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Abstract Multiview clustering is a framework for grouping objects given multiple views,
e.g. text and image views describing the same set of entities. This paper introduces co-
regularization techniques for multiview clustering that explicitly minimize a weighted sum
of divergences to impose coherence between per-view learned models. Specifically, we itera-
tivelyminimize aweighted sumofdivergences betweenposteriormemberships of clusterings,
thus learning view-specific parameters that produce similar clusterings across views. We
explore a flexible family of divergences, namely Rényi divergences for co-regularization.
An existing method of probabilistic multiview clustering is recovered as a special case of
the proposed method. Extensive empirical evaluation suggests improved performance over a
variety of existing multiview clustering techniques as well as related methods developed for
information fusion with multiview data.
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1 Introduction

Multiple views of entities are often readily available in modern datasets, for example, a web-
page entity has text, images and hyper-links, each of which can be considered as views of the
web-page entity. A problem of practical interest is to harness complementary information
available in multiple views to improve over conventional learning algorithms. Multiview
learning has been studied as a potential framework to achieve such improved performance.
Multiview methods operate with the assumption that different views cluster or label entities
similarly. Such similarities have been exploited via co-training (Blum and Mitchell 1998)
and co-regularization (Sindhwani and Rosenberg 2008). Co-training learns one hypothesis
for each view which then bootstrap other views to converge to a coherent model (Blum
and Mitchell 1998). Co-regularization, on the other hand, explicitly minimizes disagreement
between views during training. Multiview methods have substantial theoretical and practical
advantages over learning a single hypothesis by concatenating views (Nigam and Ghani
2000). For instance, Dasgupta et al. (2001) show that for semi-supervised multiview learning
with two views, the probability of disagreement between views is an upper bound on the
probability of error of either view’s hypothesis.

Due to noisymeasurements or unknown biases, different viewsmay not cluster the entities
similarly. To be robust to such mis-specification in model assumptions made by multiview
clustering, we propose a method that maintains a separate posterior distribution for each
view. In the proposed method, clustering coherence is imposed by encouraging posterior dis-
tributions of view-specific cluster memberships to be ‘close’ to each other, where closeness
is measured via suitable divergences. Specifically, a weighted sum of divergences between
current posterior estimates of cluster memberships is minimized. This co-regularization tech-
nique is combinedwith Expectation-Maximization (EM) (Dempster et al. 1977) tomaximize
the log-likelihood. The training process thus alternates between an inference phase that esti-
mates and updates view-wise posterior distributions to encourage coherence followed by
per-view parameter updates.

To specifically account for potential incoherence among views, we formulate the cost
function as a weighted sum of Rényi divergences (Rényi 1960). Storkey et al. (2014) have
observed thatwhen aggregating opinions frombiased experts or agents, themaximumentropy
distribution is obtained via Rényi divergence aggregation (see Definition 1). An extreme case
is when views don’t agree on the cluster memberships, in which case, linear aggregation pro-
vides the best aggregate posterior. For instance, Bickel and Scheffer use linear aggregation in
Co-EM (Bickel and Scheffer 2005), inadvertently assuming that different views mostly do
not agree with respect to the cluster membership. Instead of assuming a bias free condition,
we explore the utility of various aggregation strategies applied to the co-regularization frame-
work. Hence, the proposed method can be applied with appropriate Rényi divergences best
suited for different levels of discordance in view memberships. Co-EM (Bickel and Scheffer
2005) is a special case of our framework as it can be recovered as a specific setting of theRényi
divergence parameter for a fixed parametrization of weights as shown in Sect. 4.3. Extensive
empirical evaluations are presented to demonstrate improved performance over existing mul-
tiview clusteringmethods aswell as othermethods of fusing information frommultiple views.

Our main contributions are highlighted in the following:

– We propose a novel co-regularized multiview clustering algorithm that minimizes
weighted sums of Rényi divergences.

– We show that an existing approach to probabilistic multiview clustering, namely Co-EM
can be recovered as a special case of our framework.
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– We present extensive empirical evaluation showing that the proposed class of methods
significantly outperform strong baselines. Moreover, the choice of Rényi divergence can
affect clustering performance, while simultaneously capturing biases in view-specific
posterior cluster memberships. Empirical evaluation also demonstrates that our methods
handle mixed data e.g. discrete and continuous data very well.

The rest of the manuscript is organized as follows. A brief survey of existing approaches
to multiview clustering is provided in Sect. 2. Background and notation is given in Sect. 3.
The proposed methods along with other modeling choices are detailed in Sect. 4. Extensive
empirical evaluation on several data sets are in Sect. 5 followed by a discussion and conclusion
in Sect. 6.

2 Related work

Related work in multiview unsupervised learning goes back to neural network models, a
few of which are noted here. Becker and Hinton (1992), Schmidhuber and Prelinger (1993)
maximize agreement between a given neural network module and a weighted output of its
neighbors. De Sa and Ballard (1993) take advantage of complementary information available
in different views by using separate modules for views feeding into a common output. Bickel
and Scheffer (2005) introduced probabilistic multiview clustering using co-training.

Relatively recent models, like those proposed by Chaudhuri et al. (2009), Sa (2005) con-
struct lower dimensional projections using multiple views of data. However, these methods
are only applicable when at most two views are available. Kumar et al. (2010) and Tzortzis
and Likas (2012) explore multiple kernel learning techniques where each view is represented
as a kernel. Closely related to kernel techniques are multiview spectral clustering methods
described in detail below.

Zhou and Burges (2007) propose a multiview spectral clustering method as a generaliza
tion of the normalized cuts algorithm. In a similar vein, Kumar and Daume-III (2011) update
the similarity matrix of a given view based on the clustering of another view iteratively to
produce a coherent clustering. Kumar et al. (2011) minimize disagreement between views
by constraining the similarity matrices of views to be close in the Frobenius norm. While
spectral methods are effective, they do not estimate cluster centroids, making interpretation
and out-of-sample cluster assignments more challenging to implement. Our empirical studies
show that proposed methods outperform spectral multiview clustering methods.

Further, connections between non-negative matrix factorization and clustering have also
been utilized when multiple views are observed. For example, Liu et al. (2013) have shown
that modeling user-feature matrices via multiview clustering based on non-negative matrix
factorization (NMF) admits better empirical clustering performance compared to collective
matrix factorization (Akata et al. 2011), a popular method for combining information from
multiple sources. This further illustrates the advantage of multiview clustering over other
related methods. Another approach for multi-view clustering using convex subspace repre-
sentation learning has been proposed by Guo (2013). These methods estimate a subspace
where different views are clustered similarly. Many of these methods, however, provide lit-
tle insight into how views interact within the data. Probabilistic techniques such as ours
are particularly useful when such exploration is required. Our empirical evaluation suggests
improved performance of our models over NMF based multiview clustering. In addition,
many models also deal with partially missing views (Eaton et al. 2014; Li et al. 2014) and
demonstrate improved performance usingmultiview clustering. Lian et al. (2015) use a shared
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latent factor model to model heterogeneous multiview data and can also handle arbitrarily
missing views, i.e., the casewhen a complete viewmay bemissing for a sample.However, this
model assumes a shared latent matrix across all views as opposed the proposedmethodwhich
maintains separate cluster membership variables for each view. Our proposed methods can
easily extend to handle missing views by simply not co-regularizing over the missing view.

