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Abstract This paper considers the problems of swamping andmasking inMarkov boundary
discovery for a target variable. There are two potential reasons for swamping and masking:
one is incorrectness of some conditional independence (CI) tests, and the other is violation of
local composition. First, we explain why the incorrectness of CI tests may lead to swamping
and masking, analyze how to reduce the incorrectness of CI tests, and build an algorithm
called LRH under local composition. For convenience, we integrate the two existing algo-
rithms, IAMB and KIAMB, and our LRH into an algorithmic framework called LCMB. Second,
since LCMB may prematurely stop searching if local composition is violated, a theoretical
improvement on LCMB is made as follows: we analyze how to resume the stopped search of
LCMB, construct a corresponding algorithmic framework called WLCMB, and show that its
correctness only needs a more relaxed condition than that of LCMB. Finally, we apply LCMB
and WLCMB to a number of Bayesian networks. The experimental results reveal that LRH
is much more efficient than the existing two LCMB algorithms and that WLCMB can further
improve LCMB.
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1 Introduction

Markov blankets (Mb) and Markov boundaries (MB) are two basic concepts in Bayesian
networks (BNs). For a target variable T , its Mb is a variable set conditioned on which all
other variables are probabilistically independent of T , and its MB is a minimal Mb; that is, an
MB is the smallest set containing all variables carrying the information about T that cannot
be obtained from other variables (Pearl 1988).

The discovery of MBs plays a central role in feature selection (Pellet and Elisseeff
2008; Aliferis et al. 2010a, b; Fu and Desmarais 2010). Feature selection aims to identify
the minimal subset of features required for probabilistic classification, with the following
three-fold objective (Guyon and Elisseeff 2003): improving the prediction performance of
the predictors, providing faster and more cost-effective predictors, and facilitating a better
understanding of the underlying process that generated the data. Pearl (1988) showed the
conditional probability for the target variable given other variables can be replaced by the
one with an MB as the conditional set. Pellet and Elisseeff (2008) proved an MB is the theo-
retically optimal set of features if the faithfulness condition is satisfied. Further, under certain
assumptions about the learner and the loss function, MB is the solution to the feature selec-
tion problem (Tsamardinos and Aliferis 2003; Masegosa and Moral 2012; Statnikov et al.
2013). Hence, MB discovery techniques are receiving more and more attention in recent
years.

In the literature, there havebeen lots ofMBdiscovery approaches, including independence-
based and score-based ones, as well as some hybrid methods. This paper focuses on the
former.

The Koller–Sahami (KS) algorithm, put forward by Koller and Sahami (1996), is the first
technique of creating a framework used to define the theoretically optimal filter method for a
feature selection problem. It provides no theoretical guarantees to soundness (Tsamardinos
et al. 2003a). The grow-shrink (GS) algorithm, which was proposed by Margaritis and Thrun
(1999, 2000), consists of the growing phase and the shrinking phase. In its growing phase,
as long as there exists a variable conditionally dependent on the target given the candidate
Markov blanket (CMb), this variable will be added to the CMb until no more such variables
exist. All members of an MB as well as some false positives enter the CMb at the end of the
growing phase. The shrinking phase detects those false positives and removes them. The GS
algorithm was theoretically proven by Margaritis and Thrun (1999) to be correct under the
assumption that all the conditional independence (CI) tests are correct. Here, a CI test for a
hypothesis is said to be correct, if the corresponding statistical decision is correctly made by
using a testing method.

Tsamardinos et al. (2003a) pointed out that GS uses a static and potentially inefficient
heuristic in the growing phase, and then they presented a variant of GS called the incremental
association Markov boundary (IAMB) algorithm by employing a dynamic heuristic: IAMB
reorders the remaining variables by means of an association function at each iteration such
that the spouses of the target can enter the CMb early and thus fewer false positives are added
to the CMb during the growing phase. HITON (Aliferis et al. 2003) also uses a similar static
but slightly more efficient heuristic compared to GS.

Similar dynamic heuristics are employed by some variants of IAMB (Tsamardinos and
Aliferis 2003; Yaramakala andMargaritis 2005; Zhang et al. 2010). This strategy is also used
by divide-and-conquer search techniques, such as the max–min Markov boundary algorithm
(Tsamardinos et al. 2003b), the parents and children based Markov boundary (PCMB) algo-
rithm (Peña et al. 2007), the breadth first search ofMarkov boundary algorithm introduced by
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(Fu and Desmarais 2007), and the algorithms included in the algorithmic framework called
GLL (Aliferis et al. 2010a).

Under the faithfulness condition, most of these algorithms efficiently retrieve an approxi-
mateMB. Peña et al. (2007) relaxed the faithfulness condition to the composition assumption.
Based on this relaxation, they put forward a stochastic version of IAMB called KIAMB by
introducing a randomization parameter K ∈ [0, 1]. Here, K specifies the trade-off between
greediness and randomness in the search: KIAMBwith K = 1 coincides with IAMBwhich is
completely greedy, while KIAMB with K = 0 is a completely random approach expected to
discover all the MBs of the target variable with a nonzero probability if running repeatedly
for enough times. Further, Statnikov et al. (2013) relaxed the condition for IAMB (also suit-
able for KIAMB) to be correct to local composition. Another stochastic search technique is
the Bayesian stochastic search of Markov boudaries algorithm (Masegosa and Moral 2012),
which tries to get all MBs by running a large number of times; it provides some alternative
results by scoring the different obtained solutions.

Usually, these algorithms perform well in MB discovery. However, there are two potential
problems for them, either of which may lead to what we call swamping andmasking in some
situations, and such cases may frequently arise in practice. See (P1) and (P2) below for these
two problems.Here, swampingmeans a true positive becomes a false negative, whilemasking
means a true negative becomes a false positive. These two terminologies are often used for
outlier detection (Ben-Gal 2005; Hadi et al. 2009): swamping means some non-outliers
are identified as outliers, while masking means some outliers are not identified; outliers
mask themselves by swamping some non-outliers. We borrow them here to characterize the
two results of (P1) (P2) in MB discovery because of their similar behaviors in “masking”
themselves and “swamping” others. Definition2 gives themathematical description for them.

P1 Incorrect CI tests may lead to swamping and masking. Each MB discovery algorithm
assumes that all CI tests are correct. This assumption requires the data efficiency of an
algorithm. The parents and children based algorithms, such as PCMB and the algorithms
in the GLL framework, are data efficient but not time efficient; in contrast, IAMB and
KIAMB are time efficient but not data efficient (Schlüter 2014). Once one or more false
positives with spuriously high dependence on the target enter the CMb, the cascading
errors (Bromberg and Margaritis 2009) caused by them may lead to the exclusion of
some true positives. Example1 provides an illustration.

P2 Violation of the faithfulness condition (or the local composition assumption) may also
lead to swamping and masking. The faithfulness condition is usually required by the
parents and children based algorithms (Peña et al. 2007; Aliferis et al. 2010a), while the
relaxed assumption, local composition, is needed by IAMB and KIAMB. However, the
faithfulness condition and the local composition assumption may be violated in practice.
Example2 illustrates this possibility.

Example 1 Yaramakala (2004) considered the following scenario: in aBNover {T, X, Y1, Y2,
Z} with the graph given in (a) of Fig. 1 as its directed acyclic graph (DAG), the node Z is a
nonmember of theMB for the target T , but it may have the highest associationwith T because
there exist multiple paths for the flow of information between T and Z : T → Y1 → Z and
T → Y2 → Z . In this case, Z becomes the first node entering the CMb of IAMB. Peña et al.
(2007) instantiated the same scenario to a problem of signal transmission and reception. Yara-
makala (2004) and Peña et al. (2007) thought that there may be some true negatives entering
the CMb in the growing phase such that the time cost increases. This is natural. However, a
more important but neglected problem is that these false positives may bring some cascading
errors (Bromberg and Margaritis 2009), which may further cause incorrectness of CI tests
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(a) (b) (c)

Fig. 1 An illustration on why incorrect CI tests may lead to swamping and masking

and thus the exclusion of some true positives. For example, Y1 or Y2 may eventually become
a false negative. Hence, it is meaningful to consider the problem of (P1), and what we can
do is to prevent too many true negatives with spuriously high dependence on the target from
entering the CMb in the growing phase.

Example 2 Consider a target variable T which has three potential features X , Y , and Z . As
we know, the total information about T carried by X and Y can be decomposed into: (a) the
unique information carried by X , (b) the unique information carried by Y , (c) the redundant
information shared by X and Y , and (d) the synergistic information carried jointly by X
and Y (Williams and Beer 2010; Rauh et al. 2014). Assume Z carries all of (a)(b)(c) and
some (but not all) of (d). It follows that: (1) Z has the highest association with T ; (2) T is
conditionally independent of X given Z ; (3) T is conditionally independent of Y given Z ;
(4) T is conditionally dependent on {X, Y } given Z ; (5) T is conditionally independent of Z
given X and Y . Then, {X, Y } is the unique MB of T in {T, X, Y, Z}. However, IAMB can not
find this MB correctly. Specifically, in the growing phase of IAMB, Z enters the CMb and
then it excludes X and Y ; in the shrinking phase, Z remains in the CMb. Similarly, it follows
that KIAMB can not find {X, Y } with a probability not <66.67% for any value of K ∈ [0, 1].
We no longer consider other above-mentioned algorithms because of the violation of the
faithfulness condition. Therefore, it is meaningful to consider the problem of (P2).

