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Abstract Learning according to the structural risk minimization principle can be naturally
expressed as an Ivanov regularization problem. Vapnik himself pointed out this connection,
when deriving an actual learning algorithm from this principle, like the well-known support
vector machine, but quickly suggested to resort to a Tikhonov regularization schema, instead.
This was, at that time, the best choice because the corresponding optimization problem is
easier to solve and in any case, under certain hypothesis, the solutions obtained by the two
approaches coincide. On the other hand, recent advances in learning theory clearly show that
the Ivanov regularization scheme allows a more effective control of the learning hypothesis
space and, therefore, of the generalization ability of the selected hypothesis. We prove in
this paper the equivalence between the Ivanov and Tikhonov approaches and, for the sake
of completeness, their connection to Morozov regularization, which has been show to be
useful when effective estimation of the noise in the data is available. We also show that this
equivalence is valid under milder conditions on the loss function with respect to Vapnik’s
original proposal. These results allows us to derive several methods for performing SRM
learning according to an Ivanov or Morozov regularization scheme, but using Tikhonov-
based solvers, which have been thoroughly studied in the last decades and for which very
efficient implementations have been proposed.

Keywords Structural risk minimization · Tikhonov regularization · Ivanov regularization ·
Morozov regularization · Support vector machine

B Luca Oneto
Luca.Oneto@unige.it

Sandro Ridella
Sandro.Ridella@unige.it

Davide Anguita
Davide.Anguita@unige.it

1 DITEN - University of Genoa, Via Opera Pia 11a, 16145 Genoa, Italy

2 DIBRIS - University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5540-x&domain=pdf
http://orcid.org/0000-0002-8445-395X


104 Mach Learn (2016) 103:103–136

1 Introduction

The structural risk minimization (SRM) principle, formulated by Vapnik in the Statistical
Learning Theory (SLT) framework (Vapnik 1998, 2000), requires a learning procedure to
search for the hypothesis space that guarantees the best trade-off between its complexity and
its fitting capabilities on the training samples (Vapnik 1998; Anguita et al. 2012). Conse-
quently, according to the SRM principle, the control of the hypothesis space size assumes a
central role in learning (Guyon et al. 2010; Anguita et al. 2011a). Vapnik’s original approach
to the derivation of an actual learning algorithm, like the support vector machine (SVM)
(Cortes and Vapnik 1995; Vapnik 1998; Pontil and Verri 1998), consisted in implementing
the SRM principle through an Ivanov regularization scheme (Vapnik 1998; Ivanov 1976).
This is a logical approach because the Ivanov regularization framework allows to handle
directly the two main forces guiding the SRM-based learning: on one hand, the minimiza-
tion of the empirical risk and, on the other hand, the control of the hypothesis space, where
the hypothesis minimizing the risk is chosen from. For the sake of brevity, we will refer to
this formulation, when addressing the SVM learning algorithm, as the Ivanov-based SVM
(I-SVM).

However, in his seminal works, Vapnik resorted to an alternative formulation, based on
Tikhonov regularization, which quickly became very successful, due to its excellent perfor-
mance in real-world problems, and which is commonly referred to as the SVM algorithm (to
avoid any confusion we will make reference to this formulation as T-SVM) (Vapnik 1998;
Tikhonov et al. 1977). The main argument in favor of this option is that the T-SVM learning
problem is easier to solve than the I-SVM one: in fact, the amount of effective solvers for
T-SVM, which appeared in the literature in the following decades, support this claim (Platt
1998, 1999; Keerthi et al. 2001; Shawe-Taylor and Sun 2011).

In this paper we will show that the Ivanov regularization approach is directly linked
with one of the most powerful measure of the generalization ability of a learning algorithm:
the Rademacher Complexity (Bartlett andMendelson 2003; Koltchinskii 2006; Bartlett et al.
2005). In particular we will show that it is possible to bound these quantities even for the case
of Tikhonov andMorozov regularization, but, in order the direct control of the generalization
ability of the learning algorithm, we have to resort to the Ivanov formulation. Since the
Tikhonov regularization scheme for SRM learning does not allow to directly control the
size of the hypothesis space, this produces a soft mismatch in the theory (Shawe-Taylor
et al. 1998; Bartlett 1998). This is usually considered an acceptable price to pay in order to
foster the applicability of the SVM learning algorithm to practical problems. However, being
able to carefully fine-tuning the complexity of the hypothesis space can lead, in the data-
dependent SRM framework (Bartlett andMendelson 2003; Koltchinskii 2006), to remarkable
improvements in the quality of the identified SVM solution. This is especially true when
dealing with difficult classification problems where, for example, only few high-dimensional
samples are available to train a reliable and effective classifier (Anguita et al. 2011b, 2012). In
this case, the requirement of the SRMprinciple of precisely considering a series of hypothesis
spaces of increasing size, for identifying the optimal class of functions, becomes of paramount
importance (Vapnik 1998; Duan et al. 2003). Therefore, a desirable objective would be to
achieve the best of the two worlds: addressing the I-SVM learning problem by exploiting the
efficiency of T-SVM solvers.

Furthermore, as showed by Pelckmans et al. (2004) for the particular case of Least Square
SVM (LS-SVM) (Suykens and Vandewalle 1999), a third approach can be taken in account,
based onMorozov regularization. TheMorozov regularization schema, despite being seldom
used in practice, has been shown to be effective when reliable estimations of the noise
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afflicting the data are available, so it is worth considering as a further and alternative learning
formulation (Morozov et al. 1984).

In reaching the above mentioned objectives, we propose in this work some more general
results, which are valid for any convex loss function, including the SVM hinge loss as a
particular case, and prove the equivalence between Tikhonov, Ivanov and Morozov regular-
ization schemas in a general setting. Then, we apply our findings to the particular case of
SVM classifiers and propose several ways to solve I-SVM and M-SVM learning problems
through use of efficient T-SVM solvers.

The paper is organized as follows: after introducing the supervised learning framework
in Sect. 2, we revise the formulations of Tikhonov, Ivanov and Morozov regularization
approaches in Sect. 3. Then, in Sect. 4, we prove the equivalence of the regularization paths
of the three approaches and derive some general properties relating the corresponding opti-
mal solutions. In Sect. 6 we specialize our findings to the particular case of SVM training
and, in Sect. 7, we show experimentally the advantages and disadvantages of using the well-
known T-SVM Sequential Minimal Optimization (SMO) solver (Platt 1998; Keerthi et al.
2001; Keerthi and Gilbert 2002; Fan et al. 2005) for addressing both I-SVM and M-SVM
problems. Finally, Sect. 8 summarizes some concluding remarks.

2 The supervised learning framework

We recall the standard framework of supervised learning, where the goal is to approximate a
relationship between inputs from a setX ⊆ R

d , and outputs from a setY ⊆ R. A special case
of interest is the discrete case, where Y ≡ {−1,+1} (i.e. the binary classification problem).
The relationship between inputs and outputs is encoded by a fixed, but unknown, probability
distribution μ on Z = X × Y . Each element (x, y) = z ∈ Z is defined as a labeled
example: the training phase consists of a learning algorithm, which exploits a sequence
Dn = {z1, . . . , zn} ∈ Zn of labeled examples and returns a function h : X → R chosen
from a fixed set H of possible hypotheses. The learning algorithm maps (z1, . . . , zn) to H,
and the accuracy in representing the hidden relationship μ is measured with reference to a
loss function � : R × R → [0,∞).

For any h ∈ H, we define the generalization error L(h) as the expectation of �(h(x), y)
with respect to μ, L(h) = Eμ�(h(x), y), where we assume that each labelled sample is
generated according to μ. Our scope is to find the best h ∈ H for which L(h) is minimum.
Unfortunately, L(h) cannot be computed since μ is unknown, but we can easily compute its
empirical version L̂(h):

L̂(h) = 1

n

n∑

i=1

� (h(xi ), yi ) . (1)

We focus in this paper on convex (Boyd andVandenberghe 2004; Bauschke andCombettes
2011), andLipschitz continuos (Goldstein 1977) loss functions only, as they are quite common
and allow to solve complex learning tasks with effective and efficient approaches (Cortes
and Vapnik 1995; Bartlett et al. 2006; Lee et al. 1998; Shawe-Taylor and Cristianini 2004;
Suykens and Vandewalle 1999): examples are the well-known hinge (Cortes and Vapnik
1995) and logistic (Collins et al. 2002) loss functions. On the contrary, the use of a non-
convex loss leads to NP-problems, which cannot be exactly solved for sample sets whose
cardinality exceeds few tens of data (e.g. n > 30) (Anthony 2001; Feldman et al. 2009), but
for which approximate solutions can be eventually found (Lawler andWood 1966; Yuille and
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Rangarajan 2003). As a matter of fact, if one has to cope with a non-convex loss, a convex
relaxation is often used in order to reformulate the problem so to make it computationally
tractable.

3 Tikhonov, Ivanov and Morozov regularization problems

We address a supervised learning framework, where the class of functions is parameterized
as follows:

h(x) = w · φ(x) + b, (2)

φ : Rd → R
D is a mapping function, w ∈ R

D , and b ∈ R. The naïve approach to learn-
ing, namely the Empirical Risk Minimization (ERM) (Vapnik 1998; Bousquet et al. 2004),
consists in searching for the function h that minimizes the empirical error:

h : argmin
w,b

L̂(h). (3)

As Problem (3) is convex, local minima are avoided (Boyd and Vandenberghe 2004) even
though the solution {w, b} is not unique, in general. Unfortunately ERM is well known to
lead to a severe overfitting and then to poor performance in classifying new data, originated
by the same distribution μ but previously unseen.