Note that multiview clustering is distinct from cluster ensemble methods (Ghosh and
Acharya 2011; Strehl and Ghosh 2003) that learn hypotheses for each view independently
and find a consensus among the per-view results post-training. The latter methods do not
share information during training and are thus more suitable for knowledge reuse (Strehl
and Ghosh 2003).

One of the more popular applications of multiview clustering is to jointly model images
and annotations, each constituting a view. The objective is to utilize annotations and images
to learn the underlying clustering of images. This problem has been modeled in varied ways
using unsupervised as well as supervised methods. We compare our multiview clustering
framework to other relevant methods in the context of this application to motivate the dif-
ferences in model assumptions. Recently, much supervised work has explored the utility
of rich representations of label words and/or annotations in a high dimensional embedding
space (Mikolov et al. 2013). A mapping is learned directly from the image view to the word
embedding space (annotation view) so that relevant tags or labels are closer under some
similarity metric (Frome et al. 2013; Akata et al. 2013) or ranked higher compared to the
rest (Weston et al. 2011). Additionally, Akata et al. (2013) learn a mapping to a pre-defined
attribute space to extend supervised image classification to unseen labels. Thus in this case,
the target labeling is the same as the text or label view. In contrast, multiview clustering
models aim to find the best underlying grouping of data jointly, thus differing in the underly-
ing modeling assumptions. The multiview clustering methods presented in this paper are for
completely unsupervised scenarios, and thus do not assume availability of labels for images.
Further, the target clustering does not necessarily have to have a one-to-one mapping to
the annotation views. Hence, in our empirical evaluation, we only compare our models to
unsupervised multiview methods with similar modeling and data assumptions as ours.

3 Preliminaries

For non-negative integers K , vectors inRK are denoted by lower-case bold (e.g., x with com-
ponents x1, . . . , xK ). The set {1, 2, . . . , K } will be denoted [K ]. The simplex ΔK is the set:

ΔK =
⎧
⎨

⎩
a ∈ R

K : ak ≥ 0 ∀k ∈ [K ],
∑

k∈[K ]
ak = 1

⎫
⎬

⎭

A categorical distribution is a discrete distribution over outcomes ω ∈ [K ] parameterized by
θ ∈ ΔK so that Pr(ω = k) = θk . It is a member of the exponential family of distributions.
The natural parameters of categorical distribution are log θ = (log θk)k∈[K ] and sufficient
statistics are given by the vector of indicator functions for each outcome ω ∈ [K ], denoted
by z(ω) ∈ {0, 1}K with:

zk(ω) =
{
1, if ω = k,

0, otherwise.

Given two categorical distributions p(ω) and q(ω), describing the distribution over the
categorical random variable ω, the divergence of p(ω) from q(ω), denoted D(p(ω)‖q(ω)),

123



Mach Learn (2016) 104:411–439 415

is a non-symmetric measure of the difference between the two probability distributions. The
Kullback-Leibler or KL-divergence is a specific divergence denoted by KL(p(ω)‖q(ω)) and
is defined as follows.

KL-divergence of p(ω) from q(ω) is given by:

KL(p(ω)‖q(ω)) = Ep(ω)

[
log p(ω) − log q(ω)

]
(1)

This is also known as the relative entropy between p(ω) and q(ω). The relative entropy
is non-negative and jointly convex with respect to both arguments. Further, we have that
KL(p(ω)‖q(ω)) = 0 iff p(ω) = q(ω), for all ω.

The Rényi divergences (Rényi 1960) are a parametric family of divergences with many
similar properties to the KL-divergence. Since our focus is on using these divergences to
measure distances of distributions over cluster labels, we will focus on Rényi divergences
for distributions over discrete random variables.

Definition 1 (van Erven and Harremoës 2012) Let p, q be two distributions for a random
variable ω ∈ [K ]. The Rényi divergence of order γ ∈ (0, 1) ∪ (1,∞) of p(ω) from q(ω) is,

Dγ (p(ω)‖q(ω)) = 1

γ − 1
log

( K∑

ω=1

p(ω)γ q(ω)(1−γ )
)

(2)

The definition may been extended for divergences of other orders like γ = 0, γ →
1, and γ → ∞ (van Erven and Harremoës 2012). Rényi divergences are non-negative
∀γ ∈ [0,∞]. In addition, they are jointly convex in (p, q) ∀γ ∈ [0, 1] and convex in the
second argument q ∀γ ∈ [0,∞]. As discussed in the comprehensive survey of Rényi diver-
gences by van Erven and Harremoës (2012), many special cases of other commonly used
divergences are recovered for specific choices of γ . For example, γ = 1

2 and γ = 2 give
Rényi divergences which are closely related to the Hellinger and χ2 divergences, respec-
tively, and the KL-divergence is recovered as a limiting case when γ → 1. For the rest of the
manuscript, we will abuse notation slightly and use p(ω) and p(z) interchangeably to denote
the same categorical distribution over outcomes in [K ].

4 Co-regularized multiview clustering using Rényi divergence
minimization

We propose a co-regularization technique for multiview clustering using Rényi divergences.
The generative model of the data is assumed to be a mixture model in each view. Let N be
the total number of samples and V be the total number of views. For n ∈ [N ] and v ∈ [V ],
let xv

n represent the feature vector observed at view v for sample n. If the data sample n lies
in cluster k in view v, the latent membership is indicated by the categorical random variable
zv
n ∈ {0, 1}K , where the k-th element of the vector, denoted by zvn,k is 1 and the rest are

0. The vector πn ∈ ΔK parametrizes the prior distribution over the categorical variable zv
n

and is the same for each view v. Each data sample is generated independent of the others.
Also each view of a sample is generated independently conditioned on zv

n . Let the k
th cluster

distribution at view v be parametrized by Ψ v
k . Let the set of all parameters for view v be

denoted by Ψ v , i.e. Ψ v = {Ψ v
k }. The generative process can be represented by the plate

model in Fig. 1 and is described as follows:
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πn zvn xv
n

N

Ψv

V

Fig. 1 Generative model for multi-view clustering

– For each n:

– For each view v:
• Choose zv

n ∼ p(zv
n;πn) categorical distribution parametrized by πn .

• Choose xv
n ∼ p(xv

n |zvn,k = 1, Ψ v
k ) i.e., sample feature from the kth cluster.

If no coherence conditions are imposed, each view can bemodeled independently bymaxi-
mizing the complete log-likelihood

∑
n∈[N ] log p(xv

n, zv
n |Ψ v) using ExpectionMaximization

(EM) (Dempster et al. 1977). Let Ψ v
t be an estimate of the parameter Ψ v at iteration t . The

Expectation (E)-step, estimates posterior probabilities p(zv
n |xv

n,Ψ
v
t )∀n ∈ [N ], ∀v ∈ [V ].

A new estimate of cluster memberships can be obtained for each view, that decreases the
Rényi divergence between all view-specific posteriors to encourage coherence. This core
idea motivates the co-regularization technique proposed in the following subsections.

4.1 Global co-regularization

The proposedmethodminimizes aweighted sumof divergences between the current posterior
or cluster membership estimates available at all views to estimate a new ‘global’ categorical
distribution. We would like to trade-off between the ‘global’ posterior (accounting for co-
regularization) and the view-specific unregularized posteriors. A new posterior distribution is
estimated for every view v ∈ [V ] by minimizing the sum of divergences between the global
categorical distribution and the view-specific posterior p(zin |xin,Ψ i ) ∀i ∈ [V ].

