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Abstract Statistical dependencies observed in real-world phenomena often change drasti-
cally with time. Graphical dependency models, such as the Markov networks (MNs), must
deal with this temporal heterogeneity in order to drawmeaningful conclusions about the tran-
sient nature of the target phenomena. However, in practice, the estimation of time-varying
dependency graphs can be inefficient due to the potentially large number of parameters of
interest. To overcome this problem, we propose such a novel approach to learning time-
varying MNs that effectively reduces the number of parameters by constraining the rank of
the parameter matrix. The underlying idea is that the effective dimensionality of the parame-
ter space is relatively low in many realistic situations. Temporal smoothness and sparsity of
the network are also incorporated as in previous studies. The proposed method is formulated
as a convex minimization of a smoothed empirical loss with both the �1- and the nuclear-
norm regularization terms. This non-smooth optimization problem is numerically solved by
the alternating direction method of multipliers. We take the Ising model as a fundamental
example of an MN, and we show in several simulation studies that the rank-reducing effect
from the nuclear norm can improve the estimation performance of time-varying dependency
graphs. We also demonstrate the utility of the method for analyzing real-world datasets for
improving the interpretability and predictability of the obtained networks.
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1 Introduction

The sparseMarkovNetwork (MN) (Meinshausen et al. 2006; Ravikumar et al. 2010; Lee et al.
2006; Friedman et al. 2008; Banerjee et al. 2008; Höfling and Tibshirani 2009) is a powerful
model for analyzing statistical dependency in multivariate data. Like the ordinary MN, it
describes conditional (in)dependences between random variables of interest in terms of an
undirected graph, quantified bymodel parameters associated with the graph. A sparseMN, in
particular, learns the graph structure and parameters using sparse estimation techniques, such
as the �1-norm regularization (Tibshirani 1996; Chen et al. 1998), formulated as a convex
optimization that can be solved efficiently. This computational efficiency of the sparse MN
is a great practical advantage, when compared to classical methods based on combinatorial
optimization of the graph structure.

A challenging issue with the sparse MNs arises when attempting to deal with the depen-
dency graph that is potentially heterogeneous in a given dataset. In particular, statistical
dependency observed in dynamical phenomena often changes drastically with time. The
dependency graphs varying over time then must be considered in order to analyze any tran-
sient nature of the target phenomena. The conventional “static” case of the sparse MNs is
not useful for this purpose, as it assumes that the dependency graph is consistent for all time
points.

However, estimating time-varying dependency graphs is rather difficult due to the poten-
tially large number of parameters of interest: the number of edges or their weights grows
quadratically with the number of variables and linearly with the sample size (i.e., the number
of time points). This high degree of freedom of the model typically degrades the parame-
ter estimation due to relative insufficiency of data. Previous studies on the time-varying
MNs (Song et al. 2009; Kolar et al. 2010; Zhou et al. 2010; Kolar et al. 2009) have addressed
this issue, by assuming that no substantial changes occur in the network over a relatively
short time period, which is likely to be reasonable in many cases.

In the present study,1 we propose a new framework for learning time-varyingMNs, focus-
ing on particular situations where the parameter matrix of the time-varying MN can be
reasonably assumed to be of relatively low rank according to some prior knowledge. As illus-
trated in Fig. 1, every instance of the dependency graph of a time-varying MN is described
by a single column of the parameter matrix �. The low-rank assumption of � equivalently
means that the columns and the rows of � are constrained to low-dimensional subspaces.
Intuitively, the basis vectors in the column and row subspaces correspond to the patterns in
the dependency graph and to the time courses of these patterns’ coefficients, respectively.
The low rank then implies that the number of these patterns is relatively small. Although, in
reality, the true � may also contain unstructured noise and thus may not be exactly rank-
deficient, we can still expect that the true � is well approximated by a low rank matrix in
many situations.

We should emphasize here that we do not seek a method that works in every situation or
for every dataset. Rather, we focus on improving the estimation in specific situations where
the low-rank assumption is reasonable. However, we still expect the method to have a wide
range of applicability coveringmany practical situations. An example of this type of situation,
suggested directly by the visualization in Fig. 1, is a network with a community (or cluster)
structure (Newman 2006). The low-rank property will emerge if the overall changes in the

1 A preliminary version of this paper appeared in a conference proceeding (Hirayama et al. 2010), which
introduced the basic algorithm and provided a simple simulation result (included as Sect. 5.1 in this extended
version).
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Fig. 1 Illustration of the basic idea. In a time-varying Markov Network, the nth instance of (undirected)
dependency graph (n = 1, 2, . . . , N ) is represented by the nth column of the parameter matrix �, depicted as
a block on the left-hand side of the equality. Each element of these column vectors corresponds, for example,
to an edge weight between two particular nodes (out of D nodes), which describes a pairwise interaction
between two random variables. Here, in particular, we assume that the parameter matrix has a relatively low
rank, implicitly decomposed into the twomatrices; i.e., the dependency patterns and the coefficient time-series,
depicted as the first and second blocks on the right-hand side, respectively

network are dominated by dynamic activities of major communities that produce specific
dependency patterns in the observed data. Another important situation is regime switching,
a well-known concept in time series analysis in which the network visits a limited number
of regimes, possibly many times. Actually, the idea of the low rank parameter matrix is a
generalization of regime switching because now each regime is not only selected from a finite
set of dependency patterns but each may also be any linear combination of them.

Here, we focus on the time-varying Ising model (Song et al. 2009; Kolar et al. 2010),
a fundamental instance of time-varying MNs, and extend its basic framework of sparse
estimation (Song et al. 2009; Kolar et al. 2010), formulated as such to employ �1-norm
regularization and kernel smoothing. In particular, we introduce the nuclear (trace) norm
regularization (Fazel et al. 2004; Srebro et al. 2005) into this basic framework, which has
been widely used for learning low-rank matrices in recent years. The proposed sparse and
low-rank estimation framework of time-varying MNs can still be formulated as a convex
optimization and thus solved efficiently. We also introduce an optimization algorithm based
on the alternating direction method of multipliers (ADMM) (Bertsekas and Tsitsiklis 1989;
Eckstein and Bertsekas 1992; Boyd et al. 2011), which solves the problem by effectively
splitting the two non-smooth regularization terms.

The remainder of this paper is organized as follows. We first briefly introduce the Ising
model and the sparse estimation method for this model, using the pseudolikelihood (Besag
1975, 1977) (Sect. 2).We then propose our newmethod for learning time-varyingMNs based
on the low-rank assumption (Sect. 3), and we briefly summarize related studies (Sect. 4).
We also present simulation results using several artificially-generated datasets (Sect. 5), and
demonstrate the applicability of the proposed method to a real-world problem (Sect. 6).
Finally, we discuss the results and open issues (Sect. 7).

2 Preliminaries

In this section, we introduce the Isingmodel and its sparse estimation using pseudolikelihood.
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2.1 Ising model

AnMNrepresents conditional independences between randomvariables bymeans of an undi-
rected graph,where the parameters associatedwith cliques (i.e., complete subgraphs) quantify
the full probability distribution of the random variables (Pearl 1988; Lauritzen 1996). The
Isingmodel is one of the simplest examples of anMN, having only parameters associatedwith
nodes and edges so that it represents, at most, pairwise interactions between binary variables.

Let y = (y1, y2, . . . , yD)� be a D-dimensional binary random vector that takes a value
in {−1, 1}D . The probability distribution of y under the Ising model, parameterized by a
real-valued vector θ , is then defined by

p( y; θ) = 1

Z(θ)
exp

⎛
⎝∑

i< j

θi j yi y j +
∑
i

θi yi

⎞
⎠ , (1)

where the first summation in the exponent is taken over all pairs (i, j) that satisfy i < j and

the partition function, Z(θ) = ∑
y exp

(∑
i< j θi j yi y j + ∑

i θi yi
)
, simply makes the total

probability equal to unity. The parameter vector θ contains the C (= D(D + 1)/2) network
parameters, θi ’s and θi j ’s, in a certain fixed order. Here, we refer to θi ’s and θi j ’s as node-wise
and edge-wise network parameters (or “edge weights”), respectively. For convenience, we
also introduce auxiliary variables θ j i for any i < j , and use θi j and θ j i interchangeably by
implicitly assuming θ j i = θi j .

The undirected graph associated with this model has D nodes, each of which corresponds
to a single variable yi (i = 1, 2, . . . , D). The graph has an undirected edge (i, j) between the
i th and j th nodes if θi j is non-zero, and otherwise has no edge. If the two nodes are connected
(disconnected), then the variables yi and y j are conditionally dependent (independent), given
their Markov blanket (i.e., all other variables that have direct connections to either or both of
these variables). The dependence structure of the constituent binary variables is then specified
by the graph structure (i.e., which edge-wise parameters are zero and which are non-zero).

2.2 Estimation by maximum pseudolikelihood

In the Ising model, as in many other MNs, computing the likelihood or its gradient is often
difficult due to the intractability of the partition function Z(θ), unless D is sufficiently small.
One approach for overcoming the intractability of likelihood is to use the pseudolikeli-
hood (Besag 1975, 1977; Hyvärinen 2006; Koller and Friedman 2009); many variants are
in popular use in the field of machine learning (Ravikumar et al. 2010; Rocha et al. 2008;
Höfling and Tibshirani 2009; Guo et al. 2010).

The pseudolikelihood for a parametric model p( y; θ), given a single datum y, is generally
defined as a product of conditional likelihoods; i.e.,

∏D
i=1 p(yi | y\i ; θ). Here, y\i denotes all

the variables of interest other than yi . The corresponding loss function l( y, θ) is introduced
as the negative logarithm of the pseudolikelihood, which is given specifically for the Ising
model by

l( y, θ) = −
D∑
i=1

log p(yi | y\i ; θ) =
D∑
i=1

{log cosh(ξi ) − yiξi + log 2} , (2)

where ξi := ∑
j : j �=i θi j y j + θi and cosh(x) = (ex + e−x )/2. Its partial derivatives needed

for numerical optimization are given by
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∂

∂θi j
l( y, θ) = tanh(ξi )y j + yi tanh(ξ j ) − 2yi y j , for any i < j, (3a)

∂

∂θi
l( y, θ) = tanh(ξi ) − yi , for any i, (3b)

where tanh(x) = (ex − e−x )/(ex + e−x ). The minimization of the empirical loss,∑N
n=1 l( y

n, θ), then yields the maximum pseudolikelihood estimator of θ , which has been
shown to be consistent (Hyvärinen 2006). Note that taking the second derivatives readily
reveals that this loss function l is convex with respect to θ .

