
Mach Learn (2016) 103:57–79
DOI 10.1007/s10994-015-5536-6

On Data Preconditioning for Regularized Loss
Minimization

Tianbao Yang1 · Rong Jin2 · Shenghuo Zhu3 ·
Qihang Lin4

Received: 29 March 2015 / Accepted: 25 September 2015 / Published online: 20 October 2015
© The Author(s) 2015

Abstract In this work, we study data preconditioning, a well-known and long-existing tech-
nique, for boosting the convergence of first-order methods for regularized loss minimization
in machine learning. It is well understood that the condition number of the problem, i.e., the
ratio of the Lipschitz constant to the strong convexity modulus, has a harsh effect on the con-
vergence of the first-order optimization methods. Therefore, minimizing a small regularized
loss for achieving good generalization performance, yielding an ill conditioned problem,
becomes the bottleneck for big data problems. We provide a theory on data preconditioning
for regularized loss minimization. In particular, our analysis exhibits an appropriate data
preconditioner that is similar to zero component analysis whitening. Exploiting the concepts
of numerical rank and coherence, we characterize the conditions on the loss function and on
the data under which data preconditioning can reduce the condition number and therefore
boost the convergence for minimizing the regularized loss. To make the data preconditioning
practically useful, we propose an efficient preconditioningmethod through random sampling.
The preliminary experiments on simulated data sets and real data sets validate our theory.
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1 Introduction

Many supervised machine learning tasks end up with solving the following regularized loss
minimization (RLM) problem:

min
w∈Rd

1

n

n∑

i=1

�(x�
i w, yi ) + λ

2
‖w‖22, (1)

where xi ∈ X ⊆ R
d denotes the feature representation, yi ∈ Y denotes the supervised

information, w ∈ R
d represents the decision vector and �(z, y) is a convex loss function

with respect to z. Examples can be found in classification (e.g., �(x�w, y) = log(1 +
exp(−yx�w)) for logistic regression) and regression (e.g., �(x�w, y) = (1/2)(x�w − y)2

for least square regression).
Thefirst-ordermethods that base on thefirst-order information (i.e., gradient) have recently

become the dominant approaches for solving the optimization problem in (1), due to their
light computation compared to the second-ordermethods (e.g., theNewtonmethod). Because
of the explosive growth of data, recently many stochastic optimization algorithms have
emerged to further reduce the running time of full gradient methods (Nesterov 2004), includ-
ing stochastic gradient descent (SGD) (Shamir and Zhang 2013; Shalev-Shwartz et al. 2011),
stochastic average gradient (SAG) (Le Roux et al. 2012), stochastic dual coordinate ascent
(SDCA) (Shalev-Shwartz and Zhang 2013; Hsieh et al. 2008), stochastic variance reduced
gradient (SVRG) (Johnson and Zhang 2013). One limitation of most first-order methods is
that they suffer from a poor convergence if the condition number is small. For instance, the
gradient-based stochastic optimization algorithm Pegasos (Shalev-Shwartz et al. 2011) for
solving Support Vector Machine (SVM) with a Lipschitz continuous loss function, has a

convergence rate of O
(
L̄2

λT

)
, where L̄ is the Lipschitz constant of the loss function w.r.t w.

The convergence rate reveals that the smaller the condition number (i.e., L̄2/λ), the worse the
convergence. The same phenomenon occurs in optimizing a smooth loss function. Without
loss of generality, the iteration complexity—the number of iterations required for achiev-
ing an ε-optimal solution, of SDCA, SAG and SVRG for a L-smooth loss function (whose

gradient is L̄-Lipschitz continuous) is O
((

n + L̄
λ

)
log

( 1
ε

))
. Although the convergence is

linear for a smooth loss function, however, iteration complexity would be dominated by the
condition number L̄/λ if it is substantially large 1. As supporting evidences, many studies
have found that setting λ to a very small value plays a pivotal role in achieving good gener-
alization performance (Shalev-Shwartz and Srebro 2008; Sridharan et al. 2008), especially
for data sets with a large number of examples. Moreover, some theoretical analysis indicates
that the value of λ could be as small as 1/n in order to achieve a small generalization error
(Shalev-Shwartz and Srebro 2008; Shalev-Shwartz and Zhang 2013). Therefore, it arises
as an interesting question “can we design first-order optimization algorithms that have less
severe and even no dependence on the large condition number”?