At any iteration t, let gt (zn) be the global categorical posterior that is to be estimated
from the independent posteriors p(zin |xin, 
Ψ i

t ). Let w ∈ ΔV denote a (known) weight vector
of dimension V that determines the contribution of each view. Let the choice of divergence
metric be known and given by γ . The i-th element of the vector w is denoted by wi . The
global distribution g∗

t (zn) can be obtained by minimizing (3).

g∗
t (zn) = argmin

g(zn)

∑

i∈[V ]

wi

γ
Dγ (p(zin |xin,Ψ i

t )||g(zn)) (3)

To solve the weighted divergence minimization, a modified version of the variational algo-
rithm proposed by Storkey et al. (2014) is used. Detailed derivation of the variational
algorithm and specific updates are provided in Appendix 1.

For any given view v, it is desirable that its posterior be close to the global distribution
g∗
t (z) as well as its local estimate p(zv

n |xv
n,Ψ

v
t ). Thus, we introduce a new weight vector

[wg, (1 − wg)] ∈ Δ2, 0 < wg < 1 that achieves this trade-off. Let the co-regularized
posterior obtained for the current view v being updated be denoted by qt (zv

n). Then, given γ

and weights [wg, (1 − wg)], qt (zv
n) can be estimated using:

qt (zv
n) = argminq(zv

n)

wg

γ
Dγ (g∗

t (zn)||q(zv
n)) + (1 − wg)

γ
Dγ (p(zv

n |xv
n,Ψ

v
t )||q(zv

n)) (4)
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Algorithm 1 GRECO
Given data {xv

n}, γ , w, Initialize πn , Ψ v ∀v ∈ [V ], t = 0
repeat

for all v ∈ [V ] do
//View specific E-step with the latest estimates of Ψ i s
for all i ∈ [V ] do
p(zin |xin ,Ψ i

t ) ∝ p(xin |zin , Ψ i
t )p(z

i
n;πn) ∀n ∈ [N ] in parallel

end for
//Coherence enforcing steps for current view v:
Estimate g∗

t (zn) by solving equation (3) using Algorithm 4 ∀n ∈ [N ] in parallel
Estimate qt (zv

n) by solving equation (4) using Algorithm 5 ∀n ∈ [N ] in parallel
//M-step for current view v:
Using fixed responsibilities qt (zv

n),
Ψ v
t+1 ← argmaxΨ v

∑
n∈[N ]

∑
k∈[K ] qt (zv

n,k ) log p(xv
n , zvn,k = 1; Ψ v)

end for
t ← t + 1

until converged

Fig. 2 a Left Inner loop of inference in GRECO for V = 3 and K = 3 at iteration t. The inference shows
updates for view 1. p(zi |xi , Ψ i

t ) for i ∈ [3] are the independent view-wise posteriors, g∗
t (z) is the global

distribution for GRECO. qt (z1) is the re-estimated posterior for view 1. b Right Inner loop of inference for
LYRIC

Given g∗
t (zn), (4) can be solved to minimize the weighted sum of two divergences only.

Since all views admit separate aggregate posteriors, the M-step can be executed for each
view independent of all other views using the conventional M-step for a mixture model. In
order that all the views are in coherence with the latest posterior beliefs of all other views, an
M-step for the view should follow every view’s posterior update. This prevents the algorithm
from getting stuck at local minima by avoiding parameter estimates that may agree with old
and potentially discordant beliefs of other views. For specific updates in the M-step based
on the chosen mixture model, please refer to Appendix 4.

The above procedure of inferring per-view responsibilities independently, followed by a
coherence enforcing step using (3) and (4) and a view-specific M-step is computed for each
view. The complete algorithm for the proposed global co-regularization, called GRECO
(Global REnyi divergence based CO-regularization) and is provided by Algorithm 1. The
inference step for GRECO, specifically the inner loop update is shown in Fig. 2a for a toy
problem with three views for K = 3. Note that (3) and (4) can be computed in parallel for
data samples n ∈ [N ]. This is because our target co-regularized posterior is independent for
each sample (and each view) and can be factored in the product form over samples as well
as views. A detailed proof of how that leads to an embarrassingly parallel co-regularization
algorithm is provided in Appendix 2.
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4.2 Local co-regularization

We now consider two limiting cases, when wg = 0 and wg = 1 in (5). The first case
(wg = 0) is trivial as it does not use co-regularization at all and is therefore equivalent to the
ensemble method (Strehl and Ghosh 2003). The latter recovers a new method. We consider
the non-trivial case when wg = 1 separately for several reasons. First, we are able recover
an existing multiview clustering algorithm, Co-EM as a special case of this setting for a
certain choice of Rényi divergences (γ → 1). Thus Co-EM is also a special case of our most
general setting, GRECO for γ → 1 and wg = 1. Further, our empirical evaluation suggests
better performance of the most general case of the proposed method (GRECO) in most cases
as opposed to this special case (wg = 1) suggesting that a non-trivial trade-off between the
global posterior and the view-specific unregularized posterior in theE-step is advantageous.A
useful analogy we would like to draw here is between Gaussian mixture models versus the k-
means algorithm, used for soft and hard clustering respectively. The latter is a limiting case of
the former (as widths go to zero, and using identical, isotropic covariances) but is considered
as a separate algorithm because of its special properties. The co-regularization framework in
GRECO with wg = 1 does not involve an additional trade-off between the global posterior
and the unregularized view-specific posterior. The minimizer of (5) in this case is exactly
equal to g∗(zn). Thus, the view-specific co-regularized posterior q(zv

n) is equal to the global
posterior g∗(zn). Note that in a given iteration, only view v is co-regularized so that q(zv

n) =
g∗(zn). All other views are not updated in the inference and the learning step in the same
iteration. The procedure is repeated subsequently for all views.We call this algorithm LYRIC
(LocallY weighted Rényi dIvergence Co-regularization). As in GRECO, the outer loop of
LYRIC iterates over each view v and the inner loop carries out a coherence enforcing E-step
for the given view followed by an M-step. The E-step comprises of estimating independent
view-specific posteriors followed by a local co-regularization step that updates the current
view’s posterior. It is important to highlight that LYRIC does not result in the same estimates
as GRECO every iteration. This is because view-specific posteriors will be different in each
iteration for GRECO and LYRIC owing to the different stages of co-regularization. The
details of local co-regularization (LYRIC) are now explained in the following.

Let v be the current view to be updated at any iteration t and let qt (zv
n) denote the newly

obtained posterior at view v for sample n. Local co-regularization solves the coherence
equation given by (5).

qt (zv
n) = argmin

q(zv
n)

∑

i∈[V ]

wi

γ
Dγ (p(zin |xin,Ψ i

t )||q(zv
n)) (5)

Similar to GRECO, a per-view M-step can now be executed to update per-view parameters
according to the modified responsibilities. The procedure is repeated iteratively for all views
v ∈ [V ]. The final algorithm, LYRIC, is illustrated in Algorithm 2. Figure 2b shows the
inference step for a single view in LYRIC.