2.3 Sparse estimation using �1-norm regularization

Determination of the graph structure can be facilitated by accommodating sparse estimation
based on the �1-norm regularization (Meinshausen et al. 2006; Ravikumar et al. 2010; Lee
et al. 2006; Friedman et al. 2008; Banerjee et al. 2008; Höfling and Tibshirani 2009) with
the maximum pseudolikelihood. In a continuous optimization of the parameter vector θ , the
additional regularization term encourages the optimal θ to have many entries that are exactly
zero (i.e., effectively determining the graph structure).

The loss function introduced above now formulates the sparse estimation of the Ising
model as a convex minimization problem, such that

minimize
θ

1

N

N∑
n=1

l( yn, θ) + ‖λ � θ‖1, (4)

where ‖ · ‖1 denotes the �1-norm (i.e., the sum of all absolute values of the elements), λ

is a vector of regularization coefficients, and � denotes element-wise multiplication. The
objective function is convex, since both the loss function l and the �1-norm are convex with
respect to θ and any sum of convex functions is again convex (Boyd andVandenberghe 2004).

The second term of Eq. (4) can also be written as

‖λ � θ‖1 =
∑
i< j

λi j |θi j | +
∑
i

λi |θi |. (5)

We typically use λi = 0 for any i , because only the edge-wise parameters are relevant for
making the graph structure sparse. In addition, for simplicity, we often use a common λ for
any i < j .

3 Proposed method

The time-varying MN (Song et al. 2009; Ahmed and Xing 2009; Kolar et al. 2010; Zhou
et al. 2010) extends the sparse MN to incorporate potential heterogeneity of the dependency
graph over time. It assumes that N successive observations or measurements y1, y2, . . . , yN

are generated independently from the MNs p( yn; θn) with different parameter vectors θn

at each time step. The corresponding time-varying dependency graphs are then associated
with the parameter matrix � = (θ1, θ2, . . . , θN ) ∈ R

C×N , and each column specifies an
instance of the MN. The above sparse estimation framework now requires the incorporation
of additional assumptions about � other than sparsity; otherwise, each instance of the MN
p( yn; θn) is estimated only with a single datum yn .

In this section, we extend a previous approach (Song et al. 2009; Zhou et al. 2010; Kolar
et al. 2010) by incorporating an additional assumption whereby the parameter matrix �
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Fig. 2 Smoothing kernels: box
(Eq. 7) and Epanechnikov (Eq. 8)
with the kernel widths of w = 10,
20, and 50
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has a relatively low rank. Based on this assumption, we formulate the sparse and low-rank
estimation of the time-varying MN as a convex optimization problem; in particular, we use
joint regularization by both the �1-norm for sparsity and the nuclear norm for rank reduction.
We then introduce an algorithm for solving this problem based on the ADMM.

3.1 Previous kernel smoothing method

Previous studies assumed that temporally adjacent θn’s are similar to each other. Here, we
extend the existing approach based on kernel smoothing (Song et al. 2009; Zhou et al.
2010; Kolar et al. 2010). According to this approach, parameters are estimated using locally
weighted averages of the loss function based on kernel smoothing, whichmakes the estimates
temporally smooth. In the context of the present study, the smoothed version of empirical
loss, averaged over all instances, is given by2

fw(�) := 1

N

N∑
n=1

N∑
m=1

ϕw(m − n)l( ym, θn), (6)

for any �. In Eq. (6), l is the loss function of Eq. (2), and ϕw is the smoothing kernel [i.e.,
a nonnegative symmetric function centered at zero (Loader 1999)], depending on the kernel
width w. Examples of the smoothing kernels are the box kernel,

ϕw(z) =
{
1/(2w + 1) |z| ≤ w

0 otherwise
, (7)

and the Epanechnikov kernel,

ϕw(z) =
{
3(1 − (z/w)2)/(4w) |z| < w

0 otherwise
. (8)

Figure 2 illustrates these smoothing kernels. The kernel width determines the smoothness
and should be carefully selected, whereas the precise form of the kernel function is usually
not very important (Loader 1999).

2 Here, we assume that yn are sampled regularly in time. For non-regular sampling intervals, the smoothing
kernel can be defined from the difference between the time stamps of two data points ym and yn , as in Kolar
et al. (2010).
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3.2 Proposed sparse and low-rank estimation of time-varying MN

We now focus on situations where the parameter matrix � can be reasonably restricted to
have relatively low rank according to any prior knowledge. This further reduces the effective
degree of freedom associated with the large number of parameters in the time-varying MN,
even when the temporal smoothness may not be very effective by its own.

Every instance θn of the parameter vectors is now implicitly represented in terms of K
basis vectors (dependency patterns) ak and their coefficients snk :

θn =
K∑

k=1

snk a
k . (9)

This also implies that the matrix � can be decomposed as � = AS with A =
(a1, a2, . . . , aK ) and S = (s1, s2, . . . , sK )�, as depicted in Fig. 1. We assume K <

min{C, N } so that the matrix � is rank-deficient. Note that, in reality, true � might not
be strictly rank-deficient but is instead approximately of low rank with the singular values
approaching to zero relatively quickly; Eq. (9) then can be seen as an approximation of the
true system.

The underlying idea is that networks in the real world often exhibit a limited number
of communities or regimes, as already stated in Sect. 1. Intuitively, each ak in Eq. (9) may
represent a specific dependency graph that corresponds to a community or a regime in the
network. Equation (9) actually represents a generalized form of the regime switching because
each network θn now can be any linear combination of the dependency patterns.

Here, we propose to extend the previous kernel smoothing method into that with the low-
rank assumption. This could be achieved byminimizing the kernel-weighted empirical loss of
Eq. (6) with respect to A and S under the low-rank decomposition� = AS described above.
However, joint minimization of the two decomposition terms is not a convex problem and
thus cannot avoid the issue of local minima, which may limit its applicability in practice. We
thus adopt an alternative approach which formulates the problem as a convex optimization
directly on � without explicitly decomposing it.

The proposed sparse and low-rank estimation of � is now formulated as

minimize
�

fw(�) + ‖� � �‖1 + η‖�‖∗, (10)

where the two regularization terms are introduced in the objective function, as well as the
kernel-weighted empirical loss. Here, the �1-norm ‖ · ‖1 is of a long vector that concatenates
the columns. The nuclear (or trace) norm (Fazel et al. 2004; Srebro et al. 2005) ‖ · ‖∗ is
defined as

‖�‖∗ =
∑
k

σk(�), (11)

where σk(�) ≥ 0 is the kth singular value of �. The nuclear norm therefore means the
�1-norm of the vector of singular values, and its minimization introduces sparsity on the
singular values, encouraging the matrix to have a low rank (Fazel et al. 2004; Srebro et al.
2005). The two regularization coefficients (i.e., the non-negative matrix � and the positive
scalar η) control the strengths of the �1- and the nuclear-norm regularizations, respectively.
For simplicity, we set � = (λ,λ, . . . ,λ) with a common λ in every column. Note that the
problem (10) is convex because all three terms in the objective function are convex (Boyd
and Vandenberghe 2004).

123



342 Mach Learn (2016) 105:335–366

In this formulation, the rank reduction by the nuclear norm introduces similarity between
any columns θn or between any rows, as it is invariant under permutation of columns or rows.
The kernel smoothing also introduces a similarity, but only between temporally-adjacent
columns. The nuclear norm is thus expected to be particularly useful when some networks
located at distant time points (relative to the specified kernel width) are potentially similar,
or when the weights of some edges potentially have similar time courses. Note that the
nuclear norm by itself never encourages any two networks θn1 and θn2 to differ. If the loss
terms l(·, θn1) and l(·, θn2) actually promote differences in the networks, the nuclear norm
oppositely encourages them to be similar, cooperatively with kernel smoothing.

3.3 Estimation algorithm by ADMM

The minimization problem (10) is convex and unconstrained, but the objective function is
non-smooth due to the regularization terms. Hence, we cannot directly apply standard uncon-
strained optimization techniques. In this subsection, we derive a simple first-order algorithm
to solve this problem (10) based on the ADMM (Bertsekas and Tsitsiklis 1989; Eckstein and
Bertsekas 1992; Boyd et al. 2011), which is a variant of the augmented Lagrangian (AL)
method. The standard ALmethod has been effectively used to solve problems with either the
�1-norm regularization (e.g., in Tomioka and Sugiyama 2009) or the nuclear-norm regular-
ization (e.g., in Tomioka et al. 20103), but the joint use of the �1 and nuclear norms prevents
an effective application of the standard AL. This motivated us to use the ADMM.

In the following sections, we first introduce the ADMM in a general form and then apply
the ADMM to an equality-constrained problem that is equivalent to the problem considered
herein (10).

3.3.1 General framework

Consider the following optimization problem that includes two convex functions φ and γ :

minimize φ(x) + γ (z)
subject to Jx = z

, (12)

with respect to real-valued vectors x and z, where J is a matrix of appropriate size that
represents linear constraints. To solve this problem, the ADMM iterates the following three
steps from any initial conditions x(0), z(0), r(0) until a given convergence criterion is satisfied:

x(t) = argmin
x

{
φ(x) + 〈r(t−1), Jx〉 + α

2

∥∥Jx − z(t−1)
∥∥2
2

}
, (13a)

z(t) = argmin
z

{
γ (z) − 〈r(t−1), z〉 + α

2

∥∥Jx(t) − z
∥∥2
2

}
, (13b)

r(t) = r(t−1) + α
(
Jx(t) − z(t)

)
, (13c)

where 〈·, ·〉 and ‖·‖2 are the standard inner product and the �2-norm, andα > 0 is any positive
constant. The superscript (t) denotes the iteration number. Each single iteration step of the
ADMM can be seen as a single cycle in an alternating minimization of the AL (Bertsekas
and Tsitsiklis 1989; Nocedal and Wright 1999)

Lα(x, z, r) = φ(x) + γ (z) + 〈r, Jx − z〉 + α

2
‖Jx − z‖22 , (14)

3 Note that these studies applied the standard AL to the Fenchel dual of the original �1- or nuclear-regularized
problems, rather than directly to the original problems, which is also possible.
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with respect to primal vectors x and z, followed by the update of the dual vector r . Note that
in the standard AL method, the primal vectors x and z are simultaneously updated to jointly
minimize Lα with the dual vector r fixed, instead of updating them by Eqs. (13a) and (13b)
only once.