These two examples indicate that both the incorrectness of some CI tests and the viola-
tion of local composition may lead to swamping and masking. This motivates us to build
novel algorithms which are expected to (1) reduce the incorrectness of CI tests, and (2) over-
come swamping and masking to a large extent in the case of violating the local composition
assumption.

The remainder of this paper is organized as follows. Section2 provides necessary pre-
liminaries. Section3 presents the IAMB and KIAMB algorithms, relaxes the notions of Mb
and MB, and proves some new results for IAMB and KIAMB. Section4 addresses the prob-
lem of (P1), puts forward a method of including as few true negatives as possible in the
growing phase, and builds an algorithm called LRH, which is proven to be correct under the
relaxed local composition assumption. The ALARM network is employed to show the data
efficiency and time efficiency of LRH. In addition, this section gives a post-processing tech-
nique to reduce incorrectness of CI tests kept in the shrinking phase. For convenience, IAMB,
KIAMB, and LRH are integrated into an algorithmic framework called LCMB. To resume the
search stopped in the growing phase of LCMB, Sect. 5 considers (P2) and constructs an effi-
cient algorithmic framework called WLCMB. The application to ALARM indicates WLCMB
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can further improve LCMB in data efficiency. Section6 applies LCMB and WLCMB to several
large networks. Section7 concludes this paper.

2 Preliminary

In the paper, we denote a variable and its value by upper-case and lower-case letters in italics
(e.g., X , x), a set of variables and its value by upper-case and lower-case bold letters in italics
(e.g., X , x). The difference between X and Y is denoted by X\Y . For brevity, we write
(X\Y)\Z as X\Y\Z. In addition, we use |X| to denote the number of variables involved in
X .

Suppose we have a joint probability distribution P over V � {X1, . . . , X p} and a DAG
G with the variables in V as its nodes. We say (G, P) satisfies the Markov condition if every
X ∈ V is conditionally independent of its nondescendants given its parents. Further, (G, P) is
called a BN if it satisfies the Markov condition. Furthermore, (G, P) satisfies the faithfulness
condition if, based on the Markov condition, G entails all and only CIs in P (Pearl 1988;
Neapolitan 2004).

Denote X �Y |Z (resp., X �/ Y |Z), if X and Y are conditionally independent (resp.,
dependent) given Z. The following properties describe the relations among CI statements
(Pearl 1988; Statnikov et al. 2013). For any X,Y , Z,W ⊆ V , we have (1) symmetry:
X �Y |Z ⇔ Y �X|Z; (2) decomposition: X �Y ∪ W |Z implies X �Y |Z and X �W |Z;
(3) weak union: X �Y ∪ W |Z implies X �Y |Z ∪ W ; (4) contraction: X �Y |Z ∪ W and
X �W |Z imply X �Y ∪ W |Z. Further, if P is strictly positive, then besides (1)∼(4) we also
have (5) intersection: X �Y |Z ∪ W and X �W |Z ∪ Y imply X �Y ∪ W |Z. Furthermore, if
P is faithful to a DAG G, then besides (1)∼(5) we also have (6) composition:

X � Y |Z & X �W |Z ⇒ X �Y ∪ W |Z (1)

As we know, faithfulness implies composition, but not vice versa. For composition, Stat-
nikov et al. (2013) provided a relaxed version called local composition: we say T ⊆ V
satisfies the local composition property, if (1) holds for any X,Y , Z ⊆ V\T . We also say
T ⊆ V satisfies the local composition property with respect to some particular Z ⊆ V\T ,
if (1) holds for any X,Y ⊆ V\Z\T .

Conditional mutual information (CMI) is one of the basic tools for testing CIs. Denote the
CMI between X and Y conditioned on Z by I(X;Y |Z). Then I(X;Y |Z) � 0, with equality
holding if and only if X �Y |Z (Zhang and Guo 2006). For a practical problem, we cannot
access to the true CMI; instead, we use its empirical estimate, denoted by ID(X;Y |Z), based
on the data D (Cheng et al. 2002).Note that ID(X;Y |Z) � 0 also holds for any X,Y , Z ⊆ V .
Denote the G2 statistic by G2(X;Y |Z) � 2n · ID(X;Y |Z), which approximates to the chi-

square variatewith r � (rX−1)(rY−1)rZ degrees of freedom, namelyG2(X;Y |Z)
�∼χ2(r),

where rξ represents the number of configurations for ξ (de Campos 2006). Denote the p
value by pD(X;Y |Z) = P{χ2(r) � G2(X;Y |Z)}. Then, the G2 test asserts X �Y |Z if
pD(X;Y |Z) > α for a significance level α, and concludes X �/ Y |Z if pD(X;Y |Z) � α. In
this paper, α is set to be 0.05. Accordingly, the negative p value is used as the association
function, fD, as Tsamardinos et al. (2006), Aliferis et al. (2010a, b), and Statnikov et al.
(2013) did: fD(X;Y |Z) � −P{χ2(r) � G2(X;Y |Z)}.

The chain rule for CMI (Cover and Thomas 2006) is useful to prove the main results of
this paper: I(X;Y1 ∪ Y2|Z) = I(X;Y1|Z) + I(X;Y2|Z ∪ Y1) holds for any four sets of
variables X , Y1, Y2, and Z from V . This formula remains valid if we replace I(·) with ID(·).
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Fig. 2 The DAG of the ASIA
network used to illustrate the
notions of d-separation and MB

Another notion closely related to CI is d-separation (Pearl 1988; Neapolitan 2004). For a
DAG G over V , letting X,Y , Z ⊆ V be disjoint, we say Z d-separates X and Y if it blocks
every path between X and Y , and if this is the case we write X ⊥ Y |Z. Here, Z blocking a
path p means that p has a head-to-tail node or a tail-to-tail node belonging to Z, or that p
has a head-to-head node C such that C and its all descendants are not in Z. As well known,
X ⊥ Y |Z ⇒ X �Y |Z, if (G, P) is a BN (Neapolitan 2004). This implication provides a
convenient way of identifying CIs. For example, consider a BN with the graph presented in
Fig. 2 as its DAG. Then, X2 and X8 are d-separated by {X4, X5}, meaning X2 ⊥ X8|{X4, X5}
and thus X2 �X8|{X4, X5}; X3 and X4 are d-separated by∅, meaning X3 ⊥ X4, so X3 �X4.
Note that these two probabilistic CIs can not be directly derived from the Markov condition.

In what follows, the concepts of Mb andMB are presented (Pearl 1988; Neapolitan 2004).

Definition 1 For T ∈ V , we call M ⊆ V\{T } a Markov blanket (Mb) of T if
T �V\M\{T }|M. Further, a Markov boundary (MB) of T is any Mb such that none of
its proper subsets is an Mb of T .

According to Definition1, an Mb, saying M, of T is a set of variables which can shield
T from all other variables, while an MB is a minimal Mb. Moreover, by means of the chain
rule for CMI, it can be easily shown that I(T ; M) = maxN⊆V\{T } I(T ; N) = I(T ; V\{T }),
so M carries all information about T carried by all the variables. Furthermore, the following
results are well known in the literature (Pearl 1988; Neapolitan 2004; Statnikov et al. 2013):
(a) if (G, P) is a BN, then for T ∈ V the set of its all parents, children, and spouses is an Mb
of T (we denote it by MT ); (b) if P satisfies the intersection property, then T has a unique
MB; (c) if (G, P) satisfies the faithfulness condition, then MT is the unique MB of T .

Consider again the BN with the graph presented in Fig. 2 as its DAG. In this BN, it is
seen that MX4 � {X2, X6, X3} is an Mb of X4; further, MX4 is the unique MB of X4 if the
faithfulness condition is satisfied. Similarly, MX2 � {X4, X5} is the unique MB of X2 under
the faithfulness condition.

Based on the notion of MB, we give the definition for swamping and masking:

Definition 2 (Swamping and masking) For T ∈ V , let M ⊆ V\{T } be a true MB of T ,
MA � (M\X) ∪ Y be the output of an MB discovery algorithm, A, with X ⊆ M and
Y ⊆ V\M\{T }. Assume MA is not an MB of T . Then, we say (1) swamping occurs with
respect to M, if X 
= ∅; and (2) masking occurs with respect to M, if Y 
= ∅.

The MB of a target may not be unique. This is why we use “a” or “an” in Definition2.
This definition is applicable whether the MB is unique or not. Lemeire (2007) provided a
case of violating the uniqueness of MB called information equivalence. X and Y are called
information equivalent with respect to T given Z ⊆ V\X\Y\{T } if the following four
conditions hold: T �/ X|Z, T �/ Y |Z, T �X|Y ∪ Z, and T �Y |X ∪ Z.
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3 Two typical algorithms and a further discussion

In this section, we concisely present two typical MB discovery algorithms: IAMB (Tsamardi-
nos et al. 2003a) and KIAMB (Peña et al. 2007). Then, we make a further discussion about
them. Considering that these two algorithms are correct under the local composition assump-
tion (Theorem1) or the Markov local composition assumption (Definition4), we put them
into an algorithmic framework called LCMB. Here, “LC” means “Markov local composition”.