4.3 Special case I: γ → 1

If γ is chosen such that γ → 1, the minimizer of weighted sum of Rényi divergences admits
a closed form solution. Specifically, γ → 1 reduces the cost to a weighted sum of KL-
divergences with the target distribution on the right hand side of KL-divergence (Storkey
et al. 2014). Consider (5), for instance, with γ → 1. Let the per-view posterior, p(zi |xi ,Ψ i )
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Algorithm 2 LYRIC
Given data {xv

n}, γ , w, Initialize πn , Ψ v ∀v ∈ [V ], t = 0
repeat

for all v ∈ [V ] do
//View specific E-steps with the latest parameter estimates of Ψ i s
for all i ∈ [V ] do
p(zin |xin ,Ψ i

t ) ∝ p(xin |zin , Ψ i
t )p(z

i
n;πn) ∀n ∈ [N ] in parallel

end for
//Coherence enforcing step for current view v:
Estimate qt (zv

n) with Eq. 5 using Algorithm (5) ∀n ∈ [N ] in parallel
//M-step for current view v:
Using fixed responsibilities qt (zv

n),
Ψ v
t+1 ← argmaxΨ v

∑
n∈[N ]

∑
k∈[K ] qt (zv

n,k ) log p(xv
n , zvn,k = 1; Ψ v)

end for
t ← t + 1

until converged

be parametrized by θ i ∈ ΔK . Let the target distribution q(zv
n), be parametrized by φv ∈ ΔK .

The cost function given by (5) can be simplified to (6).

q(zv) = argmin
q(zv)

∑

i∈[V ]
wiKL

(
p(zi |xi ,Ψ i )‖q(zv)

)
(6)

For categorical distributions, the closed form solution of (6) is given by (7) as was derived
by Garg et al. (2004). Refer to Appendix 3 for a proof.

φv =
∑

i∈[V ]
wiθ

i (7)

Note that the linear aggregation closed form is not specific to LYRIC and can be generalized to
GRECO for the choice of γ → 1. In GRECO, both (3) and (4) reduce to linearly aggregating
over per-view posteriors in the former and weighted divergence minimization between the
global posterior and the current view’s posterior in the latter case.

Specifically, if wv = (1 − α) for the view v currently being updated, and wi = α
V−1 ,

where 0 ≤ α ≤ 1 for i �= v, i ∈ [V ], the LYRIC algorithm recovers Co-EM when γ → 1.
Thus Co-EM is a special case of LYRIC.

4.4 Special case II: γ → 0

When γ → 0, (5) has been shown by Storkey et al. (2014) to be equivalent to a minimization
over a weighted sum of the KL-divergences with the target distribution as the argument on
the left-hand side of KL-terms. The closed form solution in this case is an averaging of the
parameters θ i ∀i ∈ [V ] in the log-space weighted by wi ∀i ∈ [V ] (Garg et al. 2004) as
shown in (8). The proof is detailed in Appendix 3.

logφv =
∑

i∈[V ]
wi log θ i (8)

This result is also general and applicable to (3) and (4) with appropriate weighting. For
these special cases, the variational updates can be avoided to use the simpler closed form
updates for GRECO and LYRIC. Note that (8) can be equivalently written as:

φv =
∏

i∈[V ]
θ i

wi (9)
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This further suggests that when γ → 1, the parameters across views contribute equally
owing to linear averaging as opposed to when γ → 0 (9) where extreme values of the
posteriors may dominate. Conventionally, a product of experts model (Hinton 2002; Storkey
et al. 2014) uses such a product to combine beliefs from independently trained models, for
example in an ensemble setting.

Note that co-regularization in each GRECO and LYRIC adds an additional complexity of
O(NKV 2) per iteration where N is the sample size, K is the number of clusters and V is the
number of views, compared to the unregularizedmethod. As suggested before, the operations
can be trivially parallelized over data samples as well as for calculations required to estimate
unnormalized variational parameters for each cluster (see Appendices 1, 2). For the case
where all views areGaussianmixtures, the complexity per outer iteration isO(NKV 2Tinner+
NKV+∑

v∈[V ] d2v K )where Tinner is the number of inner iterations for variational estimation
of co-regularized posteriors, dv is the dimension of view v. In each of the special cases
described earlier, i.e. when γ → 0 and γ → 1, the complexity reduces to O(NKV +
∑

v∈[V ] d2v K ) per iteration, same as that of Co-EM, due to closed form solutions available
for co-regularization. In the general case, the largest source of computational overhead in
the proposed algorithm is due to the variational procedure currently employed to impose co-
regularization. However, we are not bound to such a procedure and any accelerated methods
available for solving (3), (4) and (5) can be adopted, if available. Further, our variational
procedure is trivially parallelizable over samples (see Appendix 2 for relevant proof) whereas
co-regularization/co-training techniques for the baselines (see Sect. 5.1) are not. This allows
us to improve training efficiency to scale to large datasets.

4.5 Choice of weights and Rényi divergences

For empirical studies, we parametrize the weights for easy comparison with baselines. Let
0 ≤ α ≤ 1 be a scalar. For every view v ∈ [V ] being updated,wv = 1−α. For all other views,
wi = α

V−1 ∀i ∈ [V ], i �= v. At every stage in the outer loop of either GRECO or LYRIC,
the current view being updated is weighted by 1− α and the rest are weighted equally α

V−1 .
This also ensures fair comparison with Co-EM by maintaining the same parametrization
of weights. Therefore, all experiments demonstrate that a significant boost in clustering
performance can be obtained via a suitable choice of Rényi divergences. We evaluated the
performance of GRECO and LYRIC for different choices of α and γ . Section 5.3 shows the
performance of the model across different choices of the divergence parameter. Specifically,
for comparisonwith baselines, we choose the best performing set ofα and γ based on average
accuracy of hold-out clustering assignment across five trials.

4.6 Prediction on hold-out samples

For out-of-sample cluster assignment, the conventional E-step with the learned parameters
is used to obtain per-view posteriors for a test sample for all views independently. It is now
desirable to obtain one aggregate posterior q(z) as follows.

q(z) = argmin
q(z)

∑

v∈[V ]
wvDγ (p(zv|xv,Ψ v∗

)||q(z)) (10)

For LYRIC, a global posterior can then be obtained using (10) for a given choice of γ and w
(see Sect. 4.5) and the set of corresponding learned parameters from LYRIC Ψ v∗. Similarly
forGRECO, the E-step is run for all views independently followed by executing (10) to obtain
a global posterior. A hard clustering is simply the MAP assignment of z w.r.t. the distribution
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q(z). Empirical performance of LYRIC at γ → 1 can differ from Co-EM due to different
methods of obtaining the consensus clustering. Specifically, let πc

n and Ψ vc,∀v ∈ [V ] be
the estimates of the prior distribution parameter and mixture model parameters learned by
Co-EM respectively. Then the consensus clustering distribution and the corresponding MAP
assignment w.r.t. the consensus distribution in Co-EM is given by (11) for a data sample
x ≡ {xv, ∀v ∈ [V ]},

arg maxk∈[K ]
πc
k

∏
v∈[V ] p(xv|Ψ vc, zk = 1)

∑
k′∈[K ] πc

k′
∏

v∈[V ] p(xv|Ψ vc, zk′ = 1)
(11)

Note that this method of obtaining a consensus clustering used by Co-EM is equivalent to
the E-step of a multiview latent variable model that shares a single latent clustering variable
across all views. As opposed to Co-EM, GRECO and LYRIC obtain a consensus via linear
aggregation for γ → 1 and weights w as shown in (12).