1 The condition number of the problem in (1) for the Lipschitz continuous loss function is referred to L̄2/λ,
and for the smooth loss function is referred to L̄/λ, where L̄ is the Lipschitz constant for the function and its
gradient w.r.t w, respectively.
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While most previous works target on improving the convergence rate by achieving a better
dependence on the number of iterations T , few works have revolved around mitigating the
dependence on the condition number. Bach and Moulines (2013) provided a new analysis of
the averaged stochastic gradient (ASG) algorithm forminimizing a smooth objective function
with a constant step size. They established a convergence rate of O(1/T ) without suffering
from the small strong convexitymodulus (c.f. the definition given in Definition 2). Two recent
works Needell et al. (2014) and Xiao and Zhang (2014) proposed to use importance sampling
instead of random sampling in stochastic gradient methods, leading to a dependence on the
averaged Lipschitz constant of the individual loss functions instead of the worst Lipschitz
constant. However, the convergence rate still badly depends on 1/λ.

In this paper, we explore the data preconditioning for reducing the condition number of the
problem (1). In contrast tomanyotherworks, the proposed data preconditioning technique can
be potentially applied together with any first-order methods to improve their convergences.
Data preconditioning is a long-existing technique that was used to improve the condition
number of a data matrix. In the general form, data preconditioning is to apply P−1 to the
data, where P is a non-singular matrix. It has been employed widely in solving linear systems
(Axelsson 1994). In the context of convex optimization, data preconditioning has been applied
to conjugate gradient and Newton methods to improve their convergence for ill-conditioned
problems (Langer 2007). However, it remains unclear how data preconditioning can be used
to improve the convergence of first-order methods for minimizing a regularized empirical
loss. In the context of non-convex optimization, the data preconditioning by ZCA whitening
has been widely adopted in learning deep neural networks from image data to speed-up
the optimization (Ranzato et al. 2010; LeCun et al. 1998), though the underlying theory is
barely known. Interestingly, our analysis reveals that the proposed data preconditioner is
closely related to ZCA whitening and therefore shed light on the practice widely deployed
in deep learning. However, an inevitable critique on the usage of data preconditioning is the
computational overhead pertaining to computing the preconditioned data. Thanks to modern
cluster of computers, this computational overhead can be made as minimal as possible with
parallel computations (c.f. the discussions in Sect. 4.3). We also propose a random sampling
approach to efficiently compute the preconditioned data.

In summary, our contributions include: (i) we present a theory on data preconditioning for
the regularized loss optimization by introducing an appropriate data preconditioner (Sect. 4);
(ii) we quantify the conditions under which the data preconditioning can reduce the condition
number and therefore boost the convergence of the first-order optimization methods (c.f.
Eqs. (8) and (9)); (iii) we present an efficient approach for computing the preconditioned
data and validate the theory by experiments (Sects. 4.3, 5).

2 Related work

We review some related work in this section. In particular, we survey some stochastic opti-
mization algorithms that belong to the category of the first-order methods and discuss the
dependence of their convergence rates on the condition number and the data. To facilitate
our analysis, we decouple the dependence on the data from the condition number. Hence-
forth, we denote by R the upper bound of the data norm, i.e., ‖x‖2 ≤ R, and by L the
Lipschitz constant of the scalar loss function �(z, y) or its gradient �′(z, y) with respect to
z depending the smoothness of the loss function. Then the gradient w.r.t w of the loss func-
tion is bounded by ‖∇w�(w�x, y)‖2 = ‖�′(w�x, y)x‖2 ≤ LR if �(z, y) is a L-Lipschitz