IAMB is an enhanced variant of GS. Tsamardinos et al. (2003a) showed the correctness
of IAMB under the faithfulness condition; Peña et al. (2007) relaxed the condition to the
composition assumption; Statnikov et al. (2013) further relaxed the condition to the local
composition assumption. The pseudo code for IAMB is described in Algorithm 1. In the

Algorithm 1: LCMB and its three instantiations: IAMB, KIAMB, and LRH

Procedure: M ← LCMB(A; D, T,W , B)

Input: A is a two-phase MB algorithm including the required parameters (for IAMB,
A = 〈IAMB〉; for KIAMB, A = 〈KIAMB, K 〉, in which K ∈ [0, 1] is a randomization
parameter; for LRH, A = 〈LRH, k〉, in which k (� 1) is an integer denoting the number of
nodes entering the CMb at each iteration); D is a data matrix; T is a target; W is a
whitelist; B is a blacklist.

Output: The output, M, is an MB of T under the Markov local composition assumption.

//main procedure:
M ← LCMB(A; D, T,W , B)

1 M ← FW(A; D, T,W , B)

2 M ← BW(D, T, M,W)

3 return M
//IAMB: M ← LCMB(〈IAMB〉; D, T,W , B)

1 M ← FW(〈IAMB〉; D, T,W , B)

2 M ← BW(D, T, M,W)

3 return M
//KIAMB:

M ← LCMB(〈KIAMB, K 〉; D, T ,W , B)

1 M ← FW(〈KIAMB, K 〉; D, T,W , B)

2 M ← BW(D, T, M,W)

3 return M
//LRH: M ← LCMB(〈LRH, k〉; D, T ,W , B)

1 M ← FW(〈LRH, k〉; D, T,W , B)

2 M ← BW(D, T, M,W)

3 return M
//growing phase of IAMB:

M ← FW(〈IAMB〉; D, T,W , B)

1 M ← W
2 while M has changed do
3 Y ← argmaxX∈V\M\B\{T } fD(T ; X |M)

4 if T �/ Y |M then
5 M ← M ∪ {Y }
6 end
7 end
//growing phase of KIAMB:

M ← FW(〈KIAMB, K 〉; D, T,W , B)

1 M ← W
2 while M has changed do
3 M1 ← {X ∈ V\M\B\{T } : T �/ X |M}
4 if M1 
= ∅ then
5 M2 ← K ∗ nodes randomly from M1

6 Y ← argmaxX∈M2 fD(T ; X |M)

7 M ← M ∪ {Y }
8 end
9 end

//growing phase of LRH:
M ← FW(〈LRH, k〉; D, T,W , B)

1 M ← W
2 while M has changed do
3 M1 ← {X ∈ V\M\B\{T } : T �/ X |M}
4 if M1 
= ∅ then
5 M2 ← refined M1 according to

exclusion of SEI
6 Y ← k∗ nodes from M2 with highest

associations
7 M ← M ∪ Y
8 end
9 end

//shrinking phase: M ← BW(D, T, M,W)

1 foreach X ∈ M\W do
2 if T �X |M\{X} then
3 M ← M\{X}
4 end
5 end
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algorithm, the function fD denotes a heuristic measurement of the association between
variables based on the data D (Tsamardinos et al. 2003a; Peña et al. 2007). Two widely used
selections for fD are CMI (Cheng et al. 2002; Tsamardinos et al. 2003a) and the negative
p value (Tsamardinos et al. 2006; Aliferis et al. 2010a, b; Statnikov et al. 2013). This paper
employs the latter. Yaramakala (2004) also suggested an equivalent version of the negative
p value.

KIAMB is a stochastic extension ofIAMB. It embeds a randomization parameter K ∈ [0, 1]
used to trade off greediness and randomness. If taking K = 1, KIAMB reduces to IAMB.
Peña et al. (2007) proved the correctness of KIAMB under the composition assumption. By
the proof, the local composition assumption is sufficient for this algorithm to be correct.
Its pseudo code is also described in Algorithm 1. In the growing phase of KIAMB, K ∗ =
max{1, �|M1| · K �}.

It is noted here that Algorithm1 predefines a whitelist W and a blacklist B, which can
be determined by virtue of expert knowledge or empirical information. In the original IAMB
and KIAMB, both W and B are taken as the empty set by default.

Recall that a CI test for a hypothesis is said to be correct if the corresponding statistical
decision is correctly made by using a testing method. Based on this terminology, the cor-
rectness of IAMB and KIAMB is presented as follows (Tsamardinos et al. 2003a; Peña et al.
2007; Statnikov et al. 2013).

Theorem 1 (Correctness of IAMB and KIAMB) Assume T satisfies the local composition
assumption, and all CI tests are correct. Then (i) IAMB outputs an MB of T ; (ii) KIAMB
outputs an MB of T for any K ∈ [0, 1].

By this theorem and the two examples presented in Sect. 1, IAMB and KIAMB may fail
to output an MB when some CI tests are incorrect or local composition is violated. In what
follows, we give a naive definition for the outputs of these algorithms and then make a further
discussion. Note that anMB can be equivalently defined to be anyMb such that T �/ N|M\N
holds for any nonempty N ⊆ M, in view of the contraction property and the decomposition
property.

Definition 3 For T ∈ V , we call M ⊆ V\{T } a weak Markov blanket (WMb) of T if
T �X |M for any X ∈ V\M\{T }. Further, a weak Markov boundary (WMB) of T is any
WMb such that T �/ N|M\N holds for any nonempty N ⊆ M.

This definition is introduced to characterize the true output of an existing MB discovery
algorithm (such as IAMB or KIAMB) in the case that local composition is violated. One did
not care about such a definition in the early literature because the faithfulness condition or the
composition property (and thus local composition) was usually assumed to be a precondition
in an MB algorithm; but this definition becomes necessary if we try to explore what are
influencing the efficiency of the existing MB discovery algorithms. “Appendix 1” gives a
further explanation about why we define the notion of WMB in this way. Clearly, a WMb
is an Mb under local composition, while a WMB is an MB under the same assumption. The
following theorem describes the relation between Definition3 and Algorithm1.

Theorem 2 Assume all CI tests are correct. Then IAMB or KIAMB for any K ∈ [0, 1]
outputs a WMB of T .

Proof Denoting the output of IAMB or KIAMB at the end of the growing phase by M, it
is clear that M is a WMb, since T �X |M holds for any X ∈ V\M\{T } owing to the exit
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condition. Let the final output of either algorithm be N ⊆ M. Without loss of generality,
assume that M\N = {X1, . . . , Xk} and that k � 1, in which X1, . . . , Xk are removed from
M in sequence, that is, T �Xi |M\{X1, . . . , Xi } holds for i = 1, . . . , k. By the chain rule
for CMI, we have

I(T ; M\N|N) = I(T ; {X1, . . . , Xk}|M\{X1, . . . , Xk})
= ∑1

i=k I(T ; Xi |M\{X1, . . . , Xi }) = 0,

so T �M\N|N , which combined with T �X |M (or equivalently, T �X |(M\N) ∪ N) and
the contraction property implies T �(M\N) ∪ {X}|N . By the decomposition property, this
further means T �X |N holds for any X ∈ (V\M\{T }) ∪ (M\N) = V\N\{T }. Hence, N
is WMb.

Finally, we prove N is a WMB. In fact, suppose there is some nonempty {Y1, . . . , Y�} �
Y ⊆ N such that T �Y |N\Y . Here, the exit condition of the shrinking phase means � � 2.
It follows that

0 = I(T ;Y |N\Y) = I(T ; {Y1, . . . , Y�}|N\{Y1, . . . , Y�})
= I(T ; {Y2, . . . , Y�}|N\{Y1, . . . , Y�}) + I(T ; Y1|N\{Y1})
� I(T ; Y1|N\{Y1}) � 0.

Therefore, I(T ; Y1|N\{Y1}) = 0, which contradicts T �/ Y1|N\{Y1} according to the exit
condition of the shrinking phase. This indicates N is a WMB. The proof is completed. ��

Based on the notion of WMb, we relax the local composition assumption as follows:

Definition 4 (Markov local composition) We say T ∈ V satisfies the Markov local compo-
sition property, if T satisfies the local composition property with respect to any WMb of T
or, equivalently, if every WMb of T in V is an Mb.

As seen, IAMB and KIAMB remain correct under the Markov local composition assump-
tion. This is why we call them both LCMB algorithms.

4 LRH algorithm: lessen swamping, resist masking, and highlight the true
positives

This section addresses the problem of (P1) posed in Sect. 1. First, we exemplify the situations
that some CI tests are incorrect, even when the data size is large. Then, we analyze how to add
as few false positives as possible to the CMb and thus to reduce the incorrectness of CI tests
such that swamping and masking get alleviated. Finally, we present the resulting algorithm
called LRH, which can lessen swamping, resist masking, and highlight the true positives.

4.1 An exemplification

Consider the well-known ALARM network (Beinlich et al. 1989), which is shown in Fig. 3.
Observe that there are many situations of multiple channels for the flow of information. In
these situations, IAMB may suffer swamping and masking caused by the incorrectness of
some associated CI tests. For example, taking T � X2 with MT � {X23, X27, X29} as
its unique MB under the faithfulness condition, the detailed operating steps of discovering
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Fig. 3 ALARM network with 37 nodes and 46 edges used to illustrate that the incorrectness of some CI tests
may lead to swamping and masking due to the multiple channels for the flow of information. For example,
{X23, X27, X29} is the uniqueMBof X2 under the faithfulness condition. However,IAMB outputs an incorrect
MB, {X4, X18, X23}, while LRH outputs the true MB

Table 1 Details of IAMB for discovering the MB, {X23, X27, X29}, of T � X2 in the ALARM network with
α = 0.05, based on a data set of size 5000

Phase Iteration Results of IAMB

Growing 1 M = ∅

fD(T ; X1|M) = maxX∈V\M\{T } fD(T ; X |M) � −α.

