm queries the generative model of the MDP with a policy to obtain sample trajectories.
Memory usage denotes the average real time memory consumed by the algorithms. The
results are shown in Fig. 15. The performance of our algorithm with regard to the above
benchmarks is commendable.

123

1008 Mach Learn (2018) 107:969–1011

Fig. 15 Efficiency comparison of Algorithm 2 w.r.t. the state-of-the-art methods.

Fig. 16 Memory usage w.r.t. k2

We also compare here the average memory usage of the fast policy search algorithm and
our algorithm with respect to k2 which is the dimension of the policy space. The results are
shown in Fig. 16. The illustration shows that memory usage of our algorithms almost remains
constant, however fast policy search is very sensitive to the parameter k2.

This non-dependency of our algorithm on the dimension of the policy space has a real
pragmatic advantage since, as a result of this, our algorithm can be applied to very large and
complex MDPs with wider policy spaces where fast policy search and MRAS might become
intractable.

Another advantage of our approach is the application on legacy systems. In such systems,
the information on the dynamics of the system in the form of bits or bytes or paper might
be hard to find. However, human experience through long time interaction with the system
is available in most cases. Utilizing this human experience to develop a generative model of
the system might be hard, however using it to find a behaviour policy which can give average
performance is more plausible, and which in turn can be exploited using our algorithm to
find an optimal policy.

123

Mach Learn (2018) 107:969–1011 1009

5 Conclusion

We presented an algorithm which solves the modified control problem in a model free MDP
setting. We showed its convergence to the global optimal policy relative to the choice of the
behaviour policy. The algorithm is data efficient, robust, stable as well as computationally
and storage efficient. Using an appropriately chosen behaviour policy, it is also seen to
consistently outperform or is competitive against the current state-of-the-art (both) off-policy
and on-policy methods.

References

Alon, G., Kroese, D. P., Raviv, T., & Rubinstein, R. Y. (2005). Application of the cross-entropy method to the
buffer allocation problem in a simulation-based environment. Annals of Operations Research, 134(1),
137–151.

Antos, A., Szepesvári, C., & Munos, R. (2007). Value-iteration based fitted policy iteration: Learning with
a single trajectory. In 2007 IEEE international symposium on approximate dynamic programming and
reinforcement learning (pp. 330–337).

Antos, A., Szepesvári, C., & Munos, R. (2008). Learning near-optimal policies with Bellman-residual mini-
mization based fitted policy iteration and a single sample path. Machine Learning, 71(1), 89–129.

Bagnell, J. A., & Schneider, J. G. (2001). Autonomous helicopter control using reinforcement learning policy
search methods. In Proceedings 2001 ICRA. IEEE international conference on robotics and automation,
vol. 2 (pp. 1615–1620).

Balleine,B.W.,&Dickinson,A. (1998).Goal-directed instrumental action:Contingency and incentive learning
and their cortical substrates. Neuropharmacology, 37(4), 407–419.

Barreto, A. D.M. S., Pineau, J., & Precup, D. (2014). Policy iteration based on stochastic factorization. Journal
of Artificial Intelligence Research, 50, 763–803.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic programming.
Artificial Intelligence, 72(1), 81–138.

Baxter, J., &Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence
Research, 15, 319–350.

Bertsekas, D. P. (1995).Dynamic programming and optimal control (Vol. 1). Belmont, MA: Athena Scientific.
Bertsekas, D. P., & Castanon, D. A. (1989). Adaptive aggregation methods for infinite horizon dynamic

programming. IEEE Transactions on Automatic Control, 34(6), 589–598.
Bhatnagar, S., Sutton, R. S., Ghavamzadeh,M., & Lee,M. (2009). Natural actor-critic algorithms.Automatica,

45(11), 2471–2482.
Borkar, V. S. (2008). Stochastic approximation. Cambridge: Cambridge University Press.
Chang, H. S., Hu, J., Fu, M. C., & Marcus, S. I. (2013). Simulation-based algorithms for Markov decision

processes. Berlin: Springer.
Dann, C., Neumann, G., & Peters, J. (2014). Policy evaluation with temporal differences: A survey and

comparison. Journal of Machine Learning Research, 15(1), 809–883.
Deisenroth,M., &Rasmussen, C. E. (2011). Pilco: Amodel-based and data-efficient approach to policy search.