argmax
k∈[K ]

∑

v∈[V ]
wv p(z

v
k = 1|xv,Ψ v∗

) (12)

5 Experiments

The proposed methods have been extensively compared with existing multiview clustering
models to show that the choice of divergence obtained by tuning γ is of significance, as
well as to demonstrate that Rényi divergence is a reasonable choice for co-regularization.
All datasets were trained using both LYRIC and GRECO algorithms for different values of
γ ∈ [0, 1] discretized in the corresponding log-space. Very high values of Rényi divergences
did not matter significantly affect the performance. The weights w are reparametrized as
described in Sect. 4.5. For all datasets, ground-truth cluster labels are known and utilized for
objective evaluation and comparison to baselines. All models and baselines were trained on
the same training and hold-out data for five trials with best performing models chosen based
on average clustering accuracy for comparison purposes. Themapping between cluster labels
to ground truth labels is solved using Hungarian matching (Kuhn 1955). For comparison
to baselines, we only report the best performance obtained across different choices of w
and γ . Hold-out assignment results have only been compared to baselines that explicitly
mention a mechanism to obtain hold-out cluster assignment and empirically test the same.
We report Clustering Accuracy, Precision, Recall, F-measure, NMI (Strehl and Ghosh 2003)
and Entropy (Bickel and Scheffer 2005) for our evaluation. Lower entropy is better while
higher values of other metrics show a better performing algorithm. All metrics are defined
in Appendix 5. Note that the empirical evaluation here maintains prior cluster distribution
πn to be equal for all samples n for all probabilistic models, including GRECO and LYRIC
without loss of generality. Results demonstrating empirical convergence for a sample fold
with multiple initializations (in negative log-likelihood) of GRECO and LYRIC have been
included in Appendix 6.1 To the best of our knowledge, our empirical evaluation is the most
extensive evaluation of multiview clustering methods compared to prior work in terms of the
number of datasets, number of views and comparison to existing baselines.

1 For the CUB dataset, we only have results with a single initialization for a single train-test split. However,
average over different splits shows the same trend.
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5.1 Baselines

The proposedmethods are compared to an extensive set of baselines. The baselines are briefly
described here.

– Shared Latent Variable Model (Joint): An alternative way of modeling multiple views is
to have one latent variable that denotes the cluster membership across all views. This is
called the ‘Joint’ model. This model is equivalent to concatenating views especially in the
most commonly assumed scenario i.e. all views are Gaussian mixtures with diagnonal
covariances.

– Ensemble Clustering Model (Ensemble) (Strehl and Ghosh 2003): This model trains
each view independently followed by a consensus evaluation. To predict the hard clus-
tering assignment, the label correspondence among views is obtained using Hungarian
matching (Kuhn 1955). A single posterior is obtained using the same equation as (10)
with KL-divergence (log-aggregation), followed by a MAP assignment. This method is
compared to only when at most two views are available.

– Co-EM (Bickel and Scheffer 2005): Co-EM estimates a mixture model per view subject
to cross-entropy constraints. The weights for each view are parametrized by η ∈ [0, 1]
and the results corresponding to the best performing η are reported.

– Co-regularized SpectralClustering (Co-reg (Sp)) (Kumar et al. 2011): This is the state-of-
the-art spectral multiview clustering. The results corresponding to the best performing λ

parameter (between 0.01 to 0.1 as suggested by authors) are reported. The implementation
provided by the authors is used.2

– Minimizing Disagreement (Min-dis (Sp)) (Sa 2005): This is another spectral cluster-
ing technique proposed by (Sa 2005) for 2 views only. The implementation used was
implemented and compared to by Kumar et al. (2011).

– CCA for Mixture Models (CCA-mvc) (Chaudhuri et al. 2009): This method uses Canon-
ical Correlation Analysis to project views on a lower dimensional space. This model can
be used for 2 views only.

– NMF based Multiview Clustering (NMF-mvc) (Liu et al. 2013): This method uses non-
negative matrix factorization for multiview clustering. The original implementation
provided by the authors was used for empirical evaluation.3

A k-means clustering algorithm is used independently for each view to initialize distribution
parameters for all probabilistic models. An approximate Hungarian matching problem is
solved using the k-means cluster assignments for initialization.

5.2 Datasets

The datasets are chosen referencing prior work inmultiview clustering. Details of the datasets
are provided in the following.

– Twittermultiview4 (Greene andCunningham2013): This is a collection of twitter datasets
in five topical areas (politics-UK, politics-Ireland, Football etc.). Each user has views
corresponding to users they follow, their followers, mentions, tweet content etc. We use
the politics-uk dataset with three views (mentions, re-tweets and follows). The labels
correspond to one of five party memberships of each user. Each view is a bag-of-words
vector and modeled as a mixture of multinomials for the probabilistic models.

2 http://www.umiacs.umd.edu/~abhishek/papers.html.
3 http://jialu.cs.illinois.edu/.
4 http://mlg.ucd.ie/aggregation/.
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– WebKB5: This dataset consists of webpage information from four university websites:
Cornell, Texas,Washington andWisconsin.We show results for the Cornell dataset. Each
sample is a webpagewith two views, one view of which is the text content (bag-of-words)
format and web-links into and out of the webpage (binary bag-of-words vector). Each
webpage can be clustered into one of five topics. Each view is modeled as a mixture of
multinomials.

– NUS-Wide Object6 (Chua et al. 2009): This dataset consists of 31 object classes. Of
these, we sub-sample in a balanced manner for 10 classes, with 50 samples belonging
to each class. We use 6 views, namely edge histograms (mixture of Gaussians), bag-
of-visual words of SIFT features (mixture of multinomial distributions) and normalized
correlogram (mixture of Gaussians), color histogram (mixture of multinomials), wavelet
texture (mixture of Gaussians) and block-wise color moments (mixture of Gaussians).

– CUB-200-20117 (Wah et al. 2011): This dataset consists of 200 classes and 11,800 data
samples. We use the binary attributes and Fisher Vector representations of images as
our views. The binary attributes are modeled as mixture-of-multinomials and the Fisher
vectors as Gaussian mixtures. We assume diagonal covariances for all views modeled as
a mixture of Gaussians in all datasets.

5.3 Results

Tables 1, 2, 3 and 4 show clustering and out-of-sample cluster assignment results for the
datasets mentioned in Sect. 5.2 in that order. Note that results are marked NA if any of the
baseline methods were not extendable to more than two views or could not be compared
due to limiting model assumptions e.g. non-negativity required by NMF-mvc (Liu et al.
2013). The tables only consist of results corresponding to the γ parameter that provided
the best results across different choices of γ for both GRECO and LYRIC on a hold-out
dataset. Additionally, Fig. 3 shows performance of GRECO and LYRIC using different Rényi
divergences parametrized by log (γ ) in comparisonwith Co-EM, that uses linear aggregation,
corresponding to γ → 1. The performance across different γ provides further insights into
performance of the proposed co-regularization method.