Conclusion: M ← M ∪ {X1}.
2 M = {X1}

fD(T ; X4|M) = maxX∈V\M\{T } fD(T ; X |M) � −α.

Conclusion: M ← M ∪ {X4}.
3 M = {X1, X4}

fD(T ; X18|M) = maxX∈V\M\{T } fD(T ; X |M) � −α.

Conclusion: M ← M ∪ {X18}.
4 M = {X1, X4, X18}

fD(T ; X23|M) = maxX∈V\M\{T } fD(T ; X |M) � −α.

Conclusion: M ← M ∪ {X23}.
5 M = {X1, X4, X18, X23}

maxX∈V\M\{T } fD(T ; X |M) ≈ −1.0000 < −α

Conclusion: the growing phase ends, and the obtained Mb is {X1, X4, X18, X23}.
Shrinking 1 M = {X1, X4, X18, X23}

fD(T ; X1|M\{X1}) ≈ −1.0000 < −α

Conclusion: X1 is removed from the CMb.

2 M = {X4, X18, X23}
fD(T ; Xi |M\{Xi }) ≈ −0.0000 � −α, for i = 4, 18, 23.

Conclusion: the shrinking phase ends, and the obtained MB is {X4, X18, X23}.
Conclusion: IAMB outputs {X4, X18, X23} as the MB of T , which is incorrect.

The association is taken as the negative p value of the G2-test. In the growing phase, IAMB adds the nodes
X1, X4, X18, and X23 in sequence to the CMb; in the shrinking phase, IAMB removes X1 from the CMb.
Thus, IAMB incorrectly outputs {X4, X18, X23} as the MB of T . The same result is returned when taking α

as 0.01 or 0.005 or 0.001

the MB is presented in Table1. Following the steps in the table, IAMB first adds X1, X4,
X18, and X23 to the CMb, and then removes X1. This algorithm outputs an incorrect MB,
{X4, X18, X23}, for the target T . As seen, swamping occurs since the two true positives, X27
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and X29, become false negatives; masking also follows because the two true negatives, X4

and X18, become false positives by the end of the shrinking phase.
We now analyze why swamping and masking happen by virtue of Fig. 3. Note that T

contains the information propagated by X23, X27, and X29. By means of these three nodes,
there are no fewer than two disjoint links without any converging nodes for the flow of
information between T and one of X1, X4, and X18. Specifically, we have

• T ← X23 (or X27) → X22 → X1 and T ← X29 → X1 connect T and X1;
• T ← X23 (or X27) → X22 → X4 and T ← X29 → X21 → X15 → X4 connect T and

X4;
• T ← X29 → X28 → X18 and T ← X23 (or X27) → X22 → X21 → X19 → X18

connect T and X18.

This means X1 or X4 or X18 has higher association with T than each of X23, X27, and X29,
so X1, X4, and X18 enter the CMb in sequence in the growing phase. After adding X23, the
remaining two true positives (i.e., X27 and X29) are excluded, due to the incorrectness of the
following two CI tests:

• The true CMI, I(T ; X27|X1, X4, X18, X23) ≈ 0.0331 > 0, indicating T �/ X27|{X1, X4,

X18, X23}, but the p value of the G2-test, pD(T ; X27|X1, X4, X18, X23) ≈ 1.0000, is
far larger than α, meaning the opposite assertion T �X27|{X1, X4, X18, X23};

• The true CMI, I(T ; X29|X1, X4, X18, X23) ≈ 0.0352 > 0, indicating T �/ X29|{X1, X4,

X18, X23}. On the other hand, pD(T ; X29|X1, X4, X18, X23) ≈ 1.0000 � α asserts
T �X29|{X1, X4, X18, X23}.

This explains why the incorrectness of some CI tests may lead to swamping. Further, in the
shrinking phase, the two false positives, X4 and X18, can not be identified, because not all
information about T is shielded since X27 and X29 are excluded. This means masking may
follow if swamping occurs.

This analysis shows the incorrectness of CI tests may bring swamping and masking. How-
ever, we need to use “all CI tests are correct” as a precondition for an MB algorithm. Hence,
what we can do is to reduce the incorrectness of CI tests as far as possible. Considering an
incorrect CI test is usually the case of accepting a false hypothesis (Cochran 1954; Bromberg
and Margaritis 2009), a good MB algorithm should add as few false positives as possible to
the CMb in the growing phase, because too many false positives may make the detection of
a true dependence hard.

4.2 Method

Example1 presents a simplified scenario where swamping and masking happen due to the
incorrectness of CI tests. By the graphical structure that (a) of Fig. 1 illustrates, the target T
propagates its information to X , Y1, and Y2. Then, Y1 and Y2 transmit the information to Z . In
otherwords, Z collects the information about T throughY1 andY2, so it may carrymore infor-
mation about T than either Y1 or Y2. Mathematically, I(T ; Z) � max{I(T ; Y1), I(T ; Y2)}
may hold. This indicates Z has spuriously high association with T . For a larger BN such as
the ALARM network, there may be many similar nodes to Z . Hence, we can add as few false
positives as possible to the CMb by identifying such nodes.

Suppose the transmission via Y2 is blocked as (b) of Fig. 1 shows. That is, T → Y1 → Z
becomes the only remaining channel between T and Z . In this case, the data-processing
inequality (Cover and Thomas 2006) gives I(T ; Z |Y2) � I(T ; Y1|Y2). Similarly, if the trans-
mission via Y1 is blocked as shown in (c) of Fig. 1, then I(T ; Z |Y1) � I(T ; Y2|Y1). This
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means Z can no longer effectively collect the information about T once one or more chan-
nels between T and Z are blocked, so Y1 or Y2 will enter the CMb before Z . Without loss
of generality, suppose the CMb is obtained as M � {X, Y1} after two steps of the growing
phase. Then, further blocking implies T �/ Y2|M∪{Z} and T �Z |M∪{Y2}. Hence, Y2 enters
M and thus M = {X, Y1, Y2}. Finally, T �Z |M, meaning the growing phase ends.

As seen, the method of blocking one or more information channels can add as few false
positives as possible to the CMb in the growing phase, because the remaining information
(after blocking information channels) about T carried by one node is closer to the true unique
information about T carried by this node. Therefore, this method can reduce swamping and
masking caused by the problem of (P1).

Motivated by this idea, denoting the CMb by M, we select the subsequent additions
according to the following selection-exclusion-inclusion (SEI) procedure:

(a) Selection Let M1 � {X ∈ V\M\B\{T } : T �/ X |M} be the set of all nodes having
information channels reaching T other than those through M. The nodes in M1 are the
candidates preparing to enter the CMb in the current step.

(b) Exclusion If M1 is empty, the shrinking phase ends; if |M1| = 1, add the only node
in M1 to M and then go to (a) of the next iteration; otherwise, the method of blocking
information channels is used. Put M2 � {X ∈ M1 : T �/ X |M ∪ {Z} holds for any Z ∈
N X } and M3 � M1\M2, in which N X � {Y ∈ M1\{X} : X �/ Y |M} denotes the set of
all nodes having information channels reaching T and X other than those through M.
This heuristic is inspired by the notion of 1-step dependence coefficient (de Campos
2006; Martínez-Rodríguez et al. 2008; Lee et al. 2012). If M2 = ∅, modify it as
M2 � {Y } with Y = argmaxX∈M1 fD(T ; X |M). All nodes in M3 (with spuriously
high dependence on T ) are excluded. This step can effectively reduce the possibility of
adding too many false positives to the CMb. A further discussion about the exclusion
procedure is given in Sect. 7.

(c) Inclusion Let Y be a set of k∗ � min{k, |M2|} nodes from M2 with the highest associ-
ations with T : take

gD(T ; X |M, N X ) = min
Z∈NX

fD(T ; X |M ∪ {Z}) (2)

and let Y = {X(1), . . . , X(k∗)}, with gD(T ; X(1)|M, N X(1) ) � · · · � gD(T ; X(|M2|)
|M, N X(|M2 |) ). Add the nodes in Y to M. Here, k (� 1) is the maximal number of nodes
entering the CMb at each iteration. This paper uses k = 3.

Repeat (a)(b)(c) until the exit condition stated in (b) is satisfied (i.e., M1 is empty). After
that, refine M by virtue of the shrinking phase.

This is the basic method of designing the new algorithm, LRH (presented in the next
subsection). It will be seen that the algorithm performs well in lessening swamping, resisting
masking, and highlighting the true positives. This is why we call it the LRH algorithm.

4.3 LRH algorithm with application to the ALARM network

By the description given in Sect. 4.2, we present the LRH algorithm in Algorithm1. LRH
consists of two phases: in the growing phase, the SEI procedure is iteratively implemented to
search anMbwhich contains as few false positives as possible; in the shrinking phase, theMb
is refined to become an MB. Specifically, the selection, exclusion, and inclusion procedures
of SEI are implemented in Line 3, Line 5, and Line 7, respectively, in the growing phase of
LRH. As the following theorem shows,LRH is correct under the local composition assumption
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or the Markov local composition assumption. Hence, LRH is also an LCMB algorithm. The
proof of this theorem is similar to that of Theorem2, so we omit it here.