Alternatively, in order to avoid the overfitting issue that afflicts the ERM procedure,
the Tikhonov regularization technique (Tikhonov et al. 1977) can be exploited, which was
proposed to solve ill-posed problems (Bishop 1995):

h : argmin
w,b

L̂(h) + λ

2
‖w‖2 or argmin

w,b

1

2
‖w‖2 + C L̂(h), (4)

where ‖w‖ is the Euclidean norm of w, and implements an underfitting tendency, so that the
regularization parameter λ ∈ [0,∞), or equivalentlyC = 1

λ
∈ (0,∞], balances the influence

of the underfitting and the overfitting terms (Vorontsov 2010; Bousquet et al. 2004).
A consequence of this formulation is that λ implicitly defines the class of functions H,

from which the models h(x) are selected by the optimization procedure (Tikhonov et al.
1977; Vapnik 1998), but the relation between the regularization parameter and the size of the
hypothesis space is not evident at all.

Differently to the Tikhonov scheme, the method of quasi-solutions, originally proposed
by Ivanov and also known as Ivanov regularization (Ivanov 1976), allows to explicitly control
the size of H by upper bounding the square norm of the admissible hypotheses (Pelckmans
et al. 2004; Vapnik 1998; Anguita et al. 2012):

h : argmin
w,b

L̂(h)

s.t. ‖w‖2 ≤ w2
MAX, (5)

by means of the regularization parameter w2
MAX ∈ [0,∞).

It is worthwhile noting that the solution {w∗, b∗} for Problem (5) is not unique, in general
(Boyd andVandenberghe 2004). In order to eliminate such potential ambiguity,we can simply
opt for the function h(x) characterized by minimum ‖w‖, namely the simplest (smoothest)
possible solution. In order to highlight this, withoutmodifying the nature of the regularization
procedure, we propose an equivalent formulation to Problem (5):
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h : argmin
w,b

‖w‖
s.t. h ∈ S

S =
{
h : L̂(h) = argmin

w,b
L̂(h) s.t. ‖w‖2 ≤ w2

MAX

}
. (6)

In order to simplify the notation of Problem (6) we simply add ‖w‖ to the argument of the
minimum in Problem (5):

h : arg min
w,b,‖w‖ L̂(h)

s.t. ‖w‖2 ≤ w2
MAX. (7)

A third way to write our regularization problem is the less-known approach proposed by
Morozov (Morozov et al. 1984; Pelckmans et al. 2004):

h : argmin
w,b

1

2
‖w‖2

s.t. L̂(h) ≤ L̂MAX. (8)

In this case, the size of the hypothesis space is implicitly controlled by imposing an upper
bound to the empirical error, namely L̂MAX ∈ [0,∞).

It is worthwhile noting that also the solution {w∗, b∗} for Problem (8) is not unique, in gen-
eral (Boyd and Vandenberghe 2004). In order to eliminate such potential ambiguity, we can
simply opt for the function h(x) characterized by minimum L̂(h), namely the solution with
minimum error. In order to highlight this, without modifying the nature of the regularization
procedure, we propose an equivalent formulation to Problem (8):

h : argmin
w,b

L̂(h)

s.t. h ∈ S

S =
{
h : ‖w‖2 = argmin

w,b
‖w‖2 s.t. L̂(h) ≤ L̂MAX.

}
. (9)

In order to simplify the notation of Problem (9) we simply add L̂(h) to the argument of the
minimum in Problem (8):

h : arg min
w,b,L̂(h)

1

2
‖w‖2

s.t. L̂(h) ≤ L̂MAX. (10)

The philosophy underlying the Morozov regularization approach consists in choosing
the simplest function, by minimizing ‖w‖2, which performs better than a pre-determined
performance threshold on the training set. Clearly, if the threshold L̂MAX is too small, a
solution could not exist: therefore, for the sake of simplicity, we will assume in the rest of
the paper that L̂MAX is large enough so that a solution can be found. This hypothesis does
not modify the nature of Morozov regularization, while it helps simplifying the subsequent
analysis.

It is important to note that the Representer Theorem holds for all the previous regular-
ization approaches (Aronszajn 1951; Schölkopf et al. 2001; Dinuzzo and Schölkopf 2012).
Consequently, the solution to the Tikhonov, Ivanov and Morozov optimization problems can
be expressed as:
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w =
n∑

i=1

piφ(xi ), (11)

where pi ∈ R ∀i ∈ {1, . . . , n}. Because of this property, the solution function h(x) can be
written as:

h(x) = w · φ(x) + b =
n∑

i=1

piφ(xi ) · φ(x) + b =
n∑

i=1

pi K (xi , x) + b (12)

wherewemade use of thewell-knownkernel trick (Berlinet andThomas-Agnan 2004;Vapnik
1998; Schölkopf 2001; Shawe-Taylor and Cristianini 2004) and K (·, ·) is the kernel function.

4 A general approach for solving Ivanov and Morozov problems through
the Tikhonov formulation

Although, according to the SRMframework, learning can be easily implemented by an Ivanov
regularization approach, a Tikhonov formulation has been usually preferred as it is easier
to solve, and several effective methods have been developed throughout the years for this
purpose (Platt 1998, 1999; Keerthi et al. 2001; Shawe-Taylor and Sun 2011). In this section,
we show that the Tikhonov, Ivanov and Morozov regularization approaches are three faces
of the same problem: in particular, we will show how the Ivanov and Morozov problems can
be solved through the procedures originally designed for the Tikhonov based formulation.

4.1 Equivalence of Tikhonov, Ivanov and Morozov formulations

At first, we show that a value of the Tikhonov regularization parameter exists such that the
three problems are equivalent.1

Theorem 1 Let us consider an Ivanov (or Morozov) regularization problem, as formulated
in Eqs. (7) and (10); then, there exists a value of C = 1

λ
for the Tikhonov regularization

Problem (4) such that the formulations are equivalent.

Proof As a first step, let us consider the Ivanov Problem (7). Because of its convexity, we
can compute the Lagrange dual function and solve the associate optimization problem (Boyd
and Vandenberghe 2004):

(
w∗

I , b
∗
I ,

∥∥w∗
I

∥∥ , λ∗
I

) : arg min
w,b,‖w‖max

λ≥0
L̂(h) + λ

2

(‖w‖2 − w2
MAX

)

s.t. λ
(‖w‖2 − w2

MAX

) = 0, (13)

where λ is the Lagrange multiplier of the constraint on the class of functions. Then, if we
exploit in the Tikhonov problem of Eq. (4) the value of λ∗

I , obtained by the minimization of
the dual function of the Ivanov regularization problem shown above, we obtain:

(
w∗

T , b∗
T

) : argmin
w,b

L̂(h) + λ∗
I

2
‖w‖2 =

argmin
w,b

L̂(h) + λ∗
I

2

(‖w‖2 − w2
MAX

)
, (14)

1 From here further, we set L̂(h) = L̂ for the sake of notational simplicity.
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sincew2
MAX is constant with respect to the minimization problem. As Problems (13) and (14)

are equal, they also have the same solution and then a value of λ = 1
C exists such that the

two formulations are equivalent.
Concerning theMorozov approach, the proof is analogous. We can compute the Lagrange

dual function of Problem (10):
(
w∗

M , b∗
M ,C∗

M , L̂∗
M

)
: arg min

w,b,L̂(h)

max
C≥0

1

2
‖w‖2 + C

(
L̂(h) − L̂MAX

)

s.t. L̂(h) ≤ L̂MAX

C
(
L̂(h) − L̂MAX

)
= 0. (15)

Then, if we exploit the optimal value of the Lagrange multiplier C∗
M , obtained through the

previous problem, in the Tikhonov formulation of Eq. (4), we obtain:

(
w∗

T , b∗
T

) : argmin
w,b

1

2
‖w‖2 + C∗

M L̂(h) =

argmin
w,b

1

2
‖w‖2 + C∗

M

(
L̂(h) − L̂MAX

)
. (16)

Problems (15) and (16) are consequently equal, thus they have the same solution, i.e. there
exists a value of C = 1

λ
such that the two formulations are equivalent. �

Note that it is possible to find the same results, in a more general framework, in Bauschke
and Combettes (2011). The following theorems allow to prove that the solutions of the
Ivanov–Tikhonov and the Morozov–Tikhonov approaches coincide.

Theorem 2 Let us consider the Tikhonov and Ivanov formulations. Let
(∥∥w∗

T

∥∥ , L̂∗
T

)
and

(∥∥w∗
I

∥∥ , L̂∗
I

)
be the solutions of, respectively, the Tikhonov and the Ivanov problem. If

∥∥w∗
T

∥∥ = ∥∥w∗
I

∥∥ for a given C = 1
λ
and for a given wMAX, then L̂∗

T = L̂∗
I and vice-versa.

Proof Based on the definition of minimum of the Tikhonov problem, from Eq. (4) we have
that

1

2

(∥∥w∗
I

∥∥)2 + C L̂∗
I ≥ 1

2

(∥∥w∗
T

∥∥)2 + C L̂∗
T . (17)

As we supposed that C is such that
∥∥w∗

T

∥∥ = ∥∥w∗
I

∥∥, then:

L̂∗
I ≥ L̂∗

T . (18)

However, as L̂∗
I is the solution to Problem (7), we must have that

L̂∗
I = L̂∗

T . (19)

If, instead, we suppose that C is such that L̂∗
I = L̂∗

T , then:
∥∥w∗

I

∥∥ ≥ ∥∥w∗
T

∥∥ . (20)

However, since in Problem (7) we supposed to search for the solution characterized by
minimum ‖w‖, we have: ∥∥w∗

I

∥∥ = ∥∥w∗
T

∥∥ . (21)

�
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Note that, if we did not opt for the smoothest solution, it would be impossible to prove
this last property. In fact, a counterexample where different values of ‖w‖ allow to achieve
the same minimum L̂∗

T can be found in Anguita et al. (2011b).