The proposed methods outperform almost all the baselines consistently across different
datasets. In addition, hold-out cluster assignment performance is better for bothmodels across
most datasets. Improved performance over ensemble methods suggests co-regularization
improves on the view-wise clustering approaches. In addition, results also suggest that shar-
ing a single latent variable (see Joint Model) across views is restrictive. In the low bias
regime, GRECO has particular advantages over LYRIC because of the additional trade-off
in regularization. When the bias across views is low, the additional regularization potentially
accelerates convergence by restricting the deviation from view-specific unregularized poste-
riors, especially when initial model parameters may be noisy. In the high bias case, LYRIC
shows some advantage (see Table 2-WebKB data). It is important to note that overall, the
general trend of performance of both GRECO and LYRIC is consistent for each dataset (see
Fig. 3). In particular, the performance peaks for the most appropriate choice of γ that best
captures inherent biases across views for both algorithms for all datasets and this choice of
divergence is the same for GRECO as well as LYRIC.

5 http://lig-membres.imag.fr/grimal/data.html.
6 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.
7 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html.
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Fig. 3 Clustering accuracy of GRECO and LYRIC w.r.t. log γ on a Twitter data, b WebKB data, c
NUSWideObj data and d CUB_200_2011 data

For Twitter data, the γ parameter of 0.01 resulted in the best clustering accuracy as
measured on hold-out set (see Table 1). This provides further insight that the views do have
some bias in the latent clustering distribution. In the absence of such a bias, the best clustering
parameter should have corresponded to γ → 0. Thus the value of the divergence parameter
γ provides an intuitive understanding of inherent incoherence in clustering beliefs in the
data. It is notable that characterizing this bias has resulted in almost an order of magnitude
increase in clustering accuracy compared to baselines like multiview NMF and spectral
clustering methods. To the best of our knowledge, there is little work in terms of designing
robust learning models when underlying model assumptions may be violated. The results on
Twitter data strongly highlight the significance of such an approach.

Similar observations on the WebKB data suggests a high degree of incoherence across
views on the clustering distributions, suggested by the fact that linear aggregation (γ → 1)
provides the best results on the hold-out dataset. Note that in such a scenario, i.e. when views
completely disagree (in terms of the MAP estimate of the clustering) across views, learning
each view independently is equally useful, as demonstrated by competitive performance
of Ensemble methods relative to GRECO and LYRIC. Again, this further reinforces the
advantage of our model in terms of robustness to violations of model assumptions. Figure 3
also suggests that as the underlying bias is assumed increase, the model performance in both
LYRIC and GRECO consistently improves. In addition, the improvement over Co-EM at
γ → 1 suggests that the method proposed to estimate a hold-out clustering assignment using
(10) is better or comparable to that of Co-EM. Note that although GRECO and LYRIC do
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not perform the best on training data in terms of NMI and Entropy, the results on hold-out
set are competitive—suggesting that the models do not overfit the training data.

From the results of NUS-Wide Object dataset, where six views are modeled jointly, the
improvement in performance is significant when an appropriate divergence parameter γ is
used, as compared to Co-EM, which enforces linear aggregation and the joint model that
estimates a single clustering posterior across all views. This further suggests advantages
of GRECO and LYRIC when the number of views available is large. The best performing
divergence parameter is relatively high (γ = 0.1). This also suggests that as the number of
views being modeled increases, the views are likely to be more incoherent and an assumption
of a high bias (higher γ ) is a better modeling assumption. This is also apparent from the
deteriorated performance of the joint model. BothGRECO and LYRIC perform the best at the
limiting case wg = 1 as expected in a slightly high bias case, when additional regularization
of GRECO is not necessarily advantageous. Figure 3 also suggests that at lower values of
γ both LYRIC and GRECO may be getting stuck in local minima (suggested by the high
observed variance at γ = 0.01) potentially reflecting sensitivity to choice of γ for this data.

For a large dataset like CUB-200-2011 with 200 clusters and ∼11,000 samples and high
dimensionality (∼8000), the improvement in unsupervised learning performance of GRECO
and LYRIC is more pronounced compared to Co-EM even though the best performance is
obtained at γ → 1. This suggests that our inference on hold-out set works better than Co-
EM (see Sect. 4.6 for details). Further, the best performance divergence parameter γ → 1
suggests the attribute view and the Fisher vector views, used from the CUB_200_2011
data, are potentially incoherent in terms of the latent clustering distribution. Comparison
to other probabilistic methods, i.e. Joint model and Ensemble model, suggest restrictive
model assumptions may fail and general methods like GRECO and LYRIC may be more
reliable in large scale settings. Ensemble model also relies on Hungarian matching to solve
the correspondence problem between cluster indices (200 clusters) across views. Improved
performance in GRECO and LYRIC is obtained at a significant computational cost com-
pared to CCA-mvc which provides comparable performance very fast. This corroborates
the model assumptions made by CCA-mvc, namely that views of a sample are uncorrelated
conditioned on cluster identity of sample (weaker assumptions than those made by the Joint
model) can provide improvement in unsupervised learning performance. Faster inference for
GRECO/LYRIC in such settings can be obtained by parallelization and/or any improvements
to the variational inference procedure used to impose co-regularization.

Overall, the best Rényi divergence suitable for a particular dataset differs, indicating that
GRECO and LYRIC capture potential differences in coherence between viewswith respect to
clustermemberships significantly better than comparablemethods. The biases between views
demonstrably affect clustering performance. This also suggests that themultiview assumption
of a single underlying cluster membership distribution is not always satisfied in real data.
Thus flexible models such as GRECO and LYRIC are preferable. All results further show that
the choice of the class of Rényi divergences is beneficial for improving multiview clustering
performance and both methods generalize better to unseen data compared to baselines.

A comparison of training time suggests that the increased accuracy of GRECO and LYRIC
is obtained at the cost of increased training time. However, as suggested in Sect. 4, the
variational update required for co-regularization is the major contributing factor to training
time. Since these updates can be trivially executed in a distributed setting across samples as
well as for estimating unnormalized cluster membership distributions, the training time can
be easily improved. Further, any alternative inference procedure to solve the co-regularization
constraintwill directly improve training times for the proposedmethod.Also note that training
times are comparable to Co-EM and other baselines for special cases (see Tables 2, 4).
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Additional advantages of GRECO and LYRIC compared to other methods are noteworthy.
Both Twitter and WebKB datasets consist of at least one view with relational data. The
twitter data is sparse (as is the case with social network data), i.e., a lot of the entries are 0.
In these cases probabilistic methods outperform other methods suggesting the importance
of probabilistic models in general. The NUS-Wide Object dataset and CUB datasets have
mixedviews, i.e.bag-of-words aswell as numeric features (e.g. Fisher vector representations).
Empirical evaluation also demonstrates that our methods handle mixed data well.

Some limitations of the proposed methods arise in selecting an appropriate choice of
weights and the best suited Rényi divergence parameter for a given dataset. Storkey et al.
(2014) have proposed a method for automatic selection of weights which can be easily
incorporated in GRECO or LYRIC via minor changes to the variational procedures described
in Appendix 1. However, we chose to use manual selection of weights inorder to highlight
significance of the choice of Rényi divergences as opposed to a finer choice of weights,
especially to highlight the generalization over Co-EM. Note that automatic selection or
learning the best divergence parameter in an unsupervised setting suitable for a given data is
a challenging and novel problem that we expose. Particularly, conventional model selection
methods that trade-off model complexity and likelihood are not applicable in this scenario
as model complexity does not change w.r.t. different γ . Automatic selection of such a model
parameter is deferred to future work. However, we point out that both GRECO and LYRIC
provide better performance compared to all existing baselines for all choices of γ that we
tested. A more appropriate choice of γ further boosts performance. In case computational
constraints exist, we suggest using either of the closed form methods suggested in Sect. 4.