Theorem 3 (Correctness of LRH) Assume all CI tests are correct. Then LRH outputs a WMb
of T for any k � 1. Further, if T satisfies the (Markov) local composition assumption, then
LRH outputs an MB of T .

Now we consider the computational complexities of the three LCMB algorithms. Usually,
the number ofCI tests canbe employed tomeasure the complexity of aCI-basedMBdiscovery
algorithm (Tsamardinos et al. 2003a, 2006; Aliferis et al. 2010a). In this sense, IAMB and
KIAMB have the same complexity O(|V | · |MT |) in the average case. By direct analysis, the
complexity of LRH is O[(|V | + |MT |2)·|MT |/k]. As we can see, LRH may need more CI
tests than IAMB or KIAMB in each iteration; however, there may be fewer iterations in the
growing phase of LRH, since multiple nodes are allowed to enter the CMb in each iteration
(see, e.g., Tables1 and 2 for an illustration). Also, the shrinking phase may also need fewer
iterations because LRH usually add fewer true negatives to the CMb than IAMB or KIAMB by
the end of the growing phase. Therefore, LRH is also time efficient like IAMB and KIAMB.

To demonstrate how LRH works, we apply this algorithm to the ALARM network. The
detailed operating steps of LRH for discovering the MB of T � X2 are presented in Table2.
Following the steps in the table, LRH first adds {X29, X23, X21} and {X27} to the CMb, and
then removes the only one false positive, X21. As expected, the two nodes, X4 and X18, with
spuriously high dependence on the target are successfully identified before the inclusion
procedure of SEI and, therefore, they will no longer swamp the true positives, X27 and X29.
In comparison,IAMB adds these two (plus another) nonmembers of the trueMB, namely, X1,
X4, and X18; the two true positives, X27 and X29, are then swamped. Although X1 is finally
removed, X4 and X18 continue to mask themselves, so IAMB gives an incorrect output.

There are many other similar situations for this network. Table3 lists the results of the
three LCMB algorithms (i.e., IAMB, KIAMB, and LRH) for all the 37 nodes as targets. For
KIAMB, we take K as 0.2, 0.5, and 0.8; all results for each KIAMB are averaged over five
runs. This table consists of two aspects: MB and relative efficiency (RE), in which the RE of
an obtained MB, M, is defined as

RED(M, T ) � min {ID (T ; M)/ID (T ; MT ), 1} . (3)

This statistic is a naive estimate for RE(M, T ) � I(T ; M)/I(T ; MT ), which measures the
performance that M carries the information about T . Table3 indicates that:

• LRH retrieves 21 and 3Mbs; IAMB retrieves 8 and 5Mbs; and KIAMB with K = 0.5 or
K = 0.8 performs nearly as well as IAMB, while KIAMBwith K = 0.2 performs poorly.
Further, LRH possesses 34 out of the 37 maximal REs; IAMB possesses 14 maximal
REs; and KIAMB with K taken as 0.2, 0.5, and 0.8 possess 5, 12, and 12 maximal REs,
respectively. This indicates LRH improves on IAMB and KIAMB greatly. The results also
reveal that it is reasonable to use RE to measure the performance that a potential MB
carries the information about the target. In addition, it should be mentioned here that each
LCMB algorithm outputs several Mbs (supersets of the true MBs) after implementing the
BW function (see Algorithm1 for details). This type of masking is the consequence of the
incorrectness of some associated CI tests. The next subsection will discuss this issue and
provides an effective post-processing technique, called PostBW, to alleviate this type of
masking.

• There are 12 cases where LRH outputs a proper subset of the true MB, and 9 such cases
for IAMB. As seen, in any one such case for IAMB, LRH also outputs a proper subset
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Table 3 Results of the LCMB algorithms applied to the ALARM network based on a data set of size 5000
(α = 0.05)

The backcolors are specified as follows: “ ” denotes here is the largest RE; “ ” denotes the true MB is
found; “ ” denotes a proper subset of the true MB is found; “ ” denotes an Mb (instead of an MB) is
found; others have no backcolor

of the true MB (5 cases) or the true MB (4 cases), but not vice versa. Therefore, LRH
performs better in lessening swamping than IAMB. Taking X12 as the target for example,
IAMB adds X5, X7, X8, X9, X10, X13, and X34 to the CMb in its growing phase, and
then removes X5, X7, X8, and X9 in its shrinking phase to output {X10, X13, X34} as
the MB of X12; LRH adds X10, X13, X16, and X34 to the CMb in the growing phase,
and no nodes are removed in the shrinking phase. As seen, X16 is a spouse node of X12
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Table 4 Average REs and RTs of the LCMB algorithms applied to the ALARM network based on 10 data sets
of different sizes (from 500 to 5000): each result is averaged over all the 37 nodes as targets

The backcolor indicates the performance of each algorithm with black corresponding to the maximal RE and
blue to the minimal (for each case of data size)

but IAMB fails to include it. This is because IAMB adds too many false positives (i.e.,
X5, X7, X8, and X9) in its growing phase such that the CI test for the true dependence
X12 �/ X16|{X5, X7, X8, X9X10, X13, X34} incorrectly accepts the false hypothesis. LRH
outputs the trueMBof X12. Similarly, if taking X25 as the target,IAMB also fails to include
the spouse node X24, while LRH can output the true MB, {X23, X24, X26}.

• For IAMB, there are 15 cases in which the outputs excludes one or more true positives
and includes some false positives. This means IAMB suffers swamping and masking
severely. In comparison, LRH yields only one such output; it successfully prevents those
spuriously dependent variables from entering the CMb in most situations by virtue of
the SEI procedure. Therefore, the heuristic involved in SEI is effective in lessening
swamping, resisting masking, and highlighting the true positives.

By the above results, although LRH needs the same conditions for its correctness as IAMB
and KIAMB, this algorithm is expected to be of higher performance than the other two
LCMB algorithms for most situations in collecting the information about the target. To check
whether this assertion holds for various data sizes, we implement the three LCMB algorithms
on the ALARM network based on 10 data sets of sizes from 500 to 5000. The first part
of Table4 presents the corresponding REs, in which each result is averaged over all the 37
nodes as targets; the results for KIAMB are averaged over five different runs. By the table,
LRH performs much better than IAMB and KIAMB in all cases; it can collect over 96% of
the information about the targets when n = 2000. This shows the data efficiency of the LRH
algorithm.

Additionally, the average running time (RT; in seconds) of each LCMB algorithm is listed
in the second part of Table4. By the table, there is no significant difference between the RT
of LRH and that of IAMB and KIAMB. Therefore, all the three LCMB algorithms are time
efficient.
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4.4 PostBW: a post-processing technique

As we know, any Mb (resp., WMb) of a target will become an MB (resp., WMB) after being
processed by BW, if all the CI tests involved are correct. However, Table3 reveals that some
false positives may remain in the Mb if some CI tests are incorrect. This subsection puts
forward a post-processing technique, called PostBW, to alleviate such a type of masking.
This technique is pseudo-coded in Algorithm2.

Theorem 4 Let M be any WMb (resp., an Mb) of T . Then, M is a WMB (resp., MB) of T if
and only if, for any X ∈ M, there is no Y ∈ V\M\{T } such that

T �X |(M\{X}) ∪ {Y } and (4)

T �Y |M\{X} (5)

hold simultaneously.

Before presenting the proof, we explain why PostBWmay work after implementing BW.
In fact, if a WMb (resp., an Mb), M, is not a WMB (resp., an MB) of T , then

T �X |M\{X} (6)

holds for some X ∈ M. However, if the corresponding CI test is incorrect, X will remain in
M and thus masking occurs; in this case, the way of identifying false positives from a WMb
orMb bymeans of the BW procedure becomes invalid. Theorem4 provides an alternative way
for this purpose. Imagine that a false positive can enter the CMb in the growing phase because
it possesses the aptitude of masking itself, and this false positive continues to mask itself in
the shrinking phase. In this scenario, BW only employs the members of M, so it may fail to
identify all false positives; alternatively, PostBW employs the members and nonmembers of
M simultaneously, so it may find some false positives that are accepted by BW. This is why
PostBW may further work after implementing the BW procedure.

Proof We first prove the necessity. Suppose there is some X ∈ M and some Y ∈ V\M\{T }
such that (4) and (5) hold simultaneously. Then, T �{X, Y }|M\{X}, in viewof the contraction
property, so (6) follows from the decomposition property. Consider the case thatM is aWMb,
that is, T �Z |M holds for any Z ∈ V\M\{T }. Equivalently, we have T �Z |(M\{X})∪{X}.

Algorithm 2: PostBW and InterPostBW
Procedure: M ← PostBW(D, T, M,W , B) and M ← InterPostBW(D, T, M,W , B)

Input: D is a data matrix; T is the target; M is a WMb (resp., an Mb) of T ; W is a whitelist; B is a
blacklist.

Output: The output, M, is a WMB (resp., MB) of T .

//M ← PostBW(D, T, M,W , B)

1 while M has changed do
2 if ∃ X ∈ M\W & Y ∈ V\M\B\{T } s.t.