Theorem 3 Let us consider the Tikhonov andMorozov formulations. Let
(∥∥w∗

T

∥∥ , L̂∗
T

)
and

(∥∥w∗
M

∥∥ , L̂∗
M

)
be the solutions of, respectively, the Tikhonov and the Morozov problems. If

∥∥w∗
T

∥∥ = ∥∥w∗
M

∥∥ for a given C = 1
λ
and for a given L̂MAX, then L̂∗

T = L̂∗
M and vice-versa.

Proof Based on the definition of minimum of the Tikhonov problem, from Eq. (4) we have
that

1

2

(∥∥w∗
M

∥∥)2 + C L̂∗
M ≥ 1

2

(∥∥w∗
T

∥∥)2 + C L̂∗
T . (22)

As we supposed that λ is such that L̂∗
T = L̂∗

M , then:
∥∥w∗

M

∥∥ ≥ ∥∥w∗
T

∥∥ , (23)

However, as L̂∗
M is the solution to Problem (10), we must have that

∥∥w∗
M

∥∥ = ∥∥w∗
T

∥∥ . (24)

If instead we suppose that λ is such that
∥∥w∗

M

∥∥ = ∥∥w∗
T

∥∥, then:

L̂∗
M ≥ L̂∗

T . (25)

In particular, since in problem Problem (10) we force
∥∥w∗

M

∥∥ = ∥∥w∗
T

∥∥, we have that L̂∗
M is

forced to be as small as possible. Consequently L̂∗
M > L̂∗

T is not possible and we have that:

L̂∗
M = L̂∗

T . (26)

�
4.2 Solving Ivanov and Morozov problems with Tikhonov solvers

In the following, we prove some properties that allow us to define general procedures for
solving an Ivanov or a Morozov problem through the techniques designed for Tikhonov
formulations. We start by depicting the behavior of the Tikhonov problem solution as the
regularization parameter C grows. The following theorem is propaedeutic to the derivation
of such results.

Theorem 4 Let us consider the Tikhonov formulation. Let us solve Problem (4) for two given
values of the regularization parameter C1 and C2 > C1. In particular, let the solutions of

the problem be, respectively,
(∥∥∥w∗

C1

∥∥∥ , L̂∗
C1

)
for C1 and

(∥∥∥w∗
C2

∥∥∥ , L̂∗
C2

)
for C2 so that the

corresponding values of the objective functions are:

KC1 = 1

2

(∥∥w∗
C1

∥∥)2 + C1 L̂
∗
C1

, KC2 = 1

2

(∥∥w∗
C2

∥∥)2 + C2 L̂
∗
C2

. (27)

Then:
KC2 ≥ KC1 . (28)
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Proof Since C2 > C1 ∀(w, b) ∈ R
D × R we have that:

1

2
‖w‖2 + C1 L̂(h) ≤ 1

2
‖w‖2 + C2 L̂(h). (29)

The statement follows from taking the infimum over (w, b) on both sides. �
By exploiting the result of the previous theorem, we prove the following property, which

we will exploit in the following to design actual learning algorithms.

Theorem 5 Let us consider the Tikhonov formulation. Given C1,C2 ∈ [0,+∞] such that
C2 > C1, let us solve Problem (4) and let KC1 and KC2 be the corresponding values of the
objective functions, then:

(∥∥w∗
C2

∥∥ >
∥∥w∗

C1

∥∥ �⇒ L̂∗
C2

< L̂∗
C1

)
∨

(∥∥w∗
C2

∥∥ = ∥∥w∗
C1

∥∥ �⇒ L̂∗
C2

= L̂∗
C1

)
. (30)

Proof In this proof,weproceedby considering all the possible cases, provingby contradiction
that configurations other than the ones of the thesis are not admissible.

As a first step, suppose
∥∥∥w∗

C2

∥∥∥ <

∥∥∥w∗
C1

∥∥∥. If L̂∗
C2

< L̂∗
C1
, then KC2 < KC1 , which is

impossible (see Theorem 4). If L̂∗
C2

= L̂∗
C1
, then:

K ′C1 = 1

2

(∥∥w∗
C2

∥∥)2 + C1 L̂
∗
C2

< KC1 , (31)

which contradicts the hypothesis that KC1 is the global minimum and, then, is not admissible.
If L̂∗

C2
> L̂∗

C1
, then:

K ′C1 = 1

2

(∥∥w∗
C2

∥∥)2 + C1 L̂
∗
C2

≥ 1

2

(∥∥w∗
C1

∥∥)2 + C1 L̂
∗
C1

= KC1 . (32)

From Eq. (32), we get:

C1 ≥
(∥∥∥w∗

C1

∥∥∥
)2 −

(∥∥∥w∗
C2

∥∥∥
)2

2
(
L̂∗
C2

− L̂∗
C1

) . (33)

Analogously, we have for KC2 :

1

2

(∥∥w∗
C1

∥∥)2 + C2 L̂
∗
C1

≥ 1

2

(∥∥w∗
C2

∥∥)2 + C2 L̂
∗
C2

= KC2 , (34)

from which we obtain:

C2 ≤
(∥∥∥w∗

C1

∥∥∥
)2 −

(∥∥∥w∗
C2

∥∥∥
)2

2
(
L̂∗
C2

− L̂∗
C1

) (35)

By joining Eqs. (33) and (35), we have that C2 < C1, which contradicts the hypotheses.

Suppose now that
∥∥∥w∗

C2

∥∥∥ =
∥∥∥w∗

C1

∥∥∥. If L̂∗
C2

< L̂∗
C1
, then

K ′C1 = 1

2

(∥∥w∗
C1

∥∥)2 + C1 L̂
∗
C2

< KC1 (36)

which is impossible, as we supposed that KC1 is the global minimum. Analogously, if L̂∗
C2

>

L̂∗
C1
, then:

K ′C2 = 1

2

(∥∥w∗
C2

∥∥)2 + C2 L̂
∗
C1

< KC2 , (37)
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or, in other words, KC2 is not the global minimum. This contradicts the hypothesis and, thus,
this configuration is not admissible.

Finally, let us consider
∥∥∥w∗

C2

∥∥∥ >

∥∥∥w∗
C1

∥∥∥. If L̂∗
C2

= L̂∗
C1
, then

K ′C2 = 1

2

(∥∥w∗
C1

∥∥)2 + C2 L̂
∗
C2

< KC2 (38)

which is, again, impossible as KC2 is supposed to be the global minimum. As a last step, let
us consider the case L̂∗

C2
> L̂∗

C1
, for which we have:

K ′C2 = 1

2

(∥∥w∗
C1

∥∥)2 + C2 L̂
∗
C1

< KC2 , (39)

which violates the hypotheses of the theorem. Thus, all the configurations of
∥∥∥w∗

C1,2

∥∥∥ and

L̂∗
C1,2

other than the ones of the thesis are not admissible. �
The following theorem proves that, if

∥∥w∗
C

∥∥ stops increasing asC increases, it will remain
the same, regardless of the value assumed by the regularization parameter.

Theorem 6 Let us consider the Tikhonov formulation. Let
∥∥∥w∗

C∞

∥∥∥ be the solution to the

regularization problem for a given value of C∞. If ∃C > C∞ such that
∥∥w∗

C

∥∥ =
∥∥∥w∗

C∞

∥∥∥,
then

∥∥w∗
C

∥∥ will not vary ∀C ≥ C∞.

Proof Let us consider a value C1 of the regularization parameter such that C1 < C∞ <

C < ∞ and
∥∥w∗

C

∥∥ =
∥∥∥w∗

C∞

∥∥∥ >

∥∥∥w∗
C1

∥∥∥. Then, we have that L̂∗
C = L̂(h∗

C∞) < L̂(h∗
C1

).

Moreover let us consider C2 ∈ [C1,C∞]. Thanks to the convexity of the problem, we have
that ∀α ∈ [0, 1]:

L̂(hα) = L̂
(
h∗
C1

(1 − α) + h∗
C∞α

) ≤ (1 − α)L̂
(
h∗
C1

) + α L̂
(
h∗
C∞

)
. (40)

Then we can define another Tikhonov problem, whose solution is constrained on the line
that connects h∗

C1
and h∗

C∞ and which can be parametrized as hα = h∗
C1

(1 − α) + h∗
C∞α

(wα = (1−α)w∗
C1

+αw∗
C∞ ) with α ∈ [0, 1]. Then restriction of Problem (4) on the segment

joining w∗
C1

and w∗
C∞ can be formulated as:

min
α

1

2
‖wα‖2 + C L̂(hα). (41)

Based on these considerations it is easy to show that (see also Fig. 1):

min
w,b

1

2
‖w‖2 + C2 L̂(h) (42)

≤ min
α

1

2
‖wα‖2 + C2 L̂(hα) (43)

≤ min
α

1

2

∥∥(1 − α)w∗
C1

+ αw∗
C∞

∥∥2

+ C2

[
(1 − α)L̂

(
h∗
C1

) + α L̂
(
h∗
C∞

)]
(44)

= min
α

1

2

∥∥w∗
C1

+ α
(
w∗
C∞ − w∗

C1

)∥∥2

+ C2

[
L̂

(
h∗
C1

) + α
(
L̂

(
h∗
C∞

) − L̂
(
h∗
C1

))]
(45)
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Fig. 1 Reformulation of the Tikhonov problem of Eq. (4) for proving Theorem 6

= min
α

1

2

[∥∥w∗
C1

∥∥2 + α2
∥∥w∗

C∞ − w∗
C1

∥∥2 + 2αw∗
C1

· (
w∗
C∞ − w∗

C1

)]

+ C2

[
L̂

(
h∗
C1

) + α
(
L̂

(
h∗
C∞

) − L̂
(
h∗
C1

))]
(46)