123



60 Mach Learn (2016) 103:57–79

continuous non-smooth function. Similarly, the second order gradient can be bounded by
‖∇2

w�(w�x, y)‖2 = ‖�′′(w�x, y)xx�‖2 ≤ LR2 assuming �(z, y) is a L-smooth function.
As a result the condition number for a L-Lipschitz continuous scalar loss function is L2R2/λ

and is LR2/λ for a L-smooth loss function. In the sequel, we will refer to R, i.e., the upper
bound of the data norm as the data ingredient of the condition number, and refer to L/λ or
L2/λ, i.e., the ratio of the Lipschitz constant to the strong convexitymodulus as the functional
ingredient of the condition number. The analysis in Sects. 4 and 4.3 will exhibit how the data
preconditioning affects the two ingredients.

Stochastic gradient descent is probably the most popular algorithm in stochastic optimiza-
tion. Although many variants of SGD have been developed, the simplest SGD for solving
the problem (1) proceeds as:

wt = wt−1 − ηt

(
∇�(w�

t−1xit , yit ) + λwt−1

)
,

where it is randomly sampled from {1, . . . , n} and ηt is an appropriate step size. The value of
the step size ηt depends on the strong convexity modulus of the objective function. If the loss
function is a Lipschitz continuous function, the value of ηt can be set to 1/(λt) (Shamir and

Zhang 2013) that yields a convergence rate of O
(
R2L2

λT

)
with a proper averaging scheme. It

has been shown that SGD achieves the minimax optimal convergence rate for a non-smooth
loss function (Shamir and Zhang 2013); however, it only yields a sub-optimal convergence
for a smooth loss function (i.e., O(1/

√
T )) in terms of T . The curse of decreasing step size

is the major reason that leads to the slow convergence. On the other hand, the decreasing step
size is necessary due to the large variance of the stochastic gradient when approaching the
optimal solution.

Recently, there are several works dedicated to improving the convergence rate for a smooth
loss function. The motivation is to reduce the variance of the stochastic gradient so as to
use a constant step size like the full gradient method. We briefly mention several pieces
of works. Le Roux et al. (2012) proposed a stochastic average gradient (SAG) method,
which maintains an averaged stochastic gradient summing from gradients on all examples
and updates a randomly selected component using the current solution. Johnson and Zhang
(2013) and Zhang et al. (2013) proposed accelerated SGDs using predicative variance reduc-
tion. The key idea is to use a mix of stochastic gradients and a full gradient. The two works
share a similar idea that the algorithms compute a full gradient every certain iterations and
construct an unbiased stochastic gradient using the full gradient and the gradients on one
example. Stochastic dual coordinate ascent (SDCA) (Shalev-Shwartz and Zhang 2013) is
another stochastic optimization algorithm that enjoys a fast convergence rate for smooth
loss functions. Unlike SGD types of algorithms, SDCA works on the dual variables and
at each iteration it samples one instance and updates the corresponding dual variable by
increasing the dual objective. It was shown in Johnson and Zhang (2013) that SDCA also
achieves a variance reduction. Finally, all these algorithms have a comparable linear con-
vergence for smooth loss functions with the iteration complexity being characterized by

O
((

n + R2L
λ

)
log( 1

ε
)
)

2.

While most previous works target on improving the convergence rate for a better depen-
dence on the number of iterations T , they have innocently ignored the fact of condition
number. It has been observed when the condition number is very large, SGD suffers from a
strikingly slow convergence due to that the step size 1/(λt) is too large at the beginning of
the iterations. The condition number is also an obstacle that prevents the scaling-up of the