6 Discussion and conclusion

Thisworkproposed a co-regularization approach tomultiviewclustering that builds on anovel
idea of directly minimizing a weighted sum of divergences between view-specific posteri-
ors that indicate probabilities of cluster memberships. This approach encourages coherence
between the posterior memberships by bringing them ‘closer’ in distribution. The result-
ing co-regularization techniques, GRECO and LYRIC significantly improve performance
over existing multiview clustering methods. By maintaining per-view posteriors and using
a flexible choice of Rényi divergences for imposing coherence, these models are robust to
incoherence among views. In addition, Co-EM is recovered as a special case of LYRIC.
Co-EM proposes linear aggregation of posteriors, which is best suited when aggregating
among incoherent posterior memberships. We show empirically that better performance can
be achieved by accounting for incoherence via a flexible family of divergences. We also
achieve closed form updates to impose co-regularization for two special cases, when the
divergence parameter γ → 0 and γ → 1.

For future work, a more general framework for multiview parameter estimation that
accounts for divergence aggregation can be explored. Additional performance and com-
putational gains may be obtained by learning the regularization weights and the divergence
parameter γ . Theoretical analyses of special cases and studying the effects of other class of
divergence can provide insights in further developing such flexiblemodels. Such a framework
could also offer advantages when views may be arbitrarily missing or in distributed settings
when minimal interaction between views is expected due to communication constraints.
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Appendix 1: Derivation of variational inference for weighted sum of
divergence minimization

Minimize the weighted sum of Rényi divergences between M distributions pi (z), i ∈ [M],
given the divergence parameter γ . Let q∗(z) be the corresponding minimizing distribution
and w ∈ ΔM be the known weight vector determining how important a given distribution is.
The specific cost function is given by (13). Consider the case when each of the distributions
are categorical distributions over clusters [K ].

q∗(z) = argmin
q(z)

∑

i∈[M]
wiDγ (pi (z)‖q(z)) (13)

Let κ i (z) be a variational distribution corresponding to pi (z). Using the log-sum inequality,
we have a lower bound on (13) given by (14).

∑

i∈[M]

wi

γ
Dγ (pi (z)||q(z)) ≥

∑

i∈[M]

wi

γ (γ − 1)

∑

k∈K
κ i (zk = 1)(log [pi (z)γ q(z)(1−γ )] − log κ i (zk = 1))

(14)

Algorithm 3 Variational Update to solve (14)
Given w, γ and initial estimates of q(z),
repeat

κ i (z) ∝ pi (z)γ q(z)(1−γ ) ∀i ∈ [M]
q(z) ∝ ∑

i∈[M] wiκ
i (z)

until converged

The lower bound is optimized by iteratively estimating κ i (z)’s and q(z). To update κ i (z),
κ j (z)∀ j ∈ [M], j �= i and q(z) are held fixed. Setting the gradient w.r.t. κ i (z), the iterative
update is given by κ i (z) ∝ pi (z)γ q(z)(1−γ ). When all κ i (z) are held fixed, q(z) is again
obtained by setting the gradient of the bound w.r.t. q(z) to 0, and given by (15). The com-
plete variational update is described by Algorithm 3. Note that all distributions should be
appropriately renormalized.

q(z) ∝
∑

i∈[M]
wiκ

i (zn) (15)

Algorithm 4 Variational Update to solve (3)

Given w ∈ ΔV , γ and Ψ i
t ∀i ∈ [V ]

repeat
κ i (zn) ∝ p(zin |xin , Ψ i

t )
γ g(zn)(1−γ ) ∀i ∈ [V ]

g(zn) ∝ ∑
i∈[V ] wiκ

i (zn)

until converged
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Algorithm 5 Variational Update to solve (4)
Given wg, wv , γ , g∗(zn) and current parameter estimates, Ψ v

t
repeat

κ∗(zn) ∝ g∗(zn)γ q(zv
n)(1−γ )

κv(zv
n) ∝ p(zv

n |xv
n ,Ψ v

t )
γ q(zv

n)(1−γ )

q(zv
n) ∝ wgκ

∗(zn) + wvκv(zv
n)

until converged

Appropriate variants of Algorithm 3 are used by GRECO and LYRIC. To estimate the
centroid distribution of GRECO, Algorithm 4 is used. To estimate view-specific distributions
qt (zv)∀v ∈ [V ], i.e. (4), Algorithm 5 is used. In the case of LYRIC, Algorithm 4 is used
except in that the target distribution is qt (zv).

All the proposed variational updates (3) can be run in parallel for each sample n ∈ [N ].
Further, for each sample, calculation of κ i (z) for each i ∈ [M] and each k ∈ [K ] can be
estimated in parallel up to proportionality. Similarly for the target variable q(z), the estimates
are trivially parallelizable for each k ∈ [K ] up to proportionality.

Appendix 2: Detailed derivation of parallel (co-regularization) E-step over
samples, for GRECO and LYRIC

Let zi = {zin : n ∈ [N ]} and xi = {xin : n ∈ [N ]}. Let z = {zi : i ∈ [V ]}, x = {xi : i ∈ [V ]}
and Ψ = {Ψ i : i ∈ [V ]}. Let g(z) be the target posterior for GRECO that is obtained by
solving (16).

g(z) = argmin
q(z)

∑

i∈[V ]
wiDγ (p(zi |xi ,Ψ i )‖g(z))

= argmin
q(z)

∑

i∈[V ]

wi

γ (γ − 1)
log Ep(z|x,Ψ )

[(
g(z)

p(zi |xi ,Ψ )

)(1−γ )]

(16)

We estimate g(z) such that it is independent across all samples, i.e. g(z) = ∏
n∈[N ] g(zn).

By the IID assumption on the log-likelihood, the posterior p(z|x,Ψ ) can be factored into
per-view per-sample posteriors as in (17).

p(z|x,Ψ ) =
∏

n∈[N ]

∏

i∈[V ]
p(zin |xin,Ψ i ) (17)

Therefore,

g(z) = argmin
g(z)

∑

i∈[V ]
wi log E∏

n∈[N ]
∏

i∈[V ] p(zin |xin ,Ψ i )

[ ∏

n∈[N ]

(
g(zn)

p(zin |xin,Ψ i )

)(1−γ )]

= argmin
g(z)

∑

i∈[V ]
wi log

∏

n∈[N ]
Ep(zin |xin ,Ψ i )

[(
g(zn)

p(zin |xin,Ψ i )

)1−γ ]

= argmin
g(z)

∑

i∈[V ]
wi

∑

n∈[N ]
log Ep(zin |xin ,Ψ i )

[(
g(zn)

p(zin |xin,Ψ i )

)1−γ ]
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= argmin∏
n∈[N ] g(zn)

∑

n∈[N ]

∑

i∈[V ]
wi Dγ (p(zin |xin,Ψ i )‖g(zn))

∴ g(zn) = argming(zn)
∑

i∈[V ]
wi Dγ (p(zin |xin,Ψ i )‖g(zn)) (18)

Equation 18 can now be solved in parallel for each sample n to obtain g(z) = ∏
n∈[N ] g(zn).

This completes the proof and canbe analogously proved forLYRICandview-specificupdates.