This last minimization problem (Eq. (46)) can be easily solved:

d

dα

{
1

2

[∥∥w∗
C1

∥∥2 + α2
∥∥w∗

C∞ − w∗
C1

∥∥2 + 2αw∗
C1

· (
w∗
C∞ − w∗

C1

)]

+C2

[
L̂

(
h∗
C1

) + α
(
L̂

(
h∗
C∞

) − L̂
(
h∗
C1

))]}
(47)

= α
∥∥w∗

C∞ − w∗
C1

∥∥2 + w∗
C1

· (
w∗
C∞ − w∗

C1

) + C2

[
L̂

(
h∗
C∞

) − L̂
(
h∗
C1

)] = 0 (48)

α =
w∗
C1

·
(
w∗
C1

− w∗
C∞

)
+ C2

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞ − w∗

C1

∥∥∥
2 (49)

Then we obtain that:

min
α

1

2

[∥∥w∗
C1

∥∥2 + α2
∥∥w∗

C∞ − w∗
C1

∥∥2 + 2αw∗
C1

· (
w∗
C∞ − w∗

C1

)]

+ C2

[
L̂

(
h∗
C1

) + α
(
L̂

(
h∗
C∞

) − L̂
(
h∗
C1

))]
(50)

= 1

2

∥∥w∗
C1

∥∥2 + C2 L̂
(
h∗
C1

) − 1

2
α2

∥∥w∗
C∞ − w∗

C1

∥∥2 (51)

Based on these last results, we derive that:

min
w,b

1

2
‖w‖2 + C2 L̂(h) (52)

≤ 1

2

∥∥w∗
C1

∥∥2 + C2 L̂
(
h∗
C1

) − 1

2
α2

∥∥w∗
C∞ − w∗

C1

∥∥2 (53)
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since 1
2α

2
∥∥∥w∗

C∞ − w∗
C1

∥∥∥
2 ≥ 0. Now we can observe that:

C2 = C1 → α = 0 →
w∗
C1

·
(
w∗
C1

− w∗
C∞

)
+ C2

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞ − w∗

C1

∥∥∥
2 = 0

w∗
C1

· (
w∗
C1

− w∗
C∞

) = −C1

[
L̂

(
h∗
C1

) − L̂
(
h∗
C∞

)]
(54)

C2 = C∞ → α = 1 →
w∗
C1

·
(
w∗
C1

− w∗
C∞

)
+ C2

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞ − w∗

C1

∥∥∥
2 = 1

w∗
C1

· (
w∗
C1

− w∗
C∞

) = −C∞
[
L̂

(
h∗
C1

) − L̂
(
h∗
C∞

)] + ∥∥w∗
C∞ − w∗

C1

∥∥2 (55)

Based on these two limit cases we can observe that ∀C2 ∈ (C1,C∞) α falls, as hypothesized,
in (0, 1). Let us take α

α =
w∗
C1

·
(
w∗
C1

− w∗
C∞

)
+ C2

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞ − w∗

C1

∥∥∥
2 , (56)

by exploiting Eq. (54) we have that

α =
−C1

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]
+ C2

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞ − w∗

C1

∥∥∥
2 > 0. (57)

By exploiting, instead, Eq. (55) we have that

−C∞
[
L̂

(
h∗
C1

)
−L̂

(
h∗
C∞

)]
+

∥∥∥w∗
C∞−w∗

C1

∥∥∥
2 + C2

[
L̂

(
h∗
C1

)
−L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞−w∗

C1

∥∥∥
2 =

1 −
(C∞ − C1)

[
L̂

(
h∗
C1

)
− L̂

(
h∗
C∞

)]

∥∥∥w∗
C∞ − w∗

C1

∥∥∥
2 < 1 (58)

From this last properties it is possible to state that ∀C2 ∈ (C1,C∞) we have that:
∥∥w∗

C1

∥∥ <
∥∥w∗

C2

∥∥ <
∥∥w∗

C∞
∥∥ . (59)

Consequently

L̂(h∗
C1

) > L̂(h∗
C2

) > L̂(h∗
C∞). (60)

This means that if ∃C3 > C > C∞ such that
∥∥∥w∗

C3

∥∥∥ >

∥∥∥w∗
C∞

∥∥∥ it is not possible that
∥∥w∗

C

∥∥ =
∥∥∥w∗

C∞

∥∥∥ because in this case ∀C ∈ (C∞,C3) we must have that:

∥∥w∗
C∞

∥∥ <
∥∥w∗

C

∥∥ <
∥∥w∗

C3

∥∥ . (61)

Consequently the statement of the Theorem is proved.
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Fig. 2 Results of the Theorem 6: the monotonicity of the solution path

A particular case is when there is noC1, which satisfies the property discussed in the proof

(C1 < C∞ < C < ∞ and
∥∥w∗

C

∥∥ =
∥∥∥w∗

C∞

∥∥∥ >

∥∥∥w∗
C1

∥∥∥). In this case we have to suppose,

by contradiction, that ∃C2 such that C∞ < C < C2 < ∞ and
∥∥w∗

C

∥∥ =
∥∥∥w∗

C∞

∥∥∥ <

∥∥∥w∗
C2

∥∥∥.
Then, by using the same argument exploited above, it is possible to show that

∥∥w∗
C

∥∥ <∥∥∥w∗
C∞

∥∥∥ <

∥∥∥w∗
C2

∥∥∥, which contradict the hypothesis. Therefore
∥∥w∗

C

∥∥ =
∥∥∥w∗

C∞

∥∥∥ =
∥∥∥w∗

C2

∥∥∥.
We did not report the details because they are analogous to the one reported before. �

A very familiar case where the assumptions of Theorem 6 are met is the one of the SVM
with the hinge loss function: in Hastie et al. (2004) the entire regularization path is studied.
WhenC = 0, the solution isw = 0, then there is aC∞ for which the solution will not change
∀C ≥ C∞.

From the previous results, it can be clearly noted that, if theminimumvalue of the empirical
error has not been reached yet, the empirical error L̂

(
h∗
C

)
monotonically decreases (and

the regularization term
∥∥w∗

C

∥∥ monotonically increases) by increasing C , towards its global
minimum. If the minimum has been reached, instead, the value

∥∥w∗
C

∥∥ does not change even
if C is increased. Refer to Fig. 2 for a graphical representation of the results.

The fundamental result of Theorem 6 allows to derive an approach for solving the Ivanov
and Morozov formulations, by exploiting solvers designed for Tikhonov problems.

Concerning the Ivanov regularization formulation, the approach is graphically presented
in Fig. 3 and detailed in Algorithm 1. A starting value for the regularization parameter Cstart

is defined: if the solution computed with the Tikhonov formulation is such that
∥∥∥w∗

Cstart

∥∥∥ >

wMAX, then the optimal solution for the Ivanov formulation lies on the boundary of the
hypothesis space. Since the optimal solution

∥∥w∗
C

∥∥ of Tikhonov Problem (4) monotonically

increases (and then L̂∗
C monotonically decreases) by increasing C , it is sufficient to search

for
∥∥w∗

C

∥∥ = wMAX and obtain the solution w∗
wMAX

and L̂∗
wMAX

. For this purpose, a simple

bisection algorithm can be exploited. If, instead,
∥∥∥w∗

Cstart

∥∥∥ ≤ wMAX, it is possible to search

for C = C∞ such that the solution to the minimization problem does not change even if
we keep increasing C , as proven in Theorem 6. If

∥∥w∗
C

∥∥ < wMAX and the value of
∥∥w∗

C

∥∥
does not change with C , the solution has been found; otherwise, the value of C for which∥∥w∗

C

∥∥ = wMAX shall be identified through a bisection procedure. Note that this technique
allows to find the smoothest feasible solution to the Ivanov problem, accordingly to the further
constraint added when introducing the Ivanov formulation.

Concerning theMorozov regularization formulation, the approach is graphically presented
in Fig. 4 and detailed in Algorithm 2. Analogously to the algorithm for Ivanov problems, the
approach is initialized with the valueCstart. If the corresponding empirical error is larger than
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Fig. 3 Graphical representation of the algorithm for solving the Ivanov Problem (7) by exploiting the equiv-
alent Tikhonov formulation of Problem (4)

the threshold L̂MAX,C is increased until it reaches the boundary of the hypothesis space2 (i.e.
L̂∗
C = L̂MAX), and a bisection algorithm can be exploited for this purpose. If the empirical

error is smaller than the threshold, C must be decreased in order to identify C∞, i.e. the
value for which

∥∥w∗
C

∥∥ starts varying as C decreases. However, we recommend to perform
a preliminary step, which consists in checking the error performed by a degenerate model
w = 0, i.e. the smoothest possible model: if the empirical error for this degenerate model is
below the threshold L̂MAX, then this is the solution to the Morozov regularization problem.

There is an underlying assumption in order to be sure that the algorithms will find the
solution, namely that the empirical risk has a minimizer.

As a final remark, note that, in principle, one can compute the entire regularization path
(Hastie et al. 2004; Gunter and Zhu 2005; Bach et al. 2005; Friedman et al. 2010; Park and
Hastie 2007) (i.e. the solution for all values of C or λ) in place of solving several different
problems, formulated in accordance with Tikhonov regularization (Algorithms 1 and 2): the
final solution is chosen as the one that satisfies the properties discussed above. This approach
is generally not convenient, from a computational point of view, when solving one Ivanov
(or Morozov) problem for a particular configuration of wMAX (or L̂MAX). However, when
coping with model selection and/or error estimation in the SRM framework, several values
of the hyperparameters must be explored: as a consequence, in this scenario, computing the
entire regularization path can be beneficial from the computational perspective.