In Proceedings of the 28th international conference on machine learning (ICML) (pp. 465–472).
de Boer, P. T. (2000). Analysis and efficient simulation of queueing models of telecommunication systems.

Centre for Telematics and Information Technology University of Twente.
Ertin, E., Dean, A. N., Moore, M. L., & Priddy, K. L. (2001). Dynamic optimization for optimal control of

water distribution systems. Applications and Science of Computational Intelligence IV, 4390, 142–149.
Feinberg, E. A., & Shwartz, A. (2012). Handbook of Markov decision processes: Methods and applications.

Berlin: Springer.
Fracasso, P., Barnes, F., & Costa, A. (2014). Optimized control for water utilities. Procedia Engineering, 70,

678–687.
Glynn, P. W., & Iglehart, D. L. (1989). Importance sampling for stochastic simulations.Management Science,

35(11), 1367–1392.
Helvik, B. E., & Wittner, O. (2001). Using the cross-entropy method to guide/govern mobile agents path

finding in networks. In International Workshop on Mobile Agents for Telecommunication Applications
(pp. 255–268). Springer.

Higham, N. J. (1994). A survey of componentwise perturbation theory in numerical linear algebra. In W.
Gautschi (Ed.), Mathematics of computation 1943–1993: A half century of computational mathematics

123

1010 Mach Learn (2018) 107:969–1011

(Proceedings of Symposia in Applied Mathematics) (Vol. 48, pp. 49–77). Providence, RI: American
Mathematical Society.

Hu, J., Fu, M. C., & Marcus, S. I. (2007). A model reference adaptive search method for global optimization.
Operations Research, 55(3), 549–568.

Hu, J., Hu, P., & Chang, H. S. (2012). A stochastic approximation framework for a class of randomized
optimization algorithms. IEEE Transactions on Automatic Control, 57(1), 165–178.

Ikonen, E., & Bene, J. (2011). Scheduling and disturbance control of a water distribution network. IFAC
Proceedings Volumes, 44(1), 7138–7143.

Joseph, A. G., & Bhatnagar, S. (2016a). A randomized algorithm for continuous optimization. In Winter
simulation conference, WSC 2016, Washington, DC, USA, December 11–14 (pp. 907–918).

Joseph, A. G., & Bhatnagar, S. (2016b). A cross entropy based stochastic approximation algorithm for rein-
forcement learning with linear function approximation. CoRR abs/1207.0016.

Joseph, A. G., & Bhatnagar, S. (2016c). Revisiting the cross entropy method with applications in stochastic
global optimization and reinforcement learning. Frontiers in Artificial Intelligence and Applications,
285(ECAI 2016), 1026–1034. https://doi.org/10.3233/978-1-61499-672-9-1026.

Keith, J., & Kroese, D. P. (2002). Rare event simulation and combinatorial optimization using cross entropy:
Sequence alignment by rare event simulation. InProceedings of the 34th conference onwinter simulation:
Exploring new frontiers, winter simulation conference (pp. 320–327).

Koller, D., & Parr, R. (2000). Policy iteration for factored MDPs. In Proceedings of the sixteenth conference
on uncertainty in artificial intelligence (pp. 326–334). Morgan Kaufmann Publishers Inc.

Konda, V. R., & Tsitsiklis, J. N. (2003). Actor-critic algorithms. SIAM journal on Control and Optimization,
42(4), 1143–1166.

Kroese, D. P., Porotsky, S., & Rubinstein, R. Y. (2006). The cross-entropy method for continuous multi-
extremal optimization. Methodology and Computing in Applied Probability, 8(3), 383–407.

Kumar, P., & Lin, W. (1982). Optimal adaptive controllers for unknown Markov chains. IEEE Transactions
on Automatic Control, 27(4), 765–774.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning Research,
4, 1107–1149.

Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations underlying arbitration between
model-based and model-free learning. Neuron, 81(3), 687–699.

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010). Toward off-policy learning control with
function approximation. InProceedings of the 27th international conference onmachine learning (ICML)
(pp. 719–726).

Mannor, S., Rubinstein, R. Y., &Gat, Y.(2003). The cross entropymethod for fast policy search. InProceedings
of the 20th International Conference on Machine Learning (ICML) (pp. 512–519).