In the ADMM, the constant α can be chosen rather freely, as in the standard AL method.
This is in contrast to the penalty method (Nocedal and Wright 1999), in which the strength
of the penalty should be sufficiently large, which can cause numerical instability.

3.3.2 Derivation for the problem of the present study

We apply the ADMM by reformulating the problem (10) in a similar manner as in Bertsekas
and Tsitsiklis (1989), Figueiredo and Bioucas-Dias (2010) as follows. This reformulation
allows us to deal separately with the loss term and the two different regularization terms,
leading to a simple iterative algorithm summarized in Algorithm 1.

We first introduce auxiliary variables Z1, Z2, and Z3 in R
C×N and define

γ (Z) = fw(Z1) + ‖� � Z2‖1 + η‖Z3‖∗, (15)

with Z = (Z�
1 , Z�

2 , Z�
3 )�. We can then rewrite the original problem (10) as

minimize
X,Z

φ(X) + γ (Z)

subject to JX = Z
, (16)

where φ(X) ≡ 0, J = (IC , IC , IC )� and IC is a C ×C unit matrix. Note that the equality
constraint implies that X = Zq for any q . The two problems (10) and (16) are equivalent in
the sense that, given the optimal solutions�
 for (10) and (X
, Z
) for (16),�
 = X
 = Z


q
holds for any q .

Therefore, with the dual variables M = (M�
1 , M�

2 , M�
3 )�, the ADMM procedure can

be applied in a straightforward manner to this problem. The first step, Eq. (13a), is now a
quadratic minimization and thus has a closed-form solution:

X(t) = 1

3

(
Z(t−1)
1 + Z(t−1)

2 + Z(t−1)
3

)
− 1

3α

(
M(t−1)

1 + M(t−1)
2 + M(t−1)

3

)
. (17)

The second step, Eq. (13b), can be separately written as

Z(t)
1 = argmin

Z1

{
fw(Z1) + α

2
‖Z1 − G(t)

1 ‖2F
}

, (18a)

Z(t)
2 = argmin

Z2

{
‖� � Z2‖1 + α

2
‖Z2 − G(t)

2 ‖2F
}

, (18b)

Z(t)
3 = argmin

Z3

{
η‖Z3‖∗ + α

2
‖Z3 − G(t)

3 ‖2F
}

, (18c)

where G(t)
q = X(t) +α−1M(t−1)

q (q = 1, 2, 3) and ‖ · ‖F is the Frobenius norm. We can then

obtain Z(t)
1 numerically using any standard unconstrained optimization technique, and Z(t)

2

and Z(t)
3 can be obtained as follows:

Z(t)
2 = Soft

(
X (t) + α−1M(t−1)

2 ,�/α
)

, (19a)

Z(t)
3 = Svt

(
X (t) + α−1M(t−1)

3 , η/α
)

. (19b)

123



344 Mach Learn (2016) 105:335–366

Here, Soft(·, ·) is an element-wise application of the soft-thresholding (Fu 1998; Hyvärinen
1999; Daubechies et al. 2004) operator, soft(a, b) = sign(a)max(|a| − b, 0), and Svt(·, ·)
denotes the singular value thresholding (Cai et al. 2010; Toh and Yun 2010) operator defined
by

Svt(A, b) = Udiag(Soft(σ , b))V�, (20)

where A = Udiag(σ )V� is the singular value decomposition of A, and σ is the vector of
singular values. Finally, the dual update step, Eq. (13c), is given separately for Mq (q =
1, 2, 3) by M(t)

q = M(t−1)
q + α(X (t) − Z(t)

q ).

3.3.3 Stopping criterion and final estimates of �

The procedure described in Sect. 3.3.2 converges to the optimal solution under certain con-
ditions on the accuracies of the two inner minimization problems denoted by Eqs. (13a) and
(13b) (Eckstein and Bertsekas 1992). Recent theoretical analysis on convergence behavior
of ADMM can also be found, for example, in He and Yuan (2012). Although a detailed the-
oretical analysis of the proposed method is beyond the scope of our current study, the basic
characteristics can be understood from these general results. In the simulation experiments
in Sect. 5, there was no run that did not converge, which has empirically proved that the
proposed method converges in ordinary situations.

A criterion for stopping an ADMM algorithm was presented in Boyd et al. (2011): The
algorithm terminates after the t th iteration if the following two conditions are satisfied.

δ(t)
p := ∥∥JX(t) − Z(t)

∥∥
F ≤ ε(t)

p , δ
(t)
d := α

∥∥J�(Z(t) − Z(t−1))
∥∥
F ≤ ε

(t)
d . (21)

Here, the tolerances ε
(t)
p and ε

(t)
d are practically chosen by

ε(t)
p = √

3CNεabs + εrel max{‖JX (t)‖F, ‖Z(t)‖F}, (22a)

ε
(t)
d = √

CNεabs + εrel‖J�M(t)‖F, (22b)

where εabs and εrel are the absolute and relative tolerances, respectively, set at small positive
numbers, e.g., (εabs, εrel) = (10−5, 10−4) (Boyd et al. 2011). In addition, slow convergence
is avoided by adjusting α in each iteration, such that α(t+1) = 2α(t), 0.5α(t) and α(t), if
δ
(t)
p > 10δ(t)

d , δ(t)
d > 10δ(t)

p and otherwise, respectively.
After the ADMM algorithm has converged, we obtain the primal solutions, X̂, Ẑ1, Ẑ2,

and Ẑ3. Although in theory, these solutions should be equal to each other and also to �
,
in practice, these solutions are not exactly the same because we stop the algorithm when the
equality constraints hold only approximately. In the experiments in Sect. 5, we define the final
estimate �̂ by X̂ , whereas each element of �̂ is explicitly set at zero if the corresponding
element of Ẑ2 is zero. The estimated graph structure can finally be given by whether each
element of �̂ is zero or non-zero.

4 Related studies

The proposed method particularly assumes η > 0 in order to explicitly include the nuclear
norm in the objective function. If we set η = 0, the optimization problem of Eq. (10)
almost reduces to the one solved by KELLER (Song et al. 2009; Kolar et al. 2010) (kernel-
reweighted logistic regression); KELLER minimizes the same objective function but with a
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Algorithm 1: The ADMM for the problem (16) [equivalent to (10)]
Given: w (kernel width), λ (�1-norm coefficient) and η (nuclear-norm coefficient)
X ← 0; Z1 ← 0; Z2 ← 0; Z3 ← 0; M1 ← 0; M2 ← 0; M3 ← 0;
while a specific convergence criterion is not satisfied, do

X ← 1

3
(Z1 + Z2 + Z3) − 1

3α
(M1 + M2 + M3)

Z1 ← argmin
Z1

{
fw(Z1) + α

2
‖Z1 − (X + α−1M1)‖2F

}

Z2 ← Soft
(
X + α−1M2, �/α

)

Z3 ← Svt
(
X + α−1M3, η/α

)

Mq ← Mq + α
(
X − Zq

)
for q = 1, 2, 3

end

slightly relaxed constraint. To see this, suppose that λi = 0 and λi j = λ for any i < j , as well
as η = 0. It then follows from Eqs. (2) and (6) that Eq. (10) has an equivalent optimization
problem, given by

minimize
∑N

n=1
∑D

i=1

{
f inw (θni ) + (λ/2)

∑
j : j �=i |θni j |

}
,

subject to θni j = θnji for any i < j and any n.
(23)

Here, the optimization variables include both θi j and θ j i for any i < j , with the equality
constraints explicitly introduced. The smoothed empirical loss fw in Eq. (6) is decomposed
into the ND terms, given by

f inw (θni ) := 1

N

N∑
m=1

ϕw(m − n){− log p(ymi | ym\i ; θni )}, (24)

where θni := {θni }∪{θni j : j �= i} is the parameter subset on which the conditional probability
actually depends. The problem (23) now can be seen as jointly solving the ND different
�1-regularized logistic regression problems based on the weighted loss, while every set of D
problems cannot be further decomposed due to the equality constraints. On the other hand,
KELLER relaxes the equality constraints, so that the ND problems can be solved separately.
However, it requires a post-processing step to resolve the inconsistency between θ̂i j and θ̂ j i .

A large body of literature describes regime switching or statistical change-point detection,
with a motivation closely related to that of the present study. For example, Carvalho andWest
(2007) studied Gaussian covariances in their dynamic matrix-variate graphical modeling
framework. Yoshida et al. (2005) estimated time-dependent gene networks from microarray
data by dynamic linear models with Markov switching. The low-rank assumption on �

actually generalizes the concept of regime switching, and this assumption is likely valid in
change-point detection when the number of change-points are relatively small. Note that the
method proposed here has an advantage in its computational efficiency due to the convexity
of the optimization problem.

We introduced a new idea of using low-rank regularization in the specific context of
the time-varying MNs. A closely-related idea has recently been presented in Bachmann
and Precup (2012), which used a low-rank decomposition to improve the estimation of the
time-varying Gaussian Graphical Model (GGM), the fundamental MN for real-valued data.
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This explicitly decomposed the GGM parameters into the fixed patterns and their time-
varying coefficients, as in Eq. (9), and directly estimated both of them. It solved a non-convex
optimization problem which would suffer from the issue of local optima; the convex nature
of our method can be beneficial in practice, while a detailed comparison between these two
approaches is left for a future study.