5 Implications on learning

We show in this section that the Tikhonov formulation is not directly linked to the SRM-
based learning: it is only used as a workaround in order to exploit its computational advantage
over the Ivanov formulation (Vapnik 1998). In fact, the SRM framework always resorts to the
Ivanov approach, even if implicitly. Other learning frameworks, instead, like the Algorithmic

2 Note that, in principle, no values of C could exist which allow to find a solution performing better than the
pre-determined threshold. However, we neglect this case by hypothesis in our analysis.

123



Mach Learn (2016) 103:103–136 117

Algorithm 1 Algorithm for solving the Ivanov Problem (7) by exploiting the equivalent
Tikhonov formulation of Problem (4)
Require: (z1, . . . , zn), K (·, ·), wMAX and the tolerance τ

1: C = Cstart

2:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

3: if
∥∥w∗

C

∥∥ > wMAX then
4: while

∥∥w∗
C

∥∥ > wMAX do
5: Cup = C

6: C = C
2

7:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

8: if
∥∥w∗

C

∥∥ < wMAX then
9: Clow = C
10: break
11: end if
12: end while
13: else
14: wnew = ∞
15: while

∥∥w∗
C

∥∥ < wMAX do
16: Clow = C
17: C = C ∗ 2
18: wold = wnew

19:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

20: if
∥∥w∗

C

∥∥ > wMAX then
21: Cup = C
22: break
23: end if
24: wnew = ∥∥w∗

C

∥∥

25: if
∣∣∣ ‖wnew−wold‖‖wnew+wold‖

∣∣∣ < τ then

26: return w∗
C

27: end if
28: end while
29: end if

30: while

∣∣∣∣∣

∥∥∥w∗
C

∥∥∥−wMAX∥∥∥w∗
C

∥∥∥+wMAX

∣∣∣∣∣ > τ do

31: C = Clow + Cup−Clow
2

32:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

33: if
∥∥w∗

C

∥∥ > wMAX then
34: Cup = C
35: end if
36: if

∥∥w∗
C

∥∥ < wMAX then
37: Clow = C
38: end if
39: end while
40: return w∗

C

Stability (Bousquet andElisseeff 2002), can be linked to both formulations, therefore enabling
the exploitation of the approach with the most favorable learning characteristics.

For this purpose, let us consider a 1-bounded l-Lipschitz loss function:

�(h(x), y) ∈ [0, 1], |�(h1(x), y) − �(h2(x), y)| ≤ l|h1(x) − h2(x)|, (62)
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Fig. 4 Graphical representation of the algorithm for solving the Morozov Problem (10) by exploiting the
equivalent Tikhonov formulation of Problem (4)

and a kernel class such that K (x, x) ≤ k2, where k > 0 is a constant. In this case, the gener-
alization error of a classifier can be bounded through the Expected Rademacher Complexity
R(H) (Koltchinskii 2001; Bartlett and Mendelson 2003; Anguita et al. 2012). In particular,
the latter is an upper bound of the expected difference between L(h) and L̂(h) (Koltchin-
skii 2001; Bartlett and Mendelson 2003; Anguita et al. 2012), i.e. the Expected Uniform
Deviation U (h):

U (h) = EDn sup
h∈H

[
L(h) − L̂(h)

]
≤ EDnEσ sup

h∈H
2l

n

n∑

i=1

σi h(x) = 2l R(H). (63)

Since the Rademacher Complexity R̂(H) = Eσ suph∈H 1
n

∑n
i=1 σi h(x) and the Uniform

Deviation Û (h) = suph∈H[L(h) − L̂(h)] are bounded difference functions (McDiarmid
1989; Bartlett and Mendelson 2003), the following bound holds with probability (1 − δ)

(Bartlett and Mendelson 2003):

L(h) ≤ L̂(h) + 2l R̂(H) + 3

√
log

( 2
δ

)

2n
(64)

In order to compute R̂(H), according to SRM, we should fix H and, for this purpose, an
Ivanov regularization approach is the natural choice. The Tikhonov andMorozov approaches,
instead, cannot be exploited for computing R̂(H), since H varies depending on the obser-
vations: this problem is also underlined and addressed in Shawe-Taylor et al. (1998). The
computation of R̂(H) can be performed by solving a Tikhonov (or Morozov) problem and,
then, by using the obtained solution as the constraint in the Ivanov formulation (Anguita et al.
2012). In other words, the Ivanov formulation cannot be avoided.

A possible workaround could consist in bounding R̂(H) by noting that, for kernel classes,
b = 0, and ‖w‖ ≤ wMAX the following inequality holds (Bartlett and Mendelson 2003;
Bousquet and Elisseeff 2002; Poggio et al. 2002):
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Algorithm 2 Algorithm for solving the Morozov Problem (10) by exploiting the equivalent
Tikhonov formulation of Problem (4)

Require: (z1, . . . , zn), K (·, ·), L̂MAX and the tolerance τ

1: if L0 = L̂(w = 0) < L̂MAX then
2: return w∗

C=0 = 0
3: end if
4: C = Cstart

5:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

6: if L̂∗
C < L̂MAX then

7: while L̂∗
C < L̂MAX do

8: Cup = C

9: C = C
2

10:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

11: if L̂∗
C > L̂MAX then

12: Clow = C
13: break
14: end if
15: end while
16: else
17: Lnew = ∞
18: while L̂∗

C > L̂MAX do
19: Clow = C
20: C = C ∗ 2
21: Lold = Lnew
22:

(∥∥w∗
C

∥∥ , L̂∗
C

)
= Eq. (4)

23: if L̂∗
C < L̂MAX then

24: Cup = C
25: break
26: end if
27: Lnew = L̂∗

C

28: if
∣∣∣ Lnew−Lold
Lnew+Lold

∣∣∣ < τ then

29: return � Solution
30: end if
31: end while
32: end if

33: while

∣∣∣∣
L̂∗
C−L̂MAX

L̂∗
C+L̂MAX

∣∣∣∣ > τ do

34: C = Clow + Cup−Clow
2

35:
(∥∥w∗

C

∥∥ , L̂∗
C

)
= Eq. (4)

36: if L̂∗
C < LMAX then

37: Cup = C
38: end if
39: if L̂∗

C > LMAX then
40: Clow = C
41: end if
42: end while
43: return w∗

C
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wMAX√
2n

√√√√
n∑

i=1

K (xi , xi ) ≤ R̂(H) ≤ wMAX

n

√√√√
n∑

i=1

K (xi , xi ) ≤ k wMAX√
n

. (65)

The proof of the upper bound is straightforward (Bartlett and Mendelson 2003), while the
proof of the lower bound is based on theKhintchine inequality (Haagerup 1981). Note that the
result of Eq. (65) shows exactly the same results achieved in Bartlett (1998), where Vapnik’s
approach is exploited (Vapnik 1998): the size of the weights of w is more important than the
dimensionality of w.

By using the above inequality, the learning process can be performed using the Tikhonov
(or Morozov) formulation, without resorting to the Ivanov one. In fact, it is sufficient to set
wMAX = ‖w∗‖, where w∗ is the solution of the Tikhonov (or Morozov) problem. Note that
a further indication of the direct link between SRM and the Ivanov formulation is that, to
the best knowledge of the authors, there is no explicit upper or lower bound of R̂(H) as a
function of C (or L̂MAX).

The same conclusion can be drawn by exploiting the Local version of the Rademacher
Complexity (Koltchinskii 2006; Bartlett et al. 2005) for which an equivalent version of Eq.
(65) exists (Cortes et al. 2013; Bartlett et al. 2005; Mendelson 2003).

We can link, instead, both the Ivanov and Tikhonov formulations to the Algorithmic
Stability framework (Bousquet and Elisseeff 2002; Poggio et al. 2004; Tomasi 2004; Oneto
et al. 2014; Elisseeff et al. 2005; Evgeniou et al. 2004). Bousquet and Elisseeff (2002) showed
that, under some mild conditions, it is possible to bound the generalization error of a learning
algorithm without aprioristically defining a set of hypothesis: in particular, we consider the
notion of Uniform Stability which provides the sharpest bounds. Let us define the Uniform
Stability as the constant β such that:

∀Dn, (x, y) : |�(h1(x), y) − �(h2(x), y)| ≤ β (66)

where h1 is learned using the whole set Dn , while h2 is trained on the set, obtained by
removing one sample from Dn . Then, the following bound can be derived:

L(h) ≤ L̂(h) + 2β + (4nβ + 1)

√
log

( 1
δ

)

2n
(67)

The Uniform Stability β can be upper bounded when the Tikhonov formulation is used
for learning (Bousquet and Elisseeff 2002), in fact:

|�(h1(x), y) − �(h2(x), y)| ≤ l|h1(x) − h2(x)| ≤ l2k2C (68)

Moreover, a similar bound can be found, when using the Ivanov regularization scheme:

|�(h1(x), y) − �(h2(x), y)| ≤ l|h1(x) − h2(x)| ≤ 2lkwMAX (69)

Therefore, in the Algorithmic Stability framework, bothC andwMAX can be used for directly
controlling the generalization ability of a learning algorithm.

However, it is worthwhile noting that, given a particular training set, even if we were able
to find C and wMAX, such that the solutions to the Tikhonov and Ivanov formulations are
equivalent, the stability of the two learning procedures could be different. In other words, let
us consider a training setDn and let us solve the Tikhonov formulation for a particular value of
C , then the solution will be w∗

C . If we set wMAX = ∥∥w∗
C

∥∥ and solve the Ivanov formulation,
then the same solution of the Tikhonov one will be found, given the results of Sect. 4.
This means that the Tikhonov and the Ivanov formulations are apparently indistinguishable,
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since they give the same result when applied to the same data. Moreover, if we analyze
the two procedures in the usual SRM framework, we can conclude that the two learning
machines choose functions from the same set and therefore have the same associated risk.
The Algorithmic Stability, instead, gives more insight into the learning process. In fact, even
if the two procedures give the same solution, the risk associated to them can be different. This
reflects the fact that the two procedures are, indeed, different despite choosing the same final
model. The Tikhonov formulation, for a given C , chooses from a set of hypothesis which
depends on Dn , the Ivanov formulation, instead, will always choose from the same set of
hypothesis, for a given wMAX, regardless of the availableDn . Consequently, given a specific
problem, it would be possible to adopt the formulation characterized by the best learning
properties.