2 The stochastic algorithm in Zhang et al. (2013) has a quadratic dependence on the condition number.
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variance-reduced stochastic algorithms, especially when exploring the mini-batch technique.
For instance, Shalev-Shwartz and Zhang (2013) proposed a mini-batch SDCA in which the

iteration complexity can be improved from O
(

n√
m

)
to O

( n
m

)
if the condition number is

reduced from n to n/m, where m is the size of the mini-batch.
Recently, there is a resurge of interest in importance sampling for stochastic optimization

methods, aiming to reduce the condition number. For example, Needell et al. (2014) analyzed
SGD with importance sampling for strongly convex objective that is composed of individual
smooth functions, where the sample for computing a stochastic gradient is drawn from a
distribution with probabilities proportional to smoothness parameters of individual smooth
functions. They showed that importance sampling can lead to a speed-up, improving the
iteration complexity from a quadratic dependence on the conditioning (L/λ)2 (where L is a
bound on the smoothness and λ on the strong convexity) to a linear dependence on L/λ. Zhao
and Zhang (2014) and Xiao and Zhang (2014) analyzed the effect of importance sampling for
stochastic mirror descent, stochastic dual coordinate ascent and stochastic variance reduced
gradient method, and showed reduction on the condition number in the iteration complexity.
However, all of these works could still suffer from very small strong convexity parameter
λ as in (1). Recently Bach and Moulines (2013) provided a new analysis of the averaged
stochastic gradient algorithm for a smooth objective function with a constant step size. They
established a convergence rate of O(1/T ) without suffering from the small strong convexity
modulus. It has been observed by empirical studies that it could outperform SAG for solving
least square regression and logistic regression. However, our experiments demonstrate that
with data preconditioning the convergence of SAG can be substantially improved and better
than that of Bach and Moulines (2013)’s algorithm. More discussions can be found in the
end of the Sect. 4.2.

In recent years, the idea of data preconditioning has been deployed in lasso (Jia and Rohe
2012; Huang and Jojic 2011; Paul et al. 2008; Wauthier et al. 2013) via pre-multiplying the
data matrix X and the response vector y by suitable matrices PX and Py , to improve the
support recovery properties. It was also brought to our attention that in Yang et al. (2015) the
authors applied data preconditioning to overdetermined �p regression problems and exploited
SGD for the preconditioned problem. The big difference between ourwork and theseworks is
thatwe place emphasis on applying data preconditioning to first-order stochastic optimization
algorithms for solving the RLM problem in (1). Another remarkable difference between the
present work and these works is that in our study data preconditioning only applies to the
feature vector x not the response vector y.

We also note that data preconditioning exploited in this work is different from precon-
ditioning in some optimization algorithms that transforms the gradient by a preconditioner
matrix or an adaptive matrix (Pock and Chambolle 2011; Duchi et al. 2011). It is also dif-
ferent from the Newton method that multiplies the gradient by the inverse of the Hessian
matrix (Boyd and Vandenberghe 2004). As a comparison, the preconditioned data can be
computed offline and the computational overhead can be made as minimal as possible by
using a large computer cluster with parallel computations. Unlike most previous works, we
strive to improve the convergence rate from the angle of reducing the condition number. We
present a theory that characterizes the conditions when the proposed data preconditioning
can improve the convergence compared to the one without using data preconditioning. The
contributed theory and technique act as an additional flavoring in the stochastic optimization
that could improve the convergence speed.
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3 Preliminaries

In this section, we briefly introduce some key definitions that are useful throughout the paper
and then discuss a naive approach of applying data preconditioning for the RLM problem.

Definition 1 A function f (x) : Rd → R is a L-Lipschitz continuous function w.r.t a norm
‖ · ‖, if

| f (x1) − f (x2)| ≤ L‖x1 − x2‖, ∀x1, x2.

Definition 2 A convex function f (x) : Rd → R is β-strongly convex w.r.t a norm ‖ · ‖, if
for any α ∈ [0, 1]

f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2) − 1

2
α(1 − α)β‖x1 − x2‖2, ∀x1, x2.

where β is also called the strong convexity modulus of f . When f (x) is differentiable, the
strong convexity is equivalent to

f (x1) ≥ f (x2) + 〈∇ f (x2), x1 − x2〉 + β

2
‖x1 − x2‖2, ∀x1, x2.

Definition 3 A function f (x) : Rd → R is L-smooth w.r.t a norm ‖ · ‖, if it is differentiable
and its gradient is L-Lipschitz continuous, i.e.,

‖∇ f (x1) − ∇ f (x2)‖∗ ≤ L‖x1 − x2‖, ∀x1, x2
where ‖ · ‖∗ denotes the dual norm of ‖ · ‖, or equivalently

f (x1) ≤ f (x2) + 〈∇ f (x2), x1 − x2〉 + L

2
‖x1 − x2‖2, ∀x1, x2.

In the sequel, we use the standard Euclidean norm to define Lipschitz and strongly convex
functions. Examples of smooth loss functions include the logistic loss �(w; x, y) = log(1+
exp(−yw�x)) and the square loss �(w; x, y) = 1

2 (w
�x − y)2. The �2 norm regularizer

λ
2‖w‖22 is a λ-strongly convex function.

Although the proposed data preconditioning can be applied to boost any first-order meth-
ods,wewill restrict our attention to the stochastic gradientmethods,which share the following
updates for (1):

wt = wt−1 − ηt (gt (wt−1) + λwt−1) , (2)

where gt (wt−1) denotes a stochastic gradient of the loss that depends on the original
data representation. For example, the vanilla SGD for optimizing non-smooth loss uses
gt (wt−1) = ∇�(w�

t−1xit ; yit )xit , where it is randomly sampled. SAG and SVRG use a par-
ticularly designed stochastic gradient for minimizing a smooth loss.

A straightforward approach by exploring data preconditioning for the solving problem
in (1) is by variable transformation. Let P be a symmetric non-singular matrix under con-
sideration. Then we can cast the problem in (1) into:

min
u∈Rd

1

n

n∑

i=1

�(x�
i P−1u, yi ) + λ

2
‖P−1u‖22, (3)
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which could be implemented by preconditioning the data x̂i = P−1xi . Applying the stochas-
tic gradient methods to the problem above we have the following update:

ut = ut−1 − ηt
(
gt (ut−1) + λP−2ut−1

)
,

where gt (ut−1) denotes a stochastic gradient of the loss that depends on the transformed data
representation. However, there are two difficulties limiting the applications of the technique.
First, what is an appropriate data preconditioner P−1? Second, at each step we need to
compute P−2ut−1, which might add a significant cost (O(d2) if P−2 is pre-computed and
is a dense matrix) to each iteration. To address these issues, we present a theory in the
next section. In particular, we tackle three major questions: (i) what is the appropriate data
preconditioner for the first-order methods to minimize the regularized loss as in (1); (ii) under
what conditions (w.r.t the data and the loss function) the data preconditioning can boost the
convergence; and (iii) how to efficiently compute the preconditioned data.

4 Theory

4.1 Data preconditioning for regularized loss minimization

The first question that we are about to address is “what is the condition on the loss function in
order for data preconditioning to take effect”. The question turns out to be related to how we
construct the preconditioner.We are inclined to give the condition first and explain it whenwe
construct the preconditioner. To facilitate our discussion, we assume that the first argument
of the loss function is bounded by r , i.e., |z| ≤ r . We defer the discussion on the value of r
to the end of this section. The condition for the loss function given below is complimentary
to the property of Lipschitz continuity.

Assumption 1 The scalar loss function �(z, y) w.r.t z satisfies �′′(z, y) ≥ β for |z| ≤ r and
β > 0.

Below we discuss several important loss functions used in machine learning and statistics
that have such a property.

– Square loss. The square loss �(z, y) = 1
2 |y − z|2 has been used in ridge regression and

classification. It is clear that the square loss satisfies the assumption for any z and β = 1.
– Logistic loss. The logistic loss �(z, y) = log(1 + exp(−zy)) where y ∈ {1,−1} is used

in logistic regression for classification. We can compute the second