Joint �1- and nuclear-norm regularization has been studied recently in e.g., Doan and
Vavasis (2013), Richard et al. (2012), Mei et al. (2012), Zhou et al. (2013), independently
from our preliminary work (Hirayama et al. 2010). However, their target applications were
quite different from ours: finding rank-one submatrices (Doan and Vavasis 2013), multi-task
learning (Mei et al. 2012), matrix completion (Richard et al. 2012), and estimating block or
community structures in a single, static network (Zhou et al. 2013). Algorithms similar to our
ADMM algorithm were developed in Richard et al. (2012), Zhou et al. (2013). In particular,
Zhou et al. (2013) applied the joint �1- and nuclear-norm regularization, using a slightly
different form of ADMM, to enforce a point-process network model (multi-dimensional
Hawkes model) to have a static community structure. Although technically very similar, the
underlying idea is quite different from ours. That is, they considered learning only a single
network at a time, assuming that its (weighted) adjacencymatrix is of low rank. In contrast, we
here consider learning many instances of time-varying networks simultaneously, assuming
that the entire parameter matrix � is of low rank but the adjacency matrix of each instance
(obtained from the corresponding column θn appropriately) is not necessarily of low rank.
The ideas are thus mutually orthogonal and they could even be combined in principle.

5 Simulation experiments

We conducted several simulation studies in order to validate the effect of the rank reduction
by nuclear-norm regularization in estimating time-varying dependency graphs. In all these
experiments, the regularization coefficient for the �1-norm was set such that λi = 0 and
λi j = λ for all i < j (see Sect. 2.3). The minimization in the first step of the ADMM,
Eq. (18a), was numerically solved by a quasi-Newton method.4

5.1 Simulation study I: Basic effects of rank reduction and kernel smoothing

First, we examined the effect of the nuclear-norm regularization in a simple simulation setting
corresponding to Fig. 1. The dataset consisted of a seven-dimensional (D = 7) binary time-
series of length 200 (N = 200). We sampled yn ∈ {−1, 1} at each time step from an Ising
model p( yn; θn) according to the joint probabilities directly calculated by Eq. (1); every
θn ∈ R

28 was created by

θn = sn1 a
1 + sn2 a

2 + sn3 a
3, (25)

with three basis vectors {a1, a2, a3} and their coefficients {sn1 , sn2 , sn3 }, so that every θn was
effectively constrained to be in a three-dimensional subspace, and the rank of � was at most
three.

The dependency graphs corresponding to the three vectors ak (k ∈ {1, 2, 3}) are shown
in Fig. 3. Specifically, for each k, we set an edge-wise parameter aki j at a positive constant
of 0.5 if the kth graph has an edge between the nodes i and j , or set it at zero otherwise; we
simply set all the node-wise parameters aki (i = 1, 2, . . . , D) at zero. Figure 3 also shows the

4 We used a Matlab implementation of a limited-memory BFGS presented by Schmidt (2005).
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Fig. 3 Simulation study I: three
graphs corresponding to the basis
vectors (left) and the time-series
of their coefficients (right)
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Fig. 4 Simulation study I: the
area under the ROC curve (AUC)
versus log10 η (η, which is the
regularization coefficient for the
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time-series of their coefficients, sn1 , s
n
2 , and sn3 , which switched between 0 or 1 periodically

with different cycle lengths.
We ran the proposed algorithm with every combination of the following values of the

tuning parameters (w, λ, η): w ∈ {2, 4, 6, 8}, λ from zero and positive values such that
log10 λ’s were regularly spaced by 0.05 in [−4,−2], and η from positive values such that
log10 η’s were regularly spaced by 0.05 in [−3,−1]. We used the box kernel for kernel
smoothing (see Fig. 2). We also ran a baseline algorithm with η = 0 for comparison, which
basically solves a problem equivalent to that of KELLER (Song et al. 2009; Kolar et al.
2010) as described in Sect. 4. In this experiment, the algorithm was terminated simply when
max{δ(t)

z , δ
(t)
m } ≤ ε (= 10−5) was achieved, as in Yuan (2012), where δ

(t)
z and δ

(t)
m are

the maximum absolute values of all of the elements in Z(t) − Z(t−1) and M(t) − M(t−1),
respectively. The constant α was initially set at 10−3, but in order to accelerate the final
convergence, it was multiplied by a factor of 1.5 at each iteration after reaching δ

(t)
m ≤ 0.8ε.

The evaluation was performed in a similar manner to that of binary classification. In other
words, as described in Sect. 3.3.3, each edge weight θ̂ni j according to the final estimate �̂was
examined to determine whether the weight was nonzero or exactly zero, corresponding to
edge existence or non-existence, respectively. Every such binary estimate was then compared
with the truth for all i < j and n. We quantified the performance by examining the area under
the ROC curve (AUC) for every choice of w and η, as shown in Fig. 4. This figure clearly
shows that for a wide range of η, the proposed method outperformed the previous method
without the nuclear-norm regularization (η = 0).
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Fig. 5 Simulation study I: estimation of graph structure improved by nuclear-norm regularization. The ROC
curves were plotted by varying the strength of sparsity (regularization coefficient of the �1 norm) λ, instead
of varying the threshold for classification (which is lacking in the proposed method). Each panel corresponds
to a specific choice of the kernel width w. The vertical and horizontal axes denote the true positive and false
positive rates, respectively, and the two curves show the results without the nuclear norm (η = 0) and with a
positive η (η: the regularization coefficient for the nuclear norm), where only the result with the best η value
(in terms of AUC shown in Fig. 4) is shown for clarity

Figure 5 also shows some examples of the ROC curves. For eachw, the curves correspond
to the best value of the AUC in Fig. 4 and the baseline algorithm of η = 0. The vertical
and horizontal axes respectively denote the true positive and false positive rates (within all
correct and incorrect outputs, respectively), where positive refers to a nonzeroweight (i.e., the
existence of an edge). Note that the ROC curve was plotted in a non-standard manner: rather
than varying the threshold for classification (which is lacking in the setting of the present
study), each single curve shows the variation of the classification performance according to
the value of the regularization coefficient λ (i.e., the strength of sparsity). The point at the
top-right corner corresponds to λ = 0, and the other points to positive λ’s whose values
increase as the bottom left corner is approached.

These results showed that the rank reduction can improve the overall performance of edge
detection in terms of the AUC measure. We will use the same scheme also in the following
simulation studies (Sects. 5.2, 5.3, 5.4) to evaluate the average performance.

It should be noted that kernel smoothing may locally have a detrimental effect on edge
detection especially when the smoothing is strong (i.e., with large w). To illustrate this,
we examined a simple change-point problem in which the data were generated in the same
manner as above except that the true dependency structures (i.e., true �n) changed only at
the 101th time point. The two graphs before and after the change point are illustrated at the
top of Fig. 6. Only the three edge weights changed from zero to nonzero (edges 1 and 3)
or nonzero to zero (edge 2), with every nonzero weight θni j being set at 0.5. We set η as
log10 η = −1.5, and λ as log10 λ = −2.5 in Fig. 6a and log10 λ = −2.3 in Fig. 6b. To clarify
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Fig. 6 Simulation study I: strong kernel smoothing (w = 32, box kernel) possibly biases the edge detection
around steep change points (while improving it in stationary regimes), depending on the value of regularization
coefficient: log10 λ = −2.5 (a), −2.3 (b), and log10 η = −1.5 (both a, b). Top true dependency graphs in
the former and latter halves of the total duration N = 200, with positive edge weights fixed at 0.5. Bottom
time series of the estimated edge weights (gray lines, for 20 randomly-generated datasets) corresponding to
the three edges indicated in the graphs. Distribution of the estimated change points are indicated by vertical
solid (median) and dashed (10- and 90-percentiles) lines. Black horizontal bars indicate the duration of the
existence of true (nonzero) edges]

the effect of smoothing, we set the kernel width relatively large, i.e.,w = 32. In both figures,
estimated time series of the three edge weights θ̂ni j (for 20 randomly-generated datasets) are
drawn by gray lines, and the median and two percentiles (of 10 and 90%) of the detected
change points (from zero to nonzero in edges 1 and 3, and from nonzero to zero in edge 2)
are indicated by the solid and dashed vertical lines, respectively. The black horizontal bars
represent the time period during which the true edge existed.

As is obvious in Fig. 6a, the relatively strong kernel smoothing enabled the accurate
identification of zero or nonzero within the stationary regimes, while it caused the estimated
weights (gray lines) to be wrongly nonzero around the true change points, so that the timing
of estimated change points (vertical solid/dashed lines) was biased. Strong kernel smoothing
may thus lead to locally inaccurate edge detection around a steep change point. As seen in
Fig. 6b, a stronger sparsity (or possibly another threshold on weights) could compensate for
such a biased estimation of change points by shrinking the estimated weights toward zero.
However, the combined effect should depend on different choices of tuning parameters, and
is not easily predictable.

However, such a detrimental effect of kernel smoothing would be minor on the whole due
to the relatively small fraction of change points among all the time points, so that the AUC
can be a valid measure for evaluating overall edge detection performance. If the objective is
to know the precise timing of change points, results must be carefully interpreted.We discuss
possible solution to this issue in Sect. 7.