TheAlgorithmic Stability opens also another perspective over theTikhonov and the Ivanov
formulations. Given the solution of the Tikhonov formulation for a given C , one can adopt
the Algorithmic Stability bound of Eq. (69) by taking wMAX = ∥∥w∗

C

∥∥, since the solution
of the two formulations would be the same in this setting. In practice, we are pretending
to use the Ivanov formulation, since this is more advantageous when the bound of Eq. (69)
is tighter. Consequently, the two formulations may have different learning capabilities for
different datasets, and the bounds of Eqs. (68) and (69) can tell us which is the best one
for the problem under exam: it is only necessary to choose the formulation with the smaller
associated risk.

In order to better clarify the above analysis, we show here, through a simple example, that
the class H varies based on the observations in the case of the Tikhonov formulation. Let
us consider a one dimensional linear classification problem, where h(x) = w · x , and the
following datasets:

– TOY-1—n samples in x = −1 with y = −1; n samples in x = 1 with y = 1; one sample
in x = 1 + 	, with y = 1 (Fig. 5).

– TOY-2—n samples in x = −1 with y = −1; n samples in x = 1 with y = 1; one sample
in x = 1 + 	, with y = −1 (Fig. 6).

Figure 7 shows the trend of |w∗| as C is varied in C ∈ [10−6, 104], where w∗ is the
solution of the Tikhonov formulation, when n = 5, 	 = 8, and the Hinge loss function
(Vapnik 1998) is used. It clearly emerges that the class of functions H is not determined by
C : in fact, for a given value of C , the solution w∗ changes depending on the training set.

Fig. 5 TOY-1

Fig. 6 TOY-2
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Fig. 7 Trend of |w∗|, where w∗ is the solution of the Tikhonov formulation, for TOY-1 and TOY-2
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Fig. 8 Uniform Stability by using Eqs. (68) and (69)

The same toy problems can be exploited to show that, using the notion ofUniformStability,
either the Tikhonov or the Ivanov formulations can be adopted, based on the one that shows
the best learning properties. Figure 8 shows the value of the Uniform Stability by using
Eqs. (68) and (69) as C is varied, where the same experimental setup as above is applied
(note that l = 1 when the Hinge loss function is exploited). Obviously, if the bound of
Eq. (68) is used, the Uniform Stability is the same for the two problems. Instead, if we use
the bound of Eq. (69), the Uniform Stability of TOY-1 is larger respect to the one computed
with Eq. (68), while the Uniform Stability of TOY-2 is smaller.

As a final remark, it is worth noting that, to the best of our knowledge, a link between the
Morozov formulation and the Uniform Stability has not been found yet.
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6 Tikhonov, Ivanov and Morozov formulations for support vector
machine classifiers learning

The approches proposed in the previous Section are quite general and can be applied to any
convex loss function. We will focus here on the SVM classifier, instead, and its hinge-loss
function and show that the procedures described by Algorithms 1 and 2 can be further refined
and improved.

The hinge loss function is defined as:

� (h(x), y) = ξ = max [0, 1 − yh(x)] = |1 − yh(x)|+ , (70)

where | · |+ = max(0, ·). Then, the T-SVM learning problem can be formulated as follows:

h : arg min
w,b,ξ

n∑

i=1

ξi + λ

2
‖w‖2

yi (w · φ(xi ) + b) ≥ 1 − ξi

ξi ≥ 0, i ∈ {1, . . . , n} , (71)

or equivalently:

h : arg min
w,b,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi

yi (w · φ(xi ) + b) ≥ 1 − ξi

ξi ≥ 0, i ∈ {1, . . . , n} . (72)

The I-SVM formulation is:

h : arg min
w,b,ξ ,‖w‖

n∑

i=1

ξi

‖w‖2 ≤ w2
MAX,

yi (w · φ(xi ) + b) ≥ 1 − ξi

ξi ≥ 0, i ∈ {1, . . . , n} , (73)

Finally, the M-SVM formulation is:

h : arg min
w,b,ξ

1

2
‖w‖2
n∑

i=1

ξi ≤ L̂MAX,

yi (w · φ(xi ) + b) ≥ 1 − ξi

ξi ≥ 0, i ∈ {1, . . . , n} . (74)

6.1 Training a classifier with T-SVM

The most common approach for training a T-SVM classifier relies on solving the dual for-
mulation of Problem (71):
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min
α

1

2

n∑

i=1

n∑

j=1

αiα j yi y j K
(
xi , x j

) −
n∑

i=1

αi

n∑

i=1

αi yi = 0

0 ≤ αi ≤ C, i ∈ {1, . . . , n} , (75)

where the classification function is reformulated accordingly:

h (x) =
n∑

i=1

αi yi K (xi , x) + b. (76)

One of the most well-known approaches for solving Problem (75) is the Sequential Min-
imal Optimization (SMO) algorithm (Platt 1998; Keerthi et al. 2001; Keerthi and Gilbert
2002; Fan et al. 2005), though several alternatives are available in literature.3

6.2 Training a classifier with I-SVM

The first alternative for effectively solving I-SVM consists in exploiting Algorithm 1, where
the T-SVM Problem (71) (or (75)) is used in place of Problem (4) and, analogously, I-SVM
Problem (73) replaces Problem (7).

A second technique, tailored for I-SVM learning, consists in using the results of Hastie
et al. (2004) in order to reduce the computational burden of Algorithm 1. In their work, Hastie
et al. (2004) prove that the solution path of T-SVM, obtained by varyingC , is piecewise linear.
This means that the optimal solution

(
α∗
T , b∗

T

)
linearly changes as C is increased, with the

partial exception of S change-points, which can be effectively identified, as the computational
cost to find them is comparable to the burden required to find one solution to Problem (75)
(Hastie et al. 2004).Moreover, the authors also proved that∃C∞ < ∞ such that∀C ≥ C∞ the
solution

(
w∗

T , b∗
T

)
does not vary with C , i.e. a particular case of the more general Theorem 6,

presented in Sect. 4. Moreover, note that, when SVM is concerned, the equivalence between
I-SVM, T-SVM andM-SVM holds not only for the norm of the solutions, but for the solution
itself (Hastie et al. 2004). Consequently, we can exploit the information embedded into the
regularization path to improve Algorithm 1, when addressing I-SVM learning.

Let RP[33] be the implementation of themethod, proposed in Hastie et al. (2004), allowing
to identify the solution path for the T-SVM Problem (75):

{(
α∗
T (C0), b

∗
T (C0),C0

)
, . . . ,

(
α∗
T (CS), b

∗
T (CS),CS

)} = RP[33], (77)

where, in particular, given Theorem 6 and the results of Hastie et al. (2004),CS = C∞. As the
solution varies linearly, with respect toC , in the span between two consecutive change-points
Ci−1 and Ci , with i ∈ {1, . . . , S}, then:

α∗
T (Ci ) = m∗

T (Ci )C + o∗
T (Ci ), for C ∈ [

Ci−1,Ci
]

(78)

m∗
T (Ci ) = α∗

T (Ci ) − α∗
T (Ci−1)

Ci − Ci−1
, o∗

T (Ci ) = m∗
T (Ci )Ci−1 + α∗

T (Ci−1). (79)

3 Refer to, for example, the survey in Shawe-Taylor and Sun (2011).
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We can also compute
∥∥w∗

C

∥∥2 for C ∈ [
Ci−1,Ci

]
:

∥∥w∗
C

∥∥2 =
n∑

i=1

n∑

i=1

[(
m∗

T (Ci )
)
i C + (

o∗
T (Ci )

)
i

]

[(
m∗

T (Ci )
)
j C + (

o∗
T (Ci )

)
j

]
yi y j K

(
xi , x j

)
(80)

= C2
n∑

i=1

n∑

i=1

(
m∗

T (Ci )
)
i

(
m∗

T (Ci )
)
j yi y j K

(
xi , x j

)

+ 2C
n∑

i=1

n∑

i=1

(
m∗

T (Ci )
)
i

(
o∗
T (Ci )

)
j yi y j K

(
xi , x j

)

+
n∑

i=1

n∑

i=1

(
o∗
T (Ci )

)
i

(
o∗
T (Ci )

)
j yi y j K

(
xi , x j

)
(81)

= P2∗
T (Ci )C

2 + P1∗
T (Ci )C + P0∗

T (Ci ) C ∈ [
Ci−1,Ci

]
(82)

Given these results we can reformulate Eq. (77) as follows:
{[
P2∗

T (C1), P2
∗
T (C1), P2

∗
T (C1), C ∈ [C0 = 0,C1]

]
,

[
P2∗

T (C2), P2
∗
T (C2), P2

∗
T (C2), C ∈ [C1,C2]

]
,

. . . ,
[
P2∗

T (CS), P2
∗
T (CS), P2

∗
T (C), C ∈ [

CS−1,CS = C∞
]]}

(83)

= {
P2∗

T (C), P2∗
T (C), P2∗

T (C), C ∈ [0,C∞]
}

(84)

= {∥∥w∗∥∥ (C),w∗(C), C ∈ [0,C∞]
} = RP[33]. (85)

As a consequence, we can reformulate Algorithm 1 by exploiting the results of Hastie et al.
(2004): the resulting approach is presented in Algorithm 3.