(4)(5) then
3 M ← M\{X}
4 end
5 end
6 return M

//M ← InterPostBW(D, T, M,W , B)

1 while M has changed do
2 M ← BW(D, T, M,W)

3 if M has not changed then
4 if ∃ X ∈ M\W & Y ∈ V\M\B\{T } s.t.

(4)(5) then
5 M ← M\{X}
6 end
7 end
8 end
9 return M
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This combined with (6) and the contraction property implies T �{Z , X}|M\{X}. Hence,
T �U |M\{X} holds for anyU ∈ (V\M\{T })∪{X} = V\(M\{X})\{T }). This contradicts
that M is a WMB. In the case that M is an Mb, we can similarly verify T �V\(M\{X}) \
{T }|M\{X}, which contradicts that M is an MB. The proof of the necessity is completed.

Now we show the sufficiency. For any X ∈ M and Y ∈ V\M\{T }, (4) and (5) do not
hold simultaneously. In other words, I(T ; X |(M\{X}) ∪ {Y }) > 0 or I(T ; Y |M\{X} > 0.
On the other hand, T �Y |M holds since M is a WMb (or an Mb), so I(T ; Y |M) = 0. By
the chain rule for CMI, we have

I(T ; X |M\{X}) = I(T ; {X, Y }|M\{X}) − I(T ; Y |(M\{X}) ∪ {X})
= I(T ; {X, Y }|M\{X}) − I(T ; Y |M)

= I(T ; Y |M\{X}) + I(T ; X |(M\{X}) ∪ {Y }) − 0

> 0.

Therefore, T �/ X |M\{X} holds for any X ∈ M. By Theorem2 (resp., Theorem1), M is a
WMB (resp., an MB) of T . The proof of the sufficiency is also completed. ��

To examine the performance of PostBW, we apply this procedure to the Mbs of X3, X6,
X8, X11, and X32 outputted by IAMB and LRH (see Table3 for details). All the false positives
accepted by BW are identified by PostBW and all the true MBs for these five targets are
correctly discovered, except that the MB of X11 is obtained as {X34, X36}. This shows that
PostBW improves on BW substantially.

The computational complexity will increase if using PostBW: this procedure needs to do
O(|V | · |MT |) extra CI tests. A feasible solution for alleviating the resulted computational
cost is to interleave PostBW with BW. Following this idea, we first implement BW in each
iteration, and then activate PostBW if BW stops (in each iteration). For convenience, we call
this interleaved procedure to be InterPostBW, and present its pseudo code in Algorithm2.
Finally, we applyInterPostBW to theMbs of X3, X6, X8, X11, and X32 outputted byIAMB
and LRH. The results indicate InterPostBW has the same performance as PostBW in the
sense of RE but it needs less RT for most situations.

5 WLCMB algorithmic framework

Section4 considered the problem of (P1) and proposed the LRH algorithm. As we saw, LRH
is time efficient andmuchmore data efficient than IAMB and KIAMB. However, as Example2
shows, the Markov local composition assumption may be violated in practice and, if this is
the case, LRH and the other two LCMB algorithms will stop to search before finding a true
MB. In this section, we consider the problem of (P2) as follows: analyze why swamping and
masking occur in the case of violating the Markov local composition assumption, discuss
how to overcome them by resuming the stopped search of LCMB, and build a corresponding
algorithmic framework.

Recalling Example2 considered in Sect. 1, IAMB incorrectly outputs {Z} as the MB of T ,
meaning the two true positives (i.e., X andY ) are swamped by Z , and the false positive (i.e., Z )
successfully masks itself. This indicates the dynamic heuristic in the growing phase of IAMB
may lead to swamping, which may further bring masking. Similarly, LRH incorrectly outputs
{Z} as the MB of T , so LRH is also invalid for this type of swamping and masking. We also
find that KIAMB as a random version of IAMB may discover the true MB if implementing
it repeatedly; but this possibility is low. In addition, GS may find the true MB but this
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depends on the preassigned priority of variables checked in every search; swamping and
masking will happen if, for example, the priority is “Z , X, Y ” or “Z , Y, X”. Thus, LCMB
may prematurely terminate the growing phase if the CMb shields T from every remaining
single variable.

Let M be a true MB of T in V , and MA � (M\X)∪Y be the output of an MB discovery
algorithm, A. Under the assumption that all CI tests are correct, Theorems2 and 3 show that
MA is a WMB of T in V . Further, MA is not an MB (and thus also not an Mb), if the local
composition assumption with respect to MA is violated. In this case, X 
= ∅, so swamping
must occur. The questions are then: (1) why some useful information about T carried by
some variables in V\M\{T } can not be captured successfully by A? (2) how to resume the
stopped search of A?

For convenience, we denote X � {Xi1 , . . . , Xik }. First, we note the following conclusions:
• T �/ X|MA: On the one hand, M is an MB, meaning T �V\M\{T }|M, so T �V\(M ∪

Y)\{T }|(M∪Y ) in view of theweak union property. Equivalently, we have T �V\(MA∪
X)\{T }|(MA ∪ X). On the other hand, MA is not an Mb. Suppose T �X|MA, then the
contraction property indicates

T �V\(MA ∪ X)\{T }|(MA ∪ X)

T �X|MA

}

⇒ T �V\MA\{T }|MA,

which contradicts that MA is not an Mb of T . Hence, T �/ X|MA.
• k � 2, and T �Xi� |MA holds for any � = 1, . . . , k: MA is a WMB (and thus a WMb)

of T .
• T �/ N|MA\N holds for any nonempty N ⊆ MA: This is because MA is a WMB of T .

The first two conclusions mean those true positives in X are swamped by MA; the idea
of the third one will be used in Definition5. As seen in Example2, the local composition
assumption will be violated, if MA contains all unique information and all redundant infor-
mation about T carried by each Xi� as well as some (but not all) synergistic information
about T carried jointly by Xi1 , . . . , Xik . That synergistic information about T carried jointly
by Xi1 , . . . , Xik and also by MA swamps the remaining useful information about T carried
by Xi1 , . . . , Xik but not by MA. In this sense, swamping occurs and the search of LCMB ends;
masking may then follow.

Definition 5 (WMB-supplementary) For T ∈ V , let MA be aWMBof T in V . For S ⊆ MA,
we call NS (⊆ V\MA\{T }) a WMB-supplementary of S, if the following two conditions
hold: (1) (MA\S) ∪ NS is a WMb of T in V\S; and (2) T �/ N|(MA\S) ∪ (NS\N) holds
for any nonempty N ⊆ NS, if NS 
= ∅.

The analysis before Definition5 provides a method of resuming the search of LCMB: if
putting a set of all (or part) of nodes from MA, say S, into the blacklist temporarily, some
swamped information may be detected, so the search can continue. For convenience, we call
S a swamping set. Observing again Example2, X and Y are no longer swamped if removing
Z temporarily. Example3 presented in the appendix gives a similar inspiration. If we can
find one swamping set, S, then we remove it temporarily to search the variables swamped by
S.

In practice, we can not seek S directly; instead,wemay check every possible subset ofMA.
The resulted heuristic is as follows: for any nonempty S ⊆ MA, find aWMB-supplementary
of it, NS. (1) If S is a swamping set, some of those variables (saying Xi1 , . . . , Xik ) swamped
by S may be found and thus enter NS. Xi1 , . . . , Xik contain some synergistic information
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about T , some of which is carried by S and thus by MA, and some other may not be carried by
MA. This means T �/ NS|MA. (2) Conversely, if S is not a swamping set, then T �NS|MA.
In this sense, if T �NS|MA holds for every S(⊆ MA), we may think T has no swamping
set, so in this case it is reasonable to assume T satisfies local composition with respect to
such a WMB, MA. Otherwise, once a swamping set, S, is found, the growing phase stopped
in A may resume, and we can update MA based on MA and S. Repeat this procedure until
no swamping sets can be found. This is a potentially feasible solution to the problem of
(P2).

Following this way, we construct an LCMB-based algorithmic framework called WLCMB.
Here, “W” refers to as “weak”; we call it WLCMB because it can output an MB under the weak
Markov local composition assumption defined as below.

Definition 6 (Weak Markov local composition) We say T satisfies the weak Markov local
composition property, if every WMB, MA, of T satisfying the following condition is an MB
of T : any S ⊆ MA has a WMB-supplementary NS such that T �NS|MA.

The pseudo code of WLCMB is described in Algorithm3. By the algorithm, WLCMB inter-
leaves LCMB (i.e., Line 7 of Algorithm3) with the search-resuming procedure (i.e., Line 9,
and Line 10 of Algorithm3) by virtue of the ImpWMB function. If taking A as IAMB, KIAMB,
and LRH, the corresponding WLCMB algorithm will be called WIAMB, WKIAMB, and WLRH,
respectively. Moreover, the BW procedure in Algorithm3 can also be replaced with PostBW
or InterPostBW.

Theorem 5 (Correctness of WLCMB) Assume all CI tests are correct. Then WLCMB outputs a
WMB of T for any LCMB algorithm taken from {IAMB,KIAMB,LRH}. Further, if T satisfies
the weak Markov local composition assumption, then WLCMB outputs an MB of T .