5.2 Simulation study II: Smooth transition with dependency patterns

Next, we evaluated the performance of the estimation of graph structures with a variety of
synthetic time-varying networks. The objective of this experiment is to clarify the situations
where the rank reduction works efficiently.
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Fig. 7 Simulation study II: illustration of the scheme generating smoothly-varying basis coefficients sni , from

which the parameter vector is given by θn = ∑K
k=1 s

n
k a

k where ak is a randomly generated pattern vector
corresponding to a 3-node clique (triangle) as in Fig. 3. This illustration corresponds to K = 7 (number
of underlying patterns ak ), num_edges = 6 (number of nonzero edges at each time point, i.e., pairs of
coefficients sni being nonzero at a time), duration = 15 (length of near-stationary blocks), and N = 360
(length of time series; the 361th time point is included just for illustration). In each block segmented by vertical
dotted lines, two selected coefficients are randomly given positive values which have been sampled uniformly
in the range of [2, 6] (white circle), while the rest are set to zero (black circle). The piecewise constant values
(dashed line) are then smoothed by replacing the transition periods with sigmoidal curves (solid line). See the
text for more details

Here, the number of variables was D = 12, and a total of N = 360 instances yn were
sampled from time-varying Ising models p( yn; θn), where θn ∈ R

66 is the vector of edge-
wise parameters at the nth time step; all the node-wise parameters were set to zero for
simplicity. Every parameter vector θn was given by a linear combination of K basis vectors
according to θn = ∑K

k=1 s
n
k a

k . Each basis vector again defines a three-node clique (triangle)
in the dependency graph, as in Sect. 5.1, where the K cliques were randomly chosen in each
run without any overlapped edges between cliques; every nonzero element of ak was fixed
at one.

We createdmore realistic time courses of the network than those in the previous section by
generating the time-varying basis coefficients sni in a similar scheme to that used in Zhou et al.
(2010). The network smoothly transitions between stationary regimes, and each dependency
pattern appears non-periodically with non-constant strength.

Figure 7 illustrates this scheme. First, we divided the 360 time points into 360/duration
+1 blocks, where durationmeans the length of the time period during which the structure
of a dependency graph was maintained. The first and the last blocks had half of the length of
the others. In the first block, a fixed number num_edges/3 of active (nonzero) coefficients
was randomly generated. As each clique has three edges, num_edgesmeans the number of
total edges in an instance graph. The nonzero values of these active coefficients were sampled
uniformly in the range of [2, 6]. To generate the next block, we randomly set half (rounded-up
if not an integer) of the active coefficients at zero, and activated the same number of other
inactive coefficients with their values sampled in the same way as in the first block. This
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procedure was repeated until the final block was generated. Finally, the transitions between
active and inactive coefficients were replaced by smooth sigmoidal curves.

Here, the values of duration and num_edges respectively controlled the level of
stationarity and the level of sparsity of the generated time-varying networks. For each spec-
ification of these values, we randomly created ten different time-series of time-varying
networks. A single binary time-series was generated from each of these by the correspond-
ing Ising model. For each single time-series, we ran the proposed algorithm with various
combinations of the tuning parameters (w, λ, η) with the Epanechnikov kernel (see Fig. 2)
and the stopping criterion described in Sect. 3.3.3. We also ran the baseline algorithm with
η = 0 for comparison.

Figure 8 shows how the AUC varied against η for different kernel widths w. Each panel
corresponds to a particular combination of duration and num_edges. The number of
underlying dependency patterns (maximum rank) K was also varied as K = 7 (a) and
K = 14 (b). For the larger maximum rank of K = 14, the number of active coefficients (i.e.,
num_edges/3) was also set larger than that of K = 7. Note that when num_edges = 3,
only a single coefficient sni was nonzero at each time, resembling the ordinary situation of
regime switching. In every panel, the AUC of the proposed method increased over that of the
baseline method (log10 η → −∞) as log10 η increased, until log10 η reached around −1.5;
the increase was more obvious with smaller kernel widths w. This tendency is more clearly
seen in those panels corresponding to smaller num_edges and smaller maximum rank (i.e.,
K = 7). Note that sparser � tends to have a lower rank. The rank reduction was thus more
effective when the true rank was lower.

In this simulation, a particular dependency (regime) may repeatedly appear especially
when the network changesmore frequently. Figure 8 thus confirmed our statement in Sect. 3.2
that the rank reduction works efficiently, especially when temporally-distant networks (rel-
ative to the kernel width) can be similar to each other. This is most evident if we select the
best kernel widths (among the four specific ones) for duration = 5, 15 and 60 as w = 10,
30 and 60, respectively, with which the highest AUC value was achieved. The increase in
AUC then appeared to be large, moderate, and small when the duration was 5, 15, and
60, respectively. The more significant improvement of the AUC for a smaller duration
clearly indicates that the proposed method effectively incorporated the similarity between
temporally-distant networks which could not be (re-)used by the local kernel smoothing. The
same thing is also seen when the kernel width w was set smaller than the best one (e.g., with
w = 3 or 10) for the most cases of duration = 60.

The conjoint effect of the temporal smoothing and the rank reduction in our method
naturally raises a question:Howdoes the proposedmethodwork solelywith the rank reduction
but without temporal smoothing? Figure 9 examines this issue. This again shows the AUC
versus log10 η in the same setting as that of Fig. 10b (i.e., K = 14), but in particular with
w = 1 (i.e., the kernel smoothing was not effective). Clearly, in every panel, even the highest
AUC was not comparable to the AUC obtained by the proposed or the baseline method with
kernel smoothing (see Fig. 10b). This implies that the temporal smoothing is essential for
successful estimation of time-varying dependency graphs; the rank reduction then further
improves its performance in the particular situations considered here.

5.3 Simulation study III: No explicit dependency patterns

To examine a limitation of the proposed method, we also studied how the proposed method
works when the network does not a priori have a limited number of communities or regimes.
Here,we directly generated time-varying edgeweights θni j without explicitly using any depen-
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(a)

(b)

Fig. 8 Simulation study II: AUC versus the regularization coefficient η of the nuclear norm. Each panel
corresponds to a specific combination ofnum_edges (level of sparsity) andduration (level of stationarity)
to generate the true network, indicated respectively on the left and on the top of the panels. The maximum
rank of the true parameter matrix � was set at K = 7 (a) or K = 14 (b). In each panel, the isolated markers
on the left of the vertical solid line show the average AUC over ten runs by the baseline method (η = 0) for
different w’s, with the error bars indicating the standard deviation. On the right of the vertical solid line, the
average AUC by the proposed method (η > 0) versus log10 η is plotted, with the standard deviation indicated
by the shaded regions. The different markers correspond to different kernel widths shown in the legend at the
bottom

dency patterns ak . In other words, we replaced the three-node cliques ak by all the edges
(K = 66) and generated their coefficients snk in the same manner as in Sect. 5.2. Note that the
meaning of the two simulation parameters duration and num_edges does not change at
all.
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Fig. 9 Simulation study II: AUC versus the regularization coefficient η of the nuclear norm, when the kernel
smoothing was disabled, i.e., w = 1. The maximum rank was K = 14. See also the caption of Fig. 8

Figure 10 shows the result in a similar manner to that in Figs. 8 and 12. Here, we examined
the four levels of sparsity, num_edges = 3, 6, 9 and 12, and the three levels of stationarity,
duration = 5, 15, and 60. In this figure, the increase inAUCby rank reduction disappeared
in many cases. This is reasonable because the parameter matrix is now not necessarily of
low rank. However, a slight increase in AUC over that of the baseline method in some kernel
widths w is still seen especially in those panels of small num_edges (say 3 or 6), where the
true rank could be approximately low. Most notably, the increase in AUC was rather large
when duration was 60 with small kernel width w = 3 or 10 (Interestingly, the top-right
panel of Fig. 10 is quite similar to that of Fig. 8). This was probably because the number
of stationary regimes was limited a posteriori in these cases, as a consequence of the small
number of transitions during the entire time-series, as shown intuitively by Fig. 11. The rank
reduction was thus sometimes helpful to improve the estimation, even when the network does
not a priori have a limited number of communities or regimes.

5.4 Simulation study IV: Small sample size (short time-series)

A difficult situation arises in practice because the total sample size, i.e., the length of the
time-series, is smaller than the total number of parameters. In order to see how the proposed
method works in this situation, we repeated the simulation study II (Sect. 5.2) with a reduced
sample size of N = 60, which was smaller than the number of edge-wise parameters.

The result is shown in Fig. 12 in the same format as in Fig. 8. Note that duration = 60
now means that the transition of the network occurred only once during the whole period.
Every plot exhibited larger variance as expected, while the increase in AUC with increasing
log10 η is still evident in some cases. For example, in the upper three panels of duration =
5, the AUC clearly increased over that of the baseline method within an appropriate range of
log10 η, particularly with kernel width of w = 3 or 10. Similarly, in the upper three panels of
duration = 60, the AUC increased particularly with kernel width of w = 10 or 30 (but
not of w = 3). Thus, even if the time-series length is quite short, the rank reduction can be
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Fig. 10 Simulation study III: AUC versus the regularization coefficient η of the nuclear norm. In this simu-
lation, no explicit dependency patterns were used for generating data, with the weight of each edge separately
generated by the scheme of Fig. 7. See also the caption of Fig. 8
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Fig. 11 Simulation study III: examples of time-varying edge weights in different levels of stationarity,
duration, indicated by the number on the top of each panel. In each panel, the horizontal axis denotes
the time steps and the vertical axis denotes the edge indices (sorted, so that an edge activated earlier with a
nonzero weight had a smaller index). The varying thickness of each horizontal line indicates the relative mag-
nitude of the corresponding edge weight at each time point. Only the edges whose weights became nonzero
at least once are displayed
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(a)

(b)
Fig. 12 Simulation study IV: AUC versus the regularization coefficient η of the nuclear norm, with a reduced
sample size of N = 60. The simulation setting except for the sample size was the same as that of simulation
study II. See also the caption of Fig. 8

useful, at least when the estimation variance is not too large, as in the bottom-most panels of
Fig. 12. The choice of kernel width seems to be important for the method to be effective.

5.5 Computation time

Here, we compared the computation time between theADMMalgorithms and the regression-
based KELLER (Song et al. 2009; Kolar et al. 2010). All the algorithms were implemented
onMatlab 7.14 and run on a Linux computer with 4 cores, 3.30-GHzCPU and 126-GBRAM.