Algorithm 3 Algorithm for solving I-SVM Problem (73) by exploiting Algorithm 1 and the
results of Hastie et al. (2004)
Require: (z1, . . . , zn), K (·, ·), wMAX and the tolerance τ

1:
{∥∥w∗∥∥ (C), w∗(C), C ∈ [0,C∞]

} = RP(Hastie et al. 2004)
2: if

∥∥w∗∥∥ (C∞) < wMAX then
3: return w∗(C∞)

4: end if
5: Cup = C∞
6: Clow = 0
7: while | ∥∥w∗∥∥ (C) − wMAX| > τ do

8: C = Clow + Cup−Clow
2

9: if
∥∥w∗∥∥ (C) > wMAX then

10: Cup = C
11: end if
12: if

∥∥w∗
C

∥∥ (C) < wMAX then
13: Clow = C
14: end if
15: end while
16: return w∗(C)
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A third approach is based on the ideas of Martein and Schaible (1987) and Anguita
et al. (2010). It exploits, in turn, conventional Linear (LP) and Quadratic Programming (QP)
optimization algorithms, as shown in Algorithm 4. The first step consists in discarding the
quadratic constraint ‖w‖2 ≤ w2

MAX and using the Representer Theorem to reformulate
Problem (73) as follows:

h : arg min
α,b,ξ

n∑

i=1

ξi

yi

⎛

⎝
n∑

j=1

α j y j K (x j , xi ) + b

⎞

⎠ ≥ 1 − ξi

ξi ≥ 0, i ∈ {1, . . . , n} (86)

which is a standard LP problem. After the optimization procedure ends, the value of ‖w‖2
is computed and two alternatives arise: if the constraint is satisfied, then the solution found
is also the optimal one and the routine ends; otherwise the optimal solution corresponds to
‖w‖ = wMAX (Boyd and Vandenberghe 2004). In order to find w, we have to switch to the
dual of Problem (73):

L (w, b, ξ ,β, γ,μ) =
n∑

i=1

ξi − γ

2

(
w2
MAX − ‖w‖2)

−
n∑

i=1

βi [yi (w · φ(xi ) + b) − 1 + ξi ] −
n∑

i=1

μiξi . (87)

Then we can compute the Karush–Kuhn–Tucker (KKT) and the complementary conditions:

∂L (w, b, ξ ,β, γ,μ)

∂w
= γw −

n∑

i=1

βi yiφ(xi ) = 0 → w = 1

γ

n∑

i=1

βi yiφ(xi )

γ �= 0 (88)

∂L (w, b, ξ ,β, γ,μ)

∂b
= −

n∑

i=1

βi yi = 0 (89)

∂L (w, b, ξ ,β, γ,μ)

∂ξi
= 1 − βi − μi = 0 → βi ≤ 1 (90)

γ,β,μ, ξi ≥ 0 (91)

‖w‖2 ≤ w2
MAX (92)

yi (w · φ(x) + b) ≥ 1 − ξi (93)

βi [yi (w · φ(x) + b) − 1 + ξi ] = 0 (94)

μiξi = 0 (95)

γ
(
w2
MAX − ‖w‖2) = 0, ∀i ∈ {1, . . . , n} (96)
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The dual formulation is formulated as follows:

min
β,γ

1

2γ

n∑

i=1

n∑

j=1

βiβ j yi y j K (x j , xi ) −
n∑

i=1

βi + γw2
MAX

2

n∑

i=1

βi yi = 0

γ ≥ 0

0 ≤ βi ≤ 1, i ∈ {1, . . . , n} . (97)

Note that, if the quadratic constraint ‖w‖2 ≤ w2
MAX were satisfied, γ would equal zero and

the dual formulation would not be solvable: this is why, as a first step, we make use of the LP
routines for solving Problem (73) and we exploit the dual formulation only if the quadratic
constraint is not satisfied. We are interested in solving Problem (97) using conventional QP
solvers for SVM (e.g. Platt 1998), therefore we use an iterative optimization technique. The
first step consists in fixing the value of γ = γ0 > 0 and, then, optimizing the cost function

with reference to the other dual variables β. It is easy to see that the term
γw2

MAX
2 is constant

at this stage and can be removed from the expression, so the dual becomes:

min
β

1

2

n∑

i=1

n∑

j=1

βiβ j yi y j K (x j , xi ) − γ0

n∑

i=1

βi

n∑

i=1

βi yi = 0

0 ≤ βi ≤ 1, i ∈ {1, . . . , n} . (98)

which is equivalent to the conventional SVMdual problem (75) and can be solved with SMO.
The next step consists in updating the value of γ0. We have to compute the Lagrangian of
Problem (97):

L (β, γ, ρ, κ, η, ν) = 1

2γ

n∑

i=1

n∑

j=1

βiβ j yi y j K (x j , xi ) −
n∑

i=1

βi + γw2
MAX

2

− ρ

(
n∑

i=1

βi yi

)
− κγ −

n∑

i=1

ηiβ −
n∑

i=1

νi (C − βi ) (99)

The following derivative of L (β, γ, ρ, κ, η, ν) is the only one of interest for our purposes:

∂L (β, γ, ρ, κ, η, ν)

∂γ
= 0 = − 1

2γ 2

n∑

i=1

n∑

j=1

βiβ j yi y j K (x j , xi ) + w2
MAX

2
− κ (100)

Since, from the slackness conditions, we have that κγ = 0 and since, in the cases of interest,
γ > 0, it must be κ = 0 and we find the following updating rule for γ0:

γ0 =
√∑n

i=1
∑n

j=1 βiβ j yi y j K (x j , xi )

wMAX
. (101)
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Algorithm 4Algorithm for solving I-SVM Problem (73) based on the results of Martein and
Schaible (1987) and Anguita et al. (2010)
Require: (z1, . . . , zn), K (·, ·), wMAX and the tolerance τ

1: {w, b, ξ} = solve LP problem of Eq. (86)
2: if ‖w‖2 < w2

MAX then
3: return {w, b}
4: else
5: γ old

0 = ∞
6: γ0 = Eq. (101)

7: while

∣∣∣∣
γ0−γ old

0
γ0+γ old

0

∣∣∣∣ > τ do

8: γ old
0 = γ0

9: {w, b, ξ} = solve QP problem of Eq. (98)
10: γ0 = Eq. (101)
11: end while
12: end if
13: return {w, b}

We iteratively proceed in solving the dual of Problem (98) and updating the value of γ0 until
the termination condition is met: ∣∣γ0 − γ old

0

∣∣ ≤ τ, (102)

where τ is a user-defined tolerance.
The main disadvantage of Algorithm 4 is that it requires the use of two different solvers

(LP and QP routines). By exploiting the results of Sect. 4, we can avoid this problem: in
fact, we showed that the Lagrange multiplier of the quadratic constraint of Eq. (73) (γ ) is
equivalent to the regularization parameter C in Eq. (71). Consequently, there exists a value
of γ > 0 for which the solution of Problem (73) is equivalent to the one of Problem (71) for
C = C∞. Consequently, only the QP solver is necessary to train a classifier with I-SVM, as
shown in Algorithm 4.

Algorithm 5 Algorithm to solve I-SVM Problem (73) by only requiring a QP solver
Require: (z1, . . . , zn), K (·, ·), wMAX and the tolerance τ

1: ε = τ

2: γ0 = ∞
3: wold = ∞
4: repeat
5: γ old

0 = γ0
6: {w, b, ξ} = solve QP problem of Eq. (98)

7: γ0 = min

[
ε,

√∑n
i=1

∑n
j=1 βiβ j yi y j K (x j ,xi )

wMAX

]

8: if γ0 == ε then
9: ε = ε/10
10: if wold == √

w · w then
11: break
12: end if
13: wold = √

w · w

14: end if

15: until

∣∣∣∣
γ0−γ old

0
γ0+γ old

0

∣∣∣∣ > τ

16: return {w, b}
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6.3 Training a classifier with M-SVM

In order to propose an effective method to solve M-SVM by exploiting the approaches
designed forT-SVM, as a first stepwe can apply the general-purpose approach ofAlgorithm2.
Obviously, this technique is characterized by the same drawbacks highlighted in Sect. 6.2
for I-SVM.

A second possibility consists, analogously to I-SVM, in exploiting the results of Hastie
et al. (2004) to improve the performance of Algorithm 2. The entire regularization path is
obtained by: {

w∗(C), b∗(C), ξ∗(C), C ∈ [0,C∞]
} = RP[33], (103)

where the computational cost is equal to the one of a single optimization step of Problem (71)
since all the variables (α,b, ξ etc.) are piecewise linear inC . ThenAlgorithm2canbemodified
accordingly as shown in Algorithm 6.