Proof Put NS � MS\(M\S), where MS is derived in Line 7 of Algorithm3. Similar to the
proofs of Theorems2 and 3, it can be shown that NS is a WMB-supplementary of S. Denote
the outputs of Line 1, Line 7, Line 9, and Line 10 in the k-th iteration (k � 1, if possible) by
M(0), M(k)

S , M(k)
FW , and M(k), respectively, before the iterated procedure ends. Then, by the

fact that FW collects more information about T while BW removes redundant variables only,
we have I(T ; M(0)) < I(T ; M(1)), and

Algorithm 3: WLCMB
Procedure: M ← WLCMB(A; D, T,W , B)

Input: A is an LCMB algorithm;
D is a data matrix; T is the target; W is a whitelist; B is a blacklist.
Output: The output, M, is an MB of T under the weak Markov local composition assumption.

//main procedure: M ← WLCMB(A; D, T,W , B)

1 M ← LCMB(A; D, T,W , B)

2 while M has changed do
3 M ← ImpWMB(A; D, T, M,W , B)

4 end
5 return M

//sub-routine:
M ← ImpWMB(A; D, T, M,W , B)

6 foreach S ⊆ M\W do
7 MS ← LCMB(A; D, T, M\S, B ∪ S)

8 if T �/ MS\(M\S)|M then
9 MFW ← FW(A; D, T, MS ∪ S, B)

10 M ← BW(D, T, MFW,W)

11 break
12 end
13 end
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I
(
T ; M(k−1)

)

< I
(
T ; M(k−1)

) + I

(
T ; M(k)

S \ (
M(k−1)\S) |M(k−1)

)
(“ <′′ is due to Line 8)

= I

(
T ;

[
M(k)

S \ (
M(k−1)\S)] ∪ M(k−1)

)
(using the chain rule for CMI)

= I

(
T ; M(k)

S ∪ S
) (

since M(k−1)\S ⊆ M(k)
S

)

� I

(
T ; M(k)

FW

)
(“ �′′ is due to Line 9)

= I
(
T ; M(k)

)
(“ =′′ is due to Line 10)

Therefore, the exit condition, T �NS|M holding for any S ⊆ M shown in Line 8, will be
satisfied after a number of iterations. Once the exit condition is satisfied, the weak Markov
local composition assumption indicates that the output of WLCMB is then an MB of T . The
proof is completed. ��

Recall Example2 presented in Sect. 1, where the Markov local composition assumption
is violated. Specifically, T �X |Z , T �Y |Z , T �/ {X, Y }|Z , and T �Z |{X, Y }. Using the
notations employed in the proof of Theorem5, we have

• IAMB and WIAMB: First, IAMB outputs M(0) = {Z}, which is not the MB of T . Taking
S = {Z} ⊆ M(0), we obtain M(1)

S = {X, Y }, meaning T �/ M(1)
S \(M(0)\S)|M(0) (i.e.,

T �/ {X, Y }|Z ). Further, M(1)
FW = {X, Y, Z} and M(1) = {X, Y }. Similarly, M(2) =

{X, Y } = M(1). Thus, WIAMB ends, outputing {X, Y } correctly.
• KIAMB and WKIAMB: The output of KIAMB may be M(0) = {X, Y } or M(0) = {Z}. In

either case, WKIAMB can output the correct MB. The details are omitted here.
• LRH and WLRH: First, LRH selects {X, Y, Z} and excludes {X, Y } in its SEI procedure.

Therefore, LRH outputs M(0) = {Z}. The remaining process of WLRH is similar to that
of WIAMB. Finally, WLRH outputs {X, Y } correctly.

This illustrates how WLCMB works when the Markov local composition assumption is vio-
lated.

To examine the performance of WLCMB algorithms, we apply them to the ALARM net-
work. Table5 presents the corresponding results, including the outputtedMBs of WIAMB and
WLRH for all the 37 nodes as targets. The REs of each WLCMB are also given. By Tables3
and 5, it is concluded that each WLCMB improves on the corresponding LCMB substantially.
Specifically, IAMB retrieves 8 and 5MBs, and yields 15 incorrect outputs, while WIAMB
retrieves 17 and 1MBs, and yields 12 incorrect outputs; LRH gives 21, 3MBs, and only one
incorrect output, while WLRH yields 25, 1MBs, and no incorrect outputs. The results also
show WLRH performs best.

Similar to Table4, the first part of Table6 lists the average REs of the three WLCMB
algorithms applied to the ALARM network based on the same 10 data sets, in which each
result is averaged over all the 37 nodes as targets. Comparing Table6 with Table4, it is seen
that WLCMB performs better than LCMB for all cases of data sizes and thus is more data
efficient.

Wemention that WLCMB has a higher computational complexity than LCMB: the complex-
ity of WLCMB is that of the associated LCMB multiplied by 2|M| in the average case. Hence,
WLCMB usually needs longer RT to yield a better output than LCMB. This can be seen from
the second part of Table6, which provides the average RT of the three WLCMB algorithms
applied to the ALARM network. The experimental results on several large networks given
in Sect. 6 also show this assertion. This means we should trade off the expected RE and RT
before deciding to select which MB discovery algorithm in practice.
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Table 5 Results of the WLCMB algorithms applied to the ALARM network based on a data set of size 5000
(α = 0.05)

The backcolors are the same as in Table3

6 Experimental results on large networks

Tables4 and 6 showed the superiority of LRH over IAMB and KIAMB in discovering an MB
of the target for small BNs. The results also demonstrated the effectiveness of our WLCMB
algorithmic framework in further improving the data efficiency of LCMB. This section applies
the algorithms to some large BNs, based on the data sets of size 5000 used by Tsamardinos
et al. (2006) andAliferis et al. (2010a). These data sets are available at http://www.dsl-lab.org/
supplements/JMLR2008/. The used networks are representatives of a wide range of problem
domains; Table7 lists the numbers of nodes and edges for them. Tsamardinos et al. (2006)
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Table 6 Average REs and RTs of the WLCMB algorithms applied to the ALARM network based on 10 data
sets of different sizes (from 500 to 5000): each result is averaged over all the 37 nodes as targets

and Aliferis et al. (2010a) provided more details about these networks and the used data sets.
For each BN, we also use a data set of size 2500 randomly drawn from the original data set
to evaluate the performance of the algorithms in data efficiency.

For each network, 10 nodes are randomly selected as targets. These targets are listed in
Table7. Besides the REs and RTs, we also compute the weighted area under ROC curve
(AUC) based on the naive Bayes classifier. For the case of size 5000, we randomly select
4000 instances as the training set and use the others as the testing set; for the case of size
2500, we randomly select 2000 and 500 out of 5000 instances as the training set and the
testing set, respectively. Table7 presents all the results. For each case, the AUC of the true
MB, MT , of the target is provided to compare how the performance of an algorithm is close
to the best. Each result is averaged over that of the 10 targets. In addition, according to the
recommendation of Peña et al. (2007) and the results given in Sects. 4 and 5, we take K = 0.8
in KIAMB and WKIAMB.

Table7 indicates our algorithms are applicable to large BNs. By the table, it is concluded
that: (1) for the three LCMB algorithms, LRH performs best in the senses of RE and AUC; (2)
for the three WLCMB algorithms, WLRH performs best in both senses; (3) for each LCMB and
its corresponding WLCMB, the latter improves the data efficiency of the former. In addition,
we note a natural conclusion that the results on the case of a larger data size aremore desirable
in most situations than that on the case of a smaller data size. In brief, LRH and WLRH have
the best performances in solving (P1) and (P2), respectively. Considering that WLRH usually
needs a longer RT than LRH as Sect. 5 analyzes, we should first trade off the RE and the RT
in practice and then choose between these two algorithms.

7 Conclusion and discussions

This paper considered two potential reasons for causing swamping and masking. For the
problem of (P1) that incorrect CI tests may lead to swamping and masking, we proposed the
LRH algorithm to alleviate the influence that swamping and masking brings under the local
composition assumption. The application to the ALARM network shows the superiority of
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Table 7 Results of LCMBs and WLCMBs applied to the six large BNs based on two data sets of sizes 5000 and
2500: average AUCs, average REs, and average RTs (in seconds)

LRH over the other two LCMB algorithms. For the problem of (P2) that the violation of local
compositionmay also lead to swamping andmasking, we put forward theWLCMB algorithmic
framework. Theoretically, WLCMB can improve LCMB, because LCMB stops searching once
local composition is violated with respect to the obtained WMb in the growing phase, while
WLCMB may break this abnormal exit and then continues to search those swamped true
positives. The further application to the ALARM network supports this theoretical argument.

Motivated by one referee,wemention that Tables3 and 5 also indirectly reflect the frequen-
cies of swamping andmaskingwith respect toIAMB orLRH orWIAMB orWLRH. Specifically,
in both tables, “ ” indicates neither swamping nor masking; “ ” indicates swamping (but
no masking); “ ” indicates masking (but no swamping); others indicate both swamping and
masking. In this sense, Table8 counts the frequencies that swamping or masking occurs when
applied to the ALARM network based on the used data set of size 5000. The results reveal
that LRH and WLRH perform much better than IAMB and WIAMB in lessening swamping and
resisting masking. The results also show that WIAMB (resp., WLRH) improves IAMB (resp.,
LRH) to some extent.