123



356 Mach Learn (2016) 105:335–366

10 100

3

4

5

6

7

CPU time [sec]

O
bj

ec
tiv

e
log10 λ = -4

10 100

6

6.5

7

7.5

CPU time [sec]

log10 λ = -3

10 100

7.5

8

8.5

9

CPU time [sec]

log10 λ = -2.5

ADMM (η=0.01)
ADMM (η=0)
KELLER

Fig. 13 Comparison of computation time between the ADMM algorithms (η = 0 and 0.01) and the
KELLER (Song et al. 2009; Kolar et al. 2010) based on �1-regularized (weighted) logistic regression. Solid
(η = 0) and dashed (η = 0.01) lines without markers indicate the objective value versus the elapsed CPU
time (log scale) at every iteration of the ADMM algorithm for ten different runs (for different datasets of
N = 360, K = 14, num_edges = 6 and duration = 5; see Sect. 5.2 for details of the data). Note that the
baseline (η = 0) and KELLER minimize the same objective function, while the low-rank ADMM includes
the additional term η‖�‖∗, with η being specifically set as 0.01. The three panels correspond to different
settings of λ indicated on the top. The solid line with markers indicates the objective value versus the total
CPU time of a single run of KELLER (i.e., to solve the ND logistic regression problems). Each line is plotted
by varying termination conditions in the logistic regression on the same dataset

We modified the original implementation of KELLER5 in order to use the same smoothing
kernel and the same coefficient on the �1-norm [according to Eqs. (23) and (24)]. We mea-
sured the elapsed CPU time at every iteration of the ADMM algorithm on the ten datasets
above of N = 360 (Sect. 5.2), with K = 14, num_edges = 6 and duration = 5.
Throughout this experiment and the other simulation studies described so far, we observed
no runs that did not converge.

Figure 13 shows the values of the objective function versus theCPU time for three different
λ’s. Note that the baseline ADMM (η = 0) and KELLER minimize the same objective
function, while the low-rank ADMM includes the additional term η‖�‖∗, with η being
specifically set as 0.01. Each point for KELLER also indicates the objective value versus the
total CPU time of a single run (i.e. to solve the ND logistic regression problems), obtained
with varying termination conditions in the logistic regression. Note that the ADMM does not
necessarily decrease the objective valuemonotonically (as in the case of log10 λ = −2.5). The
result shows that KELLER achieved almost the minimum objective value in about 20–50s in
any case,while ourADMMalgorithms tookmore than 100s for convergence. Thus, if the rank
reduction is not necessary, the computational efficiency of KELLER is favorable in practice;
whereas, if the rank reduction is desirable, the ADMM (η > 0) would be a better option.

In this experiment, the mean CPU time (with standard deviation) per iteration of the
ADMM (η = 0.01) was 0.82 ± 0.13 [s], which was slightly heavier than 0.78 ± 0.09 [s]
of ADMM (η = 0) due to the additional computation of SVD for non-zero η. On the other
hand, Fig. 13 shows that the ADMM (η = 0.01) converged earlier than the ADMM (η = 0)
did. This implies that the ADMM (η = 0.01) needed fewer iterations to converge than that

5 Matlab code was available on http://cogito-b.ml.cmu.edu/keller/downloads.html.
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by the ADMM (η = 0). Figure 13 also suggests that with larger λ, the ADMM (η = 0)
tended to converge earlier.

6 Demonstration with a real-world network

Here, we demonstrate the effect of rank reduction when estimating time-varying MNs for a
real-world social network: the network of one hundred senators during the 109th Congress
of the U.S. Senate exhibited in their recorded votes during this congress.6 This dataset has
been analyzed in previous studies (Banerjee et al. 2008; Ahmed and Xing 2009; Kolar et al.
2010). We followed Banerjee et al. (2008) in particular for preparing the data.

In this dataset, each binary instance yn means the record of a single roll-call vote by the 100
senators (D = 100) for the nth bill. Each vote by the i th senator was recorded as yni = −1 for
“nay” and yni = 1 for “yea” with missing votes simply treated as “nay” (Banerjee et al. 2008).
The total number of the bills, i.e., the length of the time-series, was N = 645. See Banerjee
et al. (2008) for more details about the preprocessing.

6.1 Comparison of predictive performance

First, we evaluated the time-varying networks obtained by the proposed and the baseline
methods in terms of their abilities for predicting unobserved data, instead of their perfor-
mance in recovering graph structures. This was done because the true dependency graph
between the 100 senators is not available. To this end, estimation (training) was performed
in each run based only on the training dataset consisting of 516 (4/5 of the total) randomly
selected instances, and a score of predictive performance was computed for the test dataset
consisting of the other 129 instances, using the obtained estimate �̂. The predictability
score was specifically given by the test log-pseudolikelihood, computed by summing-up the
log-pseudolikelihood

∑
i log p(yni | yn\i ; θ̂

n
) over the test instances. This evaluates the perfor-

mance of conditional prediction on the outcome of each node given those of the other nodes.
During training, the values of the smoothing kernel at the test instances were explicitly

replaced with zeros in order to effectively exclude them from the training dataset. We used
the Epanechnikov kernel (see Fig. 2), and employed the stopping criterion described in
Sect. 3.3.3. For comparison, we also trained and tested the static sparse MN (Sect. 2.3) in
the same manner as above.

Figure 14 shows the test log-pseudolikelihood versus log10 λ for some kernel widths w.
Each panel shows the results for four specific values of η at a particular w, and also shows
the results for the baseline method of η = 0. It also indicates the best performance achieved
by the static MN, which was obtained at the best value of λ that maximized the test log-
pseudolikelihood (Fig. 15). The rank reduction with appropriate combinations of η and λ

greatly improved the prediction performance especially when the kernel width was relatively
small. The performance by the proposed method was at a high level already at w = 30,
especially with good choices of η and λ (say, log10 η = −1.75 and log10 λ ∈ [−5,−4.5]).
The larger kernel widths then further improved the performance, at least until the width
reached to w = 90. On the other hand, the performance of the baseline method at w = 30,
with optimized λ, was even lower than that of the static network; this low performance was
improved as the kernel width increased.

6 The summary of roll-call votes is available from the website (http://www.senate.gov/).
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Fig. 14 US Senate data: test log-pseudolikelihood was improved by nuclear-norm regularization. Each panel
shows the results obtained using the proposed method with four η’s (the four thick lines for which markers are
only shown on the vertical axis, where η is the regularization coefficient of the nuclear norm) and that by the
method without the nuclear-norm regularization (the dashed line with the marker ‘∗’), for a specific kernel
width w. In each panel, the vertical and horizontal axes denote the test log-pseudolikelihood and log10 λ (λ
is the regularization coefficient of the �1 norm), respectively. The markers on the vertical axis indicate the
results obtained with λ = 0, and the horizontal dashed line indicates the best result by the static MN, which
is the maximum test log-pseudolikelihood shown in Fig. 15

The social network considered here is greatly expected to have a community structure
because of the two large political parties (i.e., Democratic and Republican), probably with
several (transient) sub-communities within or across them. It is also reasonably expected that
the network does not change very frequently, because it likely reflects the political positions of
the senators. Thus, the result shown here is reasonable because in such a case, the estimation
can be greatly improved by rank reduction, especially when the kernel width is relatively
small, as actually seen in the simulation studies in Sect. 5.

6.2 Effect of rank reduction in estimated network

We obtained an intuitive understanding of how the rank reduction affects the quality of
estimated network by again analyzing the whole dataset of the 645 instances by the proposed
method with log10 η = −1.75 and by the baseline method with η = 0, both with the kernel
width of w = 70. The value of λ was commonly set at log10 λ = −4.5, so that the two
methods had a comparable level of predictability, as seen in Fig. 14.
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Fig. 15 US Senate data: test
log-pseudolikelihood of static
MNs in which the parameter
vector θ was common for all the
time steps. The horizontal axis
denotes log10 λ, where λ is the
regularization coefficient for the
�1 norm
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Fig. 16 US Senate data: time courses of 50 randomly-selected edge weights with (black line) and without
(gray line) the nuclear-norm regularization. Vertical and horizontal axes in each panel show the edge weights
(rescaled in each panel) and the time (from 1 to 645), respectively. The ordering of these panels (going
downward from the top left) was determined so that similar time courses (solid line) are close to each other

Figure 16 shows the time courses of 50 randomly selected edge weights. The proposed
method clearly reduced undesirable fluctuations of estimated weights θni j over time, which
were unfavorably observed in the baseline method. This additional smoothing effect was
particularly due to the rank reduction, as the two methods used the same kernel width: The
underlying dependency patterns ak effectively divide different edges into groups and allow
each group to show a consistent time course described by its common coefficient snk .

Figure 16 also implies that most of the edge weights at each time point took non-zero
values, in particular in the result by the proposed method. Actually, we observed that max-
imizing the predictability score in this dataset tended to produce rather dense dependency
graphs. This is not strange by itself, because the senators’ votes likely reflect some typical
political stances, depending especially on the political party towhich they belong, so that their
network should not consist of sparse local connections seen in social networks of friendship.
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6.3 Implication for subsequent analysis

In practice, determining useful knowledge from hundreds of large-scale dependency graphs
is not easy. This is especially the case in the context of data mining, where we often do not
have much prior knowledge or solid hypotheses about the data. Subsequent analysis of these
dependency graphs will then be important for summarizing relevant information in order to
disclose embedded knowledge.

Here, we demonstrate a simple case of this type of a post-analysis, and show that the
improved quality of the dependency graphs obtained by the proposed method is actually
beneficial at this stage. Specifically, we consider partitioning a graph into several clusters,
each represented by an influential node called an exemplar. This is the problem considered
in Frey andDueck (2007) for which an effective algorithm, the affinity propagation clustering
(APC) (Frey and Dueck 2007), has been proposed. We applied this APC to every instance of
the dependency graph in order to examine the changes in the exemplars and the clusters over
time. The similarity matrix between any pair of nodes to which the APC was applied was
defined as a matrix where both (i, j) and ( j, i) entries are given by the estimated edge weight
θ̂ni j . A nice property of APC is that it does not suffer from the issue of local optima, and it
automatically determines the number of clusters by specifying a positive “preference” para-
meter (Frey andDueck 2007). This parameter was set at 0.01 based on a preliminary analysis.