Appendix 3: Special cases of Rényi divergence aggregation

Case I : γ → 1:

Storkey et al. (2014) have shown that weighted Rényi divergence aggregation when γ → 1
is equivalent to (19)

q(z) = argmin
q(z)

∑

i∈[V ]
wiKL

(
p(zi )‖q(z)

)
(19)

For multiview clustering, we aggregate between categorical distributions. Let p(zi ) be a
categorical distribution parametrized by θ i so that Pr(zik = 1) = θ ik, θ i ∈ ΔK . The target
distribution q(z), also categorical is parametrized by φ. Then the KL-divergence aggregation
of (19) is given by (20)

argminφ

∑

i∈[V ]
wi

〈
θ i , log θ i − logφ

〉
s.t.φ ∈ ΔK (20)

(20) is convex in φ. The corresponding Lagrangian function is given by (21)

argminφ

∑

i∈[V ]
wi

〈
θ i , logφ − log θ i

〉
+ λ

⎛

⎝
∑

k∈[K ]
φk − 1

⎞

⎠ + βTφ, β ≥ 0. (21)

Setting the gradient of (21) to 0,

−
∑

i∈[V ]
wi

θ i

φ
+ λ1 + β = 0 (22)

If λ1 + β = 1,φ = ∑
i∈[V ] wiθ

iand φ ∈ ΔK , a feasible solution.

Case II : γ → 0:

Storkey et al. (2014) have shown that weighted Rényi divergence aggregation when γ → 1
is equivalent to (19)

q(z) = argmin
q(z)

∑

i∈[V ]
wiKL

(
q(z)‖p(zi )

)
(23)

For multiview clustering, we aggregate between categorical distributions. Let p(zi ) be a
categorical distribution parametrized by θ i so that Pr(zik = 1) = θ ik, θ i ∈ ΔK . The target
distribution q(z), also categorical is parametrized by φ. Then the KL-divergence aggregation
of (23) is given by (24)

argminφ

∑

i∈[V ]
wi

〈
φ, logφ − log θ i

〉
s.t.φ ∈ ΔK (24)

123



434 Mach Learn (2016) 104:411–439

(24) is convex in φ. The corresponding Lagrangian function is given by (25)

argminφ

∑

i∈[V ]
wi

〈
φ, logφ − log θ i

〉
+ λ

⎛

⎝
∑

k∈[K ]
φk − 1

⎞

⎠ + βTφ, β ≥ 0. (25)

Setting the gradient of (25) to 0 as before, we have,

(1 + logφ) −
∑

i∈[V ]
wi log θ i + λ1 + β = 0 (26)

If λ1 + β + 1 = 0, logφ = ∑
i∈[V ] wi log θ iand φ ∈ ΔK .

Appendix 4: M-step for standard mixture models

Let N be the total number of samples in a mixture model with K classes. Let at any iteration
t, q(zn) be the posterior responsibilities calculated using current model parameters of the
mixture model. Let xn ∈ R

D represent the observed features e.g. numeric data modeled as a
Gaussian mixture or bag-of-words data that can be modeled as a mixture of multinomials.

– Gaussian mixture models: If the mixture model is a Gaussian mixture with parameters
μk and Σk∀k ∈ [K ], the mean μk and Covariance Σk are updated using (27) and (28)
respectively.

μt+1,k =
∑

n∈[N ] q(zn,k)xn
∑

n∈[N ] q(zn,k)
(27)

Σ t+1,k =
∑

n∈[N ] q(zn,k)(xn − μt+1,k)(xn − μt+1,k)
T

∑
n∈[N ] q(zn,k)

(28)

– Multinomial mixture models: TheMultinomial distribution parameters for each cluster
θk ∀k ∈ [K ] can be updated using (29)

θ t+1,k =
∑

n∈[N ] q(zn,k)xn
∑

n∈[N ] q(zn,k)
∑

d∈[D] xn,d
(29)

Appendix 5: Formulae of evaluation metrics

All evaluation metrics assume that ground-truth cluster memberships are known and that the
correspondence between clustering labels and ground-truth labels is estimated. The number
of learned clusters is the same as number of ground-truth clusters.

Definition 2 If Cn represents the cluster label determined by the learning algorithm and ωn

represents the ground-truth clustering, the clustering accuracy for a dataset with N samples
and K clusters is given by,

Accuracy =
∑

n∈[K ]
∑

k∈[K ] 1(Cn == ωn)

N

where,

1(Cn == ωn) =
{
1, if Cn = ωn,

0, otherwise.
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Following terms are defined per cluster k ∈ [K ]
– True Positives (T Pk): It is the number of samples that were clustered correctly by the

learning model.
– False Positives (FPk): It is the number of samples assigned to a cluster they do not

belong to.
– True Negatives (T Nk): This is the total number of samples not belonging to a given

cluster and is clustered correctly i.e. clustered into a different cluster than for which true
negatives are measured.

– False Negatives (FNk): This is the total number of samples belonging to a given cluster
that were not actually assigned to the cluster by the learning algorithm.

Definition 3

Precision =
∑

k∈[K ] T Pk
∑

k∈[K ] T Pk + FPk

Definition 4

Recall =
∑

k∈[K ] T Pk
∑

k∈[K ] T Pk + FNk

Definition 5

F-measure = 2 × Precision × Recall

Precision + Recall

The following metrics do not assume a correspondence between ground-truth labels and
learned cluster labels.

Definition 6 Let C be the categorical random variable over K clusters with a distribution
obtained from clustering i.e. Pr(C = k) is the fraction of samples clustered into k by the
learning algorithm. Let ω represent the categorical variable with a distribution obtained from
true clustering. The joint distribution p(C, ω) is the fraction of samples clustered as C and
lie in ground-truth cluster ω. The mutual information I (C, ω) is given by,

I (C, ω) =
∑

k∈[K ]

∑

j∈[K ]
p(C = k, ω = j) log

p(C = k, ω = j)

p(C = k)p(ω = j)

The Entropy of H(C) = −∑
k∈[K ] p(C = k) log p(C = k) and analogously for H(ω).

Normalized Mutual Information (NMI) (Strehl and Ghosh 2003) is the symmetrized and
normalized mutual information between C and ω.

NMI (C, ω) = I (C, ω)

H(C)+H(ω)
2

Definition 7 Average Entropy (Bickel and Scheffer 2005)

= −
∑

j∈[K ]
p(C = j)

∑

k∈[K ]
p(C = j, ω = k) log p(C = j, ω = k)

Appendix 6: Empirical convergence of log-likelihood

In order to validate empirical convergence in log-likelihood for GRECO and LYRIC for a
fixed divergence parameter γ and the co-regularizing weights, we conduct the following
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Fig. 4 Twitter-politicsuk dataset

Fig. 5 Cornell (WebKB) dataset

experiment. For all datasets, a single train-test split is chosen and the parameters are ini-
tialized differently (using k-means clustering) for five trials and the negative log-likelihood
(-

∑
v∈[V ]

∑
n∈[N ] log p(xv

n, zv
n;Ψ v

n)) is observed over iterations until convergence. Figures
4, 5, 6 and 7 show the negative log-likelihood observed for each alternating EM iteration for
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Fig. 6 NUSWideObj dataset

Fig. 7 CUB-200-2011 dataset

both GRECO and LYRIC for the Twitter-politicsuk, Cornell (WebKB), NUSWideObj and
CUB-200-2011 datasets respectively.
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