Menache, I.,Mannor, S., &Shimkin, N. (2005). Basis function adaptation in temporal difference reinforcement
learning. Annals of Operations Research, 134(1), 215–238.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less data and less
time. Machine Learning, 13(1), 103–130.

Mühlenbein, H., & Paass, G. (1996). From recombination of genes to the estimation of distributions i. Binary
parameters. In International conference on parallel problem solving from nature (pp. 178–187). Springer.

O’Doherty, J. P., Lee, S. W., & McNamee, D. (2015). The structure of reinforcement-learning mechanisms in
the human brain. Current Opinion in Behavioral Sciences, 1, 94–100.

Polyak, B. T., & Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30(4), 838–855.

Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic programming. New York:
Wiley.

Rubinstein, R. (1999). The cross-entropymethod for combinatorial and continuous optimization.Methodology
and Computing in Applied Probability, 1(2), 127–190.

Rubinstein, R. Y. (2002). Cross-entropy and rare events for maximal cut and partition problems. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 12(1), 27–53.

Rubinstein, R. Y., & Kroese, D. P. (2013). The cross-entropy method: A unified approach to combinatorial
optimization, Monte-Carlo simulation and machine learning. Berlin: Springer.

Sato, M., Abe, K., & Takeda, H. (1982). Learning control of finite Markov chains with unknown transition
probabilities. IEEE Transactions on Automatic Control, 27(2), 502–505.

Sato, M., Abe, K., & Takeda, H. (1988). Learning control of finite Markov chains with an explicit trade-off
between estimation and control. IEEE Transactions on Systems, Man, and Cybernetics, 18(5), 677–684.

Singh, S. P.,&Sutton,R. S. (1996).Reinforcement learningwith replacing eligibility traces.MachineLearning,
22(1–3), 123–158.

123

https://doi.org/10.3233/978-1-61499-672-9-1026

Mach Learn (2018) 107:969–1011 1011

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approx-
imation. IEEE Transactions on Automatic Control, 37(3), 332–341.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1),
9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.
Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of temporal-difference learning with function approxima-

tion. IEEE Transactions on Automatic Control, 42(5), 674–690.
Varga, R. S. (1976). On diagonal dominance arguments for bounding ‖A−1‖∞. Linear Algebra and its

Applications, 14(3), 211–217.
Wang, B., &Enright,W. (2013). Parameter estimation for ODEs using a cross-entropy approach. SIAMJournal

on Scientific Computing, 35(6), A2718–A2737.
Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. Thesis, University of Cambridge England.
Xue, J. (1997).Anote on entrywise perturbation theory forMarkov chains.LinearAlgebra and its Applications,

260, 209–213.
Yu,H. (2012). Least squares temporal differencemethods: An analysis under general conditions. SIAMJournal

on Control and Optimization, 50(6), 3310–3343.
Yu, H. (2015). On convergence of emphatic temporal-difference learning. In Proceedings of the conference

on computational learning theory.
Zhou, E., Bhatnagar, S., Chen, X. (2014). Simulation optimization via gradient-based stochastic search. In

Proceedings of the 2014 winter simulation conference (pp. 3869–3879). IEEE Press.
Zlochin, M., Birattari, M., Meuleau, N., & Dorigo, M. (2004). Model-based search for combinatorial opti-

mization: A critical survey. Annals of Operations Research, 131(1–4), 373–395.

123

	An incremental off-policy search in a model-free Markov decision process using a single sample path
	Abstract
	1 Summary of notation
	2 Introduction and preliminaries
	2.1 Model free algorithms
	2.2 Linear function approximation (LFA) methods for model free Markov decision process
	2.3 Off-policy prediction using LFA
	2.4 The control problem of interest
	2.5 Motivation

	3 Proposed algorithm
	3.1 Choice of the behaviour policy
	3.2 Estimation of the objective function
	3.3 Stochastic approximation version of Gaussian cross entropy method and its application to the control problem
	3.4 Convergence analysis of Algorithm 2

	4 Experimental illustrations
	4.1 Experiment 1: chain walk
	4.2 Experiment 2: linearized cart-pole balancing (dann2014policy)
	4.3 Experiment 3: 5-link actuated pendulum balancing (dann2014policy)
	4.4 Experiment 4: random MDP
	4.5 Exegesis of the experiments
	4.6 Data efficiency

	5 Conclusion
	References