For comparison, the APC was performed on both the estimates by the proposed and the
baseline methods, denoted as �̂η and �̂0, respectively. The kernel width was set at w = 70,
and the regularization coefficients were specifically set at log10 λ = −5 and log10 η = −1.75
for the proposed method, and log10 λ = −4.5 (and η = 0) for the baseline method, so as
to roughly maximize the test log-pseudolikelihood in each method (Fig. 14). Note that the
smaller predictability score of the baseline method indicates that the estimate �̂0 was more
likely overfitted to the training dataset.

Figure 17 shows the temporal changes of cluster members when one of the six nodes
(senators) was chosen by APC as an exemplar. The six exemplars displayed here were the
most frequently-chosen ones (in all the 645 time points) based on �̂η. The cluster members
displayed here for each exemplar were those belonging to the exemplar at least five times,
which was also determined based on �̂η. The same exemplars and cluster members are also
displayed for the result based on �̂0 for the sake of comparison. As seen in this figure, the
overall patterns of the clustering in �̂η and �̂0, indicated by “Proposed” and “No nuclear
norm” at the top of each block, respectively, were quite similar to each other. However, the
APC recovered transient clusters more stably in “Proposed” than in “No nuclear norm.” For
example, the proposed method indicated that Senator Sununu as the exemplar had a cluster
with Senator Gregg and Senator Kyl from the time points from 1 to about 300. However,
this stable cluster is not clearly seen in “No nuclear norm” as it is fragmented into many
discontinuous segments. Thus, the rank reduction in the estimation stage can improve the
quality of the result of subsequent analysis, from which one may draw clearer and more
specific speculation into human relationships.

7 Discussion

We proposed a method for learning time-varying MNs based on the assumption that the rank
of parameter matrix is relatively low, in addition to the sparsity and temporal smoothness of
the network structure. The problem was formulated as a non-smooth convex optimization
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Fig. 17 US Senate data: temporal changes in clustering of nodes (senators) over the 645 time points found
by the affinity propagation clustering (APC) (Frey and Dueck 2007). The APC partitions every instance of
the dependency graph into several clusters each represented by an influential node called an exemplar. Each
of the six blocks shows the changes of the assignment of cluster members listed at the left side to a particular
exemplar node indicated at the top left in a box. The annotation after the name of each senator refers to the
senator’s political party (D: Democrat, R: Republican, I: Independent) and state (as a two-letter abbreviation).
The “Proposed” and “No nuclear norm” indicate that the APC was applied to the estimate �̂η by the proposed
method and on �̂0 by the baselinemethod (η = 0), respectively, both atw = 70; the regularization coefficients
η and λ were chosen so as to roughly maximize the test log-pseudolikelihood of Fig. 15 (see text). Each black
horizontal bar indicates a time period during which the cluster member was actually assigned to the exemplar
by the APC
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problemwhere the objective function (i.e., kernel-weighted log-pseudolikelihood)was jointly
regularized with both �1 and nuclear norms. We proposed to solve this problem by using the
ADMM, which led to a simple first-order optimization algorithm. The main contributions
can be summarized as follows: (1) we proposed a novel approach to learning time-varying
MNs with a new type of application of the joint �1- and nuclear-norm regularization, and (2)
we empirically showed that our proposed method can outperform existing methods in terms
of the estimation performance as well as the predictability, as recapitulated below. Although
we did not give any theoretical performance guarantee, the empirical results successfully
demonstrated the applicability of the proposed approach to various situations.

In the simulation studies, we examined the effect of rank reduction on estimation of time-
varying dependency graphs, in cases where (1) the network exhibits a relatively small number
of dependency patterns (Sects. 5.2, 5.4), resembling community structures or regime switch-
ing, and (2) the network a priori has no limited number of dependency patterns (Sect. 5.3).
In case 1, the rank reduction was particularly effective when the network changes frequently,
so that temporally-distant networks may have similar dependency, which has not been dealt
with very well by local kernel smoothing; the effect was rather limited if the time-series
was very short, but was still evident in some situations with appropriate kernel widths. In
case 2, the effect of rank reduction became weaker in most situations as expected, while it
was surprisingly helpful when the number of dependency patterns was limited a posteriori;
namely, when the stationary regimes in the entire time-series were relatively small due to
the stability of the network. The rank reduction is therefore useful for dealing with datasets
with a small number of change points, even when the network neither exhibits community
structure nor repeats any previous regimes.

We also demonstrated the effect of rank reduction with a real-world dataset of US Senate
voting records (Sect. 6). The rank reduction improved the predictability of the obtained
network in terms of the test pseudolikelihood, and also led to more interpretable results
in subsequent analysis of the collection of estimated dependency graphs. In particular, we
demonstrated the use of the APC for clustering the nodes (senators).

As seen in Sect. 6, the test pseudolikelihood can be used for choosing η jointly with λ,
which evaluates the predictability of the model and, in principle, can avoid overfitting to
the training dataset. The kernel width w may also be automatically selected in a similar
manner, while the choice should also reflect our prior knowledge about the time scale of the
phenomena of interest. Thus, in practice, we recommend interactive selection of w from a
relatively small set of candidates around the time scale of interest. A joint search forw, λ and
η could be conducted by an heuristic greedy scheme for ease of computation. For example,
w, λ, and η may be sequentially determined with λ and η initialized by zeros. Alternatively,
the BIC-like information criterion developed in the previous study (Kolar et al. 2010) could
also be modified to be suitable for the method proposed here, which will further reduce the
computational burden.

Our present study successfully demonstrated the feasibility and empirical performance
of the joint �1- and nuclear-norm regularization method for learning time-varying networks
through extensive simulation studies aswell as a real-world data analysis. To further clarify the
applicability of our approach beyond the situations therein, we will need theoretical analyses
of its statistical performance, but such analyses are beyond the scope of the current study. Yet,
recent theoretical studies (Richard et al. 2012; Mei et al. 2012) of joint �1- and nuclear-norm
regularization give insights into our approach. In these studies, error bounds on the matrix
estimationwere theoretically given in specific settings ofmatrix recovery (Richard et al. 2012)
and multi-task regressions (Mei et al. 2012) both with quadratic loss functions. As seen in
Sect. 4, our loss function is closely related to a collection of many logistic regressions, similar
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to the multi-task setting in Mei et al. (2012). Hence, although kernel smoothing might need a
special treatment, the approach in these studies could be extended to the problem considered
here by incorporating more general loss functions (Richard et al. 2012). These error bounds
basically imply that true low-rank matrices can be correctly estimated when the true matrix
is actually sparse and of low rank and the regularization coefficients are set large enough
compared to the true cardinality (i.e., number of nonzeros) and rank. We expect that similar
results will qualitatively hold for our problem; detailed theoretical analyses will clarify the
general conditions for the proposed method to success or to fail. We leave this topic as an
open issue for future study.

We finally discuss possible future extensions and other promising applications of our
proposed framework. First, we focused on the fundamental application to the Ising model,
but the proposed approach is also applicable to other time-varying MNs possibly with slight
modifications. For example, the GGM is a real-valued counterpart of the Ising model, where
each edge is given a scalar-valued (edge-wise) parameter defining the analog graph structure.
The use of the �1-norm, which induces element-wise sparsity, is then directly applicable.
However, for general MNs, each edge may be associated with a vector-valued parameter, or
higher-order cliques may even be involved. In these cases, the simple �1-norm regularization
can be replaced by other advanced techniques of sparse estimation, such as the group �1 (Yuan
and Lin 2006; Meier et al. 2008) or the hierarchical sparsity (Zhao et al. 2009; Jenatton et al.
2010; Schmidt and Murphy 2010). The ADMM is then slightly modified so that Eq. (18b) is
replaced with an appropriate operation corresponding to the alternative regularization term.

Second, kernel smoothing may be replaced by other techniques if one needs to precisely
know the timing of abrupt network changes (see also Sect. 5.1). Some previous studies of
time-varyingMNs (Ahmed andXing 2009; Kolar et al. 2010, 2009) actually used a technique
called total variation smoothing to allow the network parameters to be piecewise constants.
It additionally introduces regularization terms

∑N
n=2 ‖θn − θn−1‖1 into the objective func-

tion with a non-smoothed version of empirical loss, (1/N )
∑N

n=1 l( y
n, θn). The �1-norm

of parameter differences allows each element of the parameter to have jumps at a few time
points, and thus it may be more suitable for situations like regime switching. The addi-
tional low-rank regularization in our method then further exploits the potential similarity
between temporally distant pairs of networks, as well as the similarity between pairs of the
time-series of network parameters, which cannot be achieved by solely the total variation
smoothing. Note that ADMM then can be applied by including an additional updating step
(e.g., of Z4) for the additional regularization terms. A more conventional smoothing regu-
larizer,

∑N
n=2 ‖θn − θn−1‖22, is also available without complicating the algorithm (since it

is differentiable), but it may not be conceptually very different from kernel smoothing as it
introduces a similar smoothness into the network parameters.

Third, an interesting extension of the proposed time-varying MNs would be to use
of the same technique for auto-regressive models, relaxing the basic assumption in the
Ising model that yn is independent of all past observations y1, y2, . . . , yn−1 given θn .
For example, we could assume that yn depends on the past τ observations (i.e., yn ∼
p( yn | yn−1, . . . , yn−τ ; θn)). The definition of θn in the present study could then be simply
modified to incorporate additional terms of the lagged effects, such as yni y

n−m
j (1 ≤ m ≤ τ ).

This only changes the number of rows in�, and hence the ADMM algorithm will be directly
applicable.

Finally, other than analyzing networks of social interactions as successfully demonstrated
with the US Senate data, the proposed method can also be useful in the context of analyz-
ing biological phenomena (e.g., gene-regulatory networks), as considered in the previous
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study (Song et al. 2009). Another promising application of the time-varying MNs would
be the analysis of multi-channel measurements of the brain activity, such as neuronal spike
trains (Shimazaki et al. 2012) or other brain imaging modalities like functional magnetic
resonance imaging (fMRI) or magnetoencephalography (MEG). Interestingly, time-varying
functional connectivity (dependency) between cortical regions has recently been a very
active research target in the neuroscience and brain imaging communities (Hutchison 2013;
Leonardi 2013). We will apply the method proposed here to these emerging new fields in our
future studies.

Acknowledgments This research was supported by a contract entitled “Novel and innovative R&D making
use of brain structures” with the Ministry of Internal Affairs and Communications, Japan, a contract entitled
“Brain mapping by integrated neurotechnologies for disease studies” with the Japan Agency for Medical
Research and Development, and JSPS KAKENHI Grant Numbers 24300114, 25730155. A.H. was supported
by the Academy of Finland, Centre-of-Excellence in Inverse Problems Research.

References

Ahmed, A., & Xing, E. P. (2009). Recovering time-varying networks of dependencies in social and biological
studies. Proceedings of the National Academy of Sciences of the United States of America, 106(29),
11878–11883.

Bachmann, P., & Precup, D. (2012). Improved estimation in time varying models. In Proceedings of the 29th
international conference on machine learning (ICML’12), pp. 1735–1742.

Banerjee, O., Ghaoui, L. E., & d’Aspremont, A. (2008). Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9, 485–516.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical methods. Engle-
wood Cliffs, NJ: Prentice-Hall.

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society: Series D,
24(3), 179–195.

Besag, J. (1977). Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika, 64, 616–
618.

Boyd, S., Parikh,N., Chu, E., Peleato, B.,&Eckstein, J. (2011).Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(11),
1–122.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, MA: Cambridge University Press.
Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion.

SIAM Journal on Optimization, 20(4), 1956–1982.
Carvalho, C. M., & West, M. (2007). Dynamic matrix-variate graphical models. Bayesian Analysis, 2(1),

69–97.
Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal

on Scientific Computing, 20, 33–61.
Daubechies, I., Defrise, M., & Mol, C. D. (2004). An iterative thresholding algorithm for linear inverse

problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11), 1413–
1457.

Doan, X. V., & Vavasis, S. (2013). Finding approximately rank-one submatrices with the nuclear norm and
�1-norm. SIAM Journal on Optimization, 23(4), 2502–2540.

Eckstein, J., & Bertsekas, D. (1992). On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Mathematical Programming, 5, 293–318.

Fazel, M., Hindi, H., & Boyd, S. (2004). Rank minimization and applications in system theory. In Proceedings
of the American control conference, pp. 3273–3278.

Figueiredo, M., & Bioucas-Dias, J. (2010). Restoration of Poissonian images using alternating direction
optimization. IEEE Transactions on Image Processing, 19(12), 3133–3145.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814),
972–976.

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3), 432–441.

123



Mach Learn (2016) 105:335–366 365

Fu,W. J. (1998). Penalized regressions: The Bridge versus the Lasso. Journal of Computational andGraphical
Statistics, 7(3), 397–416.

Guo, J., Levina, E.,Michailidis,G.,&Zhu, J. (2010). Joint structure estimation of categoricalMarkovnetworks.
http://www-personal.umich.edu/~guojian/publications/ising.pdf.

He, B., & Yuan, X. (2012). On the O(1/n) convergence rate of the Douglas-Rachford alternating direction
method. SIAM Journal on Numerical Analysis, 50(2), 700–709.

Hirayama, J., Hyvärinen, A., & Ishii, S. (2010). Sparse and low-rank estimation of time-varying Markov net-
workswith alternating directionmethod ofmultipliers. In International conference on neural information
processing (ICONIP’10), Lecture notes in computer science (Vol. 6443, pp. 371–379).

Höfling, H., & Tibshirani, R. (2009). Estimation of sparse binary pairwise Markov networks using pseudo-
likelihoods. Journal of Machine Learning Research, 10, 883–906.

Hutchison, R. M., et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neu-
roImage, 80, 360–378.

Hyvärinen, A. (1999). Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estima-
tion. Neural Computation, 11(7), 1739–1768.

Hyvärinen,A. (2006).Consistencyof pseudolikelihood estimation of fully visibleBoltzmannmachines.Neural
Computation, 18(10), 2283–2292.

Jenatton, R., Mairal, J., Obozinski, G., & Bach, F. (2010). Proximal methods for sparse hierarchical dictionary
learning. In Proceedings of the 27th international conference on machine learning (ICML’10), pp. 487–
494.

Kolar, M., Song, L., Ahmed, A., & Xing, E. P. (2010). Estimating time-varying networks. Annals of Applied
Statistics, 4(1), 94–123.

Kolar, M., Song, L., & Xing, E. P. (2009). Sparsistent learning of varying-coefficient models with structural
changes. In Advances in neural information processing systems 22 (NIPS’09), pp. 1006–1014.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge,
MA: The MIT Press.

Lauritzen, S. L. (1996). Graphical models. Oxford: Clarendon Press.
Lee, S. I., Ganapathi, V., & Koller, D. (2007). Efficient structure learning of Markov networks using L1-

regularization. In Advances in neural information processing systems 19 (NIPS’06), pp. 817–824.
Leonardi, N., et al. (2013). Principal components of functional connectivity: A new approach to study dynamic

brain connectivity during rest. NeuroImage, 83, 937–950.
Loader, C. (1999). Local regression and likelihood. Berlin: Springer.
Mei, S., Cao, B., & Sun, J. (2012). Encoding low-rank and sparse structures simultaneously inmulti-task learn-

ing. Microsoft Technical Report, MSR-TR-2012-124. http://research.microsoft.com/apps/pubs/default.
aspx?id=179139.

Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the
Royal Statistical Society: Series B, 70, 53–71.

Meinshausen, N., Bühlmann, P., & Zürich, E. (2006). High dimensional graphs and variable selection with
the Lasso. Annals of Statistics, 34, 1436–1462.

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National
Academy of Sciences of the United States of America, 103(23), 8577–8582.

Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer series in operations research. Berlin:
Springer.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Los Altos,
CA: Morgan Kaufmann.

Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional Ising model selection using
�1-regularized logistic regression. The Annals of Statistics, 38(3), 1287–1319.

Richard, E., Savalle, P. A., & Vayatis, N. (2012). Estimation of simultaneously sparse and low rank matrices.
In Proceedings of the 29th international conference on machine learning (ICML’12), pp. 1351–1358.

Rocha, G., Zhao, P., & Yu, B. (2008). A path following algorithm for sparse pseudo-likelihood inverse covari-
ance estimation (SPLICE). Technical report 759, Statistics Department, UC Berkeley.

Schmidt, M. (2005). minFunc: Unconstrained differentiable multivariate optimization in Matlab. http://www.
cs.ubc.ca/~schmidtm/Software/minFunc.html.

Schmidt,M.,&Murphy,K. (2010).Convex structure learning in log-linearmodels: Beyond pairwise potentials.
In Proceedings of the 13th international conference on artificial intelligence and statistics (AISTATS’10)
(Vol. 9, pp. 709–716).

Shimazaki, H., Amari, S., Brown, E. N., & Grün, S. (2012). State-space analysis of time-varying higher-order
spike correlation for multiple neural spike train data. PLOS Computational Biology, 8(3), e1002385.

Song, L., Kolar, M., & Xing, E. P. (2009). KELLER: Estimating time-varying interactions between genes.
Bioinformatics, 25(12), i128–i136.

123

http://www-personal.umich.edu/~guojian/publications/ising.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=179139
http://research.microsoft.com/apps/pubs/default.aspx?id=179139
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html


366 Mach Learn (2016) 105:335–366

Srebro, N., Rennie, J., & Jaakkola, T. (2005). Maximum margin matrix factorization. In Advances in neural
information processing systems 17 (NIPS’14), pp. 1329–1336.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B, 58(1), 267–288.

Toh, K. C., & Yun, S. W. (2010). An accelerated proximal gradient algorithm for nuclear norm regularized
least squares problems. Pacific Journal of Optimization, 6, 615–640.

Tomioka, R., & Sugiyama, M. (2009). Dual augmented Lagrangian method for efficient sparse reconstruction.
IEEE Signal Proccesing Letters, 16(12), 1067–1070.

Tomioka, R., Suzuki, T., Sugiyama, M., & Kashima, H. (2010). A fast augmented Lagrangian algorithm for
learning low-rank matrices. In Proceedings of the 27th annual international conference on machine
learning (ICML’10), pp. 1087–1094.

Yoshida, R., Imoto, S., & Higuchi, T. (2005). Estimating time-dependent gene networks from time series
microarray data by dynamic linearmodelswithMarkov switching. InProceedings of IEEE computational
systems bioinformatics conference, pp. 289–298.

Yuan, X. (2012). Alternating direction method for covariance selection models. Journal of Scientific Comput-
ing, 51(2), 261–273.

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society: Series B, 68(1), 49–67.

Zhao, P., Rocha, G., & Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical
variable selection. Annals of Statistics, 37(6A), 3468–3497.

Zhou, S., Lafferty, J., & Wasserman, L. (2010). Time varying undirected graphs.Machine Learning, 80(2–3),
295–319.

Zhou, K., Zha, H., & Song, L. (2013). Learning social infectivity in sparse low-rank networks using
multi-dimensional Hawkes processes. In Proceedings of the 16th international conference on artificial
intelligence and statistics (AISTATS’13), pp. 641–649.

123


	Sparse and low-rank matrix regularization for learning time-varying Markov networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ising model
	2.2 Estimation by maximum pseudolikelihood
	2.3 Sparse estimation using ell1-norm regularization

	3 Proposed method
	3.1 Previous kernel smoothing method
	3.2 Proposed sparse and low-rank estimation of time-varying MN
	3.3 Estimation algorithm by ADMM
	3.3.1 General framework
	3.3.2 Derivation for the problem of the present study
	3.3.3 Stopping criterion and final estimates of Θ


	4 Related studies
	5 Simulation experiments
	5.1 Simulation study I: Basic effects of rank reduction and kernel smoothing
	5.2 Simulation study II: Smooth transition with dependency patterns
	5.3 Simulation study III: No explicit dependency patterns
	5.4 Simulation study IV: Small sample size (short time-series)
	5.5 Computation time

	6 Demonstration with a real-world network
	6.1 Comparison of predictive performance
	6.2 Effect of rank reduction in estimated network
	6.3 Implication for subsequent analysis

	7 Discussion
	Acknowledgments
	References