Algorithm 6 Algorithm to solve M-SVM Problem (74) by exploiting Algorithm 2 and the
results of Hastie et al. (2004)
Require: (z1, . . . , zn), K (·, ·), wMAX and the tolerance τ

1:
{
w∗(C), b∗(C), ξ∗(C), C ∈ [0,C∞]

} = RPHastie et al. (2004)
2: if

∑n
i=0 ξ∗(0) < L̂MAX then

3: return w∗(0)
4: end if
5: if

∑n
i=0 ξ∗(C∞) > L̂MAX then

6: return No solution
7: end if
8: Cup = C∞
9: Clow = 0
10: while | ∑n

i=0 ξ∗(C) − L̂MAX| > τ do

11: C = Clow + Cup−Clow
2

12: if
∑n

i=0 ξ∗(C) < L̂MAX then
13: Cup = C
14: end if
15: if

∑n
i=0 ξ∗(C) > L̂MAX then

16: Clow = C
17: end if
18: end while
19: return w∗(C)

A third possibility consists in solving Problem (74) through an ad hoc procedure, which
however allows to exploit the large amount of work pursued for designing effective solvers
for T-SVM. For this purpose, we start by deriving the dual formulation for M-SVM:

L (w, b, ξ , γ,β,μ) = 1

2
‖w‖2 − γ

(
L̂MAX −

n∑

i=1

ξi

)

−
n∑

i=1

βi [yi (w · φ(xi ) + b) − 1 + ξi ] −
n∑

i=1

μiξi . (104)

Then we can compute its KKT and the complementary conditions:

∂L (w, b, ξ , γ,β,μ)

∂w
= w −

n∑

i=1

βi yiφ(xi ) = 0 → w =
n∑

i=1

βi yiφ(xi ) (105)
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∂L (w, b, ξ , γ,β,μ)

∂b
= −

n∑

i=1

βi yi = 0 (106)

∂L (w, b, ξ , γ,β,μ)

∂ξi
= γ − βi − μi = 0 → βi ≤ γ (107)

γ,β,μ, ξi ≥ 0 (108)
n∑

i=1

ξi ≤ L̂MAX (109)

yi (w · φ(x) + b) ≥ 1 − ξi (110)

βi [yi (w · φ(x) + b) − 1 + ξi ] = 0 (111)

μiξi = 0 (112)

γ

(
L̂MAX −

n∑

i=1

ξi

)
= 0, ∀i ∈ {1, . . . , n} (113)

Finally, we get:

min
β,γ

CD(β, γ ) = 1

2

n∑

i=1

n∑

j=1

βiβ j yi y j K (xi , x j ) −
n∑

i=1

βi + γ L̂MAX

n∑

i=1

βi yi = 0

γ ≥ 0

0 ≤ βi ≤ γ, i ∈ {1, . . . , n} , (114)

with

h(x) =
n∑

i=1

βi yi K (xi , x) + b. (115)

Note that, if we fix γ = γ0, where γ0 is a constant value, Problem (114) becomes:

min
β,γ

1

2

n∑

i=1

n∑

j=1

βiβ j yi y j K (xi , x j ) −
n∑

i=1

βi

n∑

i=1

βi yi = 0

0 ≤ βi ≤ γ0, i ∈ {1, . . . , n} , (116)

which thus can be solved with the procedures, designed for T-SVM. As the problem is
also convex with respect to γ , an iterative procedure, described in Algorithm 7 and based
on Flannery et al. (1992), can be used to optimize it. It is worthwhile underlining that the
resulting procedure only requires one QP solver, analogously to Algorithm 5.

7 Benchmarking the performance of I-SVM and M-SVM solvers

We exploit in the following a real-world dataset for the purpose of comparing the algorithms
presented in the previous sections. Wemake use of the DaimlerChrysler dataset (Munder and
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Algorithm 7 Algorithm to solve M-SVM Problem (74) by only requiring one QP solver
Require: (z1, . . . , zn), K (·, ·), wMAX and the tolerance τ

1: γ0 = 0
2:

(
β0, b0

)
= Eq. (116)(γ0)

3: CD0 = CD(β0, γ0)
4: γ0 = 10
5: while CD(β0, γ0) < CD0 do
6: γ0 = γ0 ∗ 10
7:

(
β0, b0

)
= Eq. (116)(γ0)

8: end while
9: CD3 = CD(β0, γ0)
10: γ3 = γ0, γ0 = 0

11: while
∣∣∣ γ3−γ0
γ3+γ0

∣∣∣ > τ do

12: γ1 = γ0 + 1
3 (γ3 − γ0), γ2 = γ0 + 2

3 (γ3 − γ0)

13:
(
β0, b0

)
= Eq. (116)(γ1)

14: CD1 = CD(β0, γ1)
15:

(
β0, b0

)
= Eq. (116)(γ2)

16: CD2 = CD(β0, γ2)
17: if (CD1 ≤ CD2) then
18: γ3 = γ2
19: CD3 = CD2
20: else
21: γ0 = γ1
22: CD0 = CD1
23: end if
24: end while
25: return {w, b}

Gavrila 2006), where half of the 9800 images, consisting of d = 36× 18 = 648 pixels, con-
tains the picture of a pedestrian, while the other half contains only some general background
or other objects. In order to derive more statistically relevant results than a single run, we
create 100 replicates of the dataset, where the value of the input patterns are left unchanged
while a random array of labels is assigned to the samples, thus emulating a conventional
setup for model selection and error estimation through the Rademacher Complexity (Bartlett
and Mendelson 2003; Koltchinskii 2006; Anguita et al. 2012).

The algorithms are implemented in FORTRAN90, compiled by exploiting the Intel Visual
Fortran Composer XE compiler (2012), and are run on a Microsoft Windows Server 2008
R2 server with 16 GB RAM and mounting two Intel Xeon E5320 1.86 GHz CPUs.

For our experiments, we exploit a Gaussian kernel function (Keerthi and Lin 2003):

K
(
xi , x j

) = e−‖xi−x j‖2
2

2σ2 , (117)

where the Gaussian width parameter σ is estimated by computing the average distance
between patterns belonging to the two classes, according to the rule-of-thumb proposed in
Milenova et al. (2005). The SVM regularization parameters C , wMAX and L̂MAX for T-
SVM, I-SVM and M-SVM, respectively, are set by exploiting one-shot procedures as well.
In particular, for C we adopt the procedure proposed in Milenova et al. (2005), returning an
regularization parameter value that we define C [46] for the sake of simplicity. Consequently,
wMAX and L̂MAX are respectively set to w

[46]
MAX and L̂ [46]

MAX, which are computed by solving
T-SVM Problem (71) with C = C [46] on the original DaimlerChrysler dataset. Note that the
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Fig. 9 Distributions of the values(∥∥w∗
T

∥∥ , L̂∗
T

)
,
(∥∥w∗

I

∥∥ , L̂∗
I

)
and
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)
for T-SVM,

I-SVM and M-SVM on the
datasets used for the experiments.
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Table 1 Training time for
T-SVM, I-SVM and M-SVM

Regularization approach Algorithm Time (min)

T-SVM Problem (71) Algorithm (Fan et al. 2005) 45.1 ± 3.9

I-SVM Problem (73) Algorithm 1 75.7 ± 5.4

Algorithm 3 55.1 ± 4.3

Algorithm 4 123.7 ± 8.3

Algorithm 5 47.2 ± 3.7

M-SVM Problem (74) Algorithm 2 78.7 ± 4.9

Algorithm 6 52.1 ± 4.5

Algorithm 7 46.4 ± 3.2

regularization parameter and the parameter of the Gaussian kernel are kept constant for all
100 random replicates.

As highlighted in the previous sections, some solvers are needed in order to derive the
solutions to T-SVM, I-SVM and M-SVM. In particular, whenever a QP solver is required
(namely in Algorithms 1, 2, 3, 4, 5, 6, and 7), the Sequential Minimal Optimization (SMO)
procedure is exploited (Platt 1998; Keerthi et al. 2001); on the contrary, when an LP solver
is required (e.g. in Algorithm 4), we exploit the simplex method proposed in Flannery et al.
(1992).

Figure 9 shows the distributions of the values
(∥∥w∗

T

∥∥ , L̂∗
T

)
,

(∥∥w∗
I

∥∥ , L̂∗
I

)
and

(∥∥w∗
M

∥∥ , L̂∗
M

)
for T-SVM, I-SVM and M-SVM: they are useful to compare the obtained

solutions in the three cases. It is worth noting that, when solving a T-SVM learning prob-
lem, neither

∥∥w∗
T

∥∥ nor L̂∗
T remain fixed, but they vary depending on the random labels

assigned to the samples for computing the Rademacher Complexity of the hypothesis space.
This shows the problematic behavior of the T-SVM approach, which does not allow to pre-
cisely control the size of the hypothesis space. I-SVM, instead, uses by construction a fixed
hypothesis space, while M-SVM shows, as predicted, a fixed empirical error on the training
data.

Table 1 shows the average training time, needed by the algorithms detailed in this work
for solving T-SVM, I-SVM and M-SVM problems as described above. As expected, T-
SVM is the fastest to solve, though Algorithms 5 and 7 are characterized by a comparable
performance. Given that the I-SVM shows a clear advantage in terms of hypothesis space
control, but only a slight increase in computation time, we believe that the I-SVM should be
the preferred approach.

8 Concluding remarks

In this paper, we proved that the three regularization paths for Tikhonov, Ivanov andMorozov
regularization are equivalent, provided that mild and easy-to-satisfy conditions hold (such as
the convexity of the loss function). In other words, they are the same learning problem seen
from three different perspectives.

Traditionally, this reason motivated the exploitation of the Tikhonov approach at the
expense of Ivanov and Morozov ones: by leaving unconstrained both the empirical error and
the hypothesis space size terms, the Tikhonov formulation is the easiest to solve and several
approaches appeared in literature for this purpose in the last decades. However, the capability
of fixing one of the twoquantities,which control the learning process, is of importance in order
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to derive more insights and more refined approaches dealing with performance assessment
of learnt models, especially taking in account recent advances and refinements of the SRM
principle (Vapnik 1998; Bartlett and Mendelson 2003; Koltchinskii 2006; Bousquet et al.
2004; Shawe-Taylor et al. 1998).

This is particularly true for Ivanov regularization, which represents the most intuitive and
direct implementation of the SRM principle, as also underlined by Vapnik in his seminal
work (Vapnik 1998). When the SVM was introduced as a Tikhonov formulation, an unmet
gap was created between the capacity of effectively and intuitively controlling the hypothesis
space size, typical of the Ivanov approach, and the performance in model training, namely
the reason-why Tikhonov regularization was chosen. this is the reason that leaded us to study
how this gap could be filled: in particular, we proposed effective and easy-to-implement
approaches to solve the I-SVM, without neglecting the huge amount of work in the last years
dedicated to solving T-SVM.
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