As a remark, we mention here that we modify M2 in the exclusion procedure of SEI if,
for any X ∈ M1, there is some Z ∈ N X such that T �X |M ∪ {Z} holds. See Sect. 4.2 for
details. In fact, in the case of modifying M2, there must be κ (� 2) variables in M1 (without

123



50 Mach Learn (2016) 104:25–54

Table 8 Frequencies of
swamping and masking for LCMB
and WLCMB when applied to the
ALARM network

Frequency IAMB LRH WIAMB WLRH

Swamping 24/37 13/37 19/37 11/37

Masking 20/37 4/37 13/37 1/37

loss of generality, denote them by X1, . . . , Xκ ) such that

T �X1|M ∪ {X2}, . . . , T �Xκ−1|M ∪ {Xκ }, T �Xκ |M ∪ {X1} (7)

hold simultaneously. If κ = |M1|, then M2 is empty before it is modified, so the search will
be stopped; however, T �/ X |M holds for any X ∈ M1, meaning M needs more variables
to shield T . In this case, we modify M2 as {Y } with Y = argmaxX∈M1 fD(T ; X |M). This
modification integrates the idea of IAMB such that LRH continues to search.

Here, we consider an alternative modification for M2 theoretically. Note that the CI
statements given in (7) combined with T �/ Xi |M (i = 1, . . . , κ) are similar to the definition
for information equivalence (Lemeire et al. 2012). Now, we show I(T ; M ∪ {X1}) = . . . =
I(T ; M ∪ {Xκ }), or equivalently,

I(T ; X1|M) = · · · = I(T ; Xκ |M). (8)

In fact, by (7) and the chain rule for CMI, we have

� � I(T ; X2|M ∪ {X1}) + · · · + I(T ; Xκ |M ∪ {Xκ−1}) + I(T ; X1|M ∪ {Xκ })
= [I(T ; X2|M) + I(T ; X1|M ∪ {X2}) − I(T ; X1|M)] + · · ·

+ [
I(T ; Xκ |M) + I(T ; Xκ−1|M ∪ {Xκ }) − I(T ; Xκ−1|M)

]

+ [I(T ; X1|M) + I(T ; Xκ |M ∪ {X1}) − I(T ; Xκ |M)]

= I(T ; X2|M) − I(T ; X1|M) + · · · + I(T ; Xκ |M) − I(T ; Xκ−1|M) + I(T ; X1|M)

− I(T ; Xκ |M)

≡ 0.

Combined with the nonnegativity of CMI, we obtain

I(T ; X2|M ∪ {X1}) = · · · = I(T ; Xκ |M ∪ {Xκ−1}) = I(T ; X1|M ∪ {Xκ }) = 0. (9)

It follows from (7), (9) that

I(T ; {X1, X2}|M) = I(T ; X1|M) + I(T ; X2|M ∪ {X1}) = I(T ; X1|M)

= I(T ; X2|M) + I(T ; X1|M ∪ {X2}) = I(T ; X2|M).

This means I(T ; X1|M) = I(T ; X2|M). Similarly, we can show (8) holds for κ � 2.
In the sense of (8), we call X1, . . . , Xκ to bemultiple information equivalent with respect

to T given M if T �/ Xi |M (i = 1, . . . , κ) and the CI statements contained in (7) hold. As
seen, in the case of κ = 2, the notion of multiple information equivalence reduces that of
information equivalence proposed by Lemeire et al. (2012). Note that multiple information
equivalence may exist in M1 even when M2 needs no modifications.

If multiple information equivalence exists, an alternative operation is to randomly take
one variable from every such case to constitute a new M2, and other procedures of SEI
remain unchanged. This idea may improve on the original SEI and thus LRH. Considering
that this operation needs an extra computational complexity and that the occasions ofmultiple
information equivalence are rare in practice, we discuss it no further.
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Appendix 1: Definition of WMB

This appendix explains why we define WMB using Definition3. For the definition of MB, it
is easily verified that the following two statements are equivalent: (a) M is an Mb of T and
none of its proper subsets is an Mb of T ; and (b) M is an Mb of T and T �/ N|M\N holds
for any nonempty N ⊆ M. However, replacing “Mb” with “WMb” in (a)(b), the resulting
statements, say (a′) and (b′), are no longer equivalent: (a′) implies (b′) but not vice versa.
Here is a counterexample.

Example 3 Consider a target variable T which has five potential features X , Y , Z0, Z1, and
Z2. Assume Z0 carries all of (1) the unique information about T carried by X , all of (2) the
unique information about T carried by Y , all of (3) the redundant information about T shared
by X and Y , and some (but not all) of (4) the synergistic information about T carried jointly
by X and Y ; each of Z1 and Z2 carries some of (1), some of (2), some of (3), but neither Z1

nor Z2 contains (4); Z1 and Z2 jointly carry some (but not all) of (4), which is different from
that Z0 carries. Then, we have

T �X |Z0, T �Y |Z0, T �X |{Z0, Z1, Z2}, T �Y |{Z0, Z1, Z2},
T �Z1|Z0, T �Z2|Z0, T �/ {Z1, Z2}|Z0 ⇒

{
T �/ Z1|{Z0, Z2}
T �/ Z2|{Z0, Z1}

T �/ Z0|{Z1, Z2} ⇒
{
T �/ {Z0, Z1}|Z2

T �/ {Z0, Z2}|Z1

It follows that:

• M1 � {Z0} is a WMb of T ; none of its proper subsets is a WMb of T (i.e., ∅ is not a
WMb of T ); and T �/ N|M1\N holds for any nonempty N ⊆ M1.

• M2 � {Z0, Z1, Z2} is a WMb of T ; T �/ N|M2\N holds for any nonempty N ⊆ M2;
but its proper subset M1 is also a WMb of T , and none of the proper subsets of M1 is a
WMb of T .

• I(T ; M1) < I(T ; M2).

On the one hand, the implication, (a′)⇒ (b′), means a “WMB” defined by (a′) is minimal
in the sense of (b′); on the other hand, Example3 means a WMB, M, defined by (b′) may
have a proper subset satisfying (a′) and this proper subset contains less information about T
than M. In other words, a WMB defined by (b′) can carry more information about T than
a “WMB” defined by (a′). Recall that an MB is in the sense that (1) it is a refined Mb and
it contains no any redundant variable, and (2) no information is lost when refining it. This
motivates us to define the notion of WMB in a similar fashion: if M is a WMb and its subset,
N , is aWMB, then N should contain no redundant variables and should have the samemutual
information with T as M. By the proof of Theorem2, we get I(T ; M\N|N) = 0, if using
(b′) (and thus Definition3) to define N . This indicates

I(T ; M) = I(T ; N) + I(T ; M\N|N) = I(T ; N),

so no information is lost. In comparison, Example3 illustrates that N may lose some informa-
tion if it is defined by (a′). This explains why we define the notion ofWMB using Definition3
based on (b′) instead of a definition based on (a′).
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Appendix 2: Acronyms

AUC the area under ROC curve.
BN Bayesian network.
BW the backward function for the shrinking phase of LCMB algorithms.
CI conditional independence.

CMb candidate Markov blanket; see, e.g., Line 5 in the grwoing phase of IAMB
in Algorithm 1.

CMI conditional mutual information.
DAG directed acyclic graph.
FW the forward function for the growing phase of LCMB algorithms.

GLL generalized local learning: an algorithmic framework for local causal dis-
covery and feature selection (Aliferis et al. 2010a).

GS grow-shrink algorithm (Margaritis and Thrun 1999, 2000).
HITON an MB discovery algorithm, pronounced hee-tón, from the Greek Xιτ ών,

for “cover”, “cloak”, or “blanket” (Aliferis et al. 2003).
IAMB incremental association Markov boundary algorithm (Tsamardinos et al.

2003a). See Algorithm 1 for details.
InterPostBW an interleaved version of PostBW. Algorithm 2 describes its pseudo code.

ImpWMB a sub-routine of WLCMB. See Algorithm 3 for details.
KIAMB a stochastic variant ofIAMB (Peña et al. 2007);Algorithm1gives its pseudo

codes.
KS Koller–Sahami algorithm (Koller and Sahami 1996).

LCMB an algorithmic framework containing those MB algorithms that are correct
under local composition or Markov local composition (Definition 4).

LRH our proposed algorithm, which is used to deal with the problem of (P1).
See Algorithm 1 for details. This algorithm can lessen swamping, resist
masking, and highlight the true positives.

Mb Markov blanket:we call M an Mb of T if T �V\M\T | M (Definition 1).
MB Markov boundary: an MB of T is any Mb such that none of its proper

subsets is an Mb of T (Definition 1).
PCMB parents and children based Markov boundary algorithm (Peña et al. 2007).

PostBW a post-processing techiniue used to improveBW. SeeAlgorithm 2 for details
RT running time: the single CPU time implemented on an Intel i7-3612QM

2.1 GHz and Windows 7 with 64 bits.
RE relative efficiency: defined by (3).
SEI the key sub-routine of LRH: selection-exclusion-inclusion.

WLCMB our LCMB-based algorithmic framework, which is used to deal with the
problem of (P2). Algorithm 3 describes the pseudo code. Each WLCMB
algorithm is correct under the weakMarkov local composition assumption.

WIAMB an instantiation of WLCMB, with A taking 〈IAMB〉.
WKIAMB an instantiation of WLCMB, with A taking 〈KIAMB, K 〉.

WLRH an instantiation of WLCMB, with A taking 〈LRH, k〉.
WMb weak Markov blanket: we call M a WMb of T if T �X | M holds for any

X ∈ V\M\{T } (Definition 3).
WMB weak Markov boundary: a WMB of T is any WMb such that T �/ N|M\N

holds for any nonempty N ⊆ M; see Definition3 and “Appendix 1” for
details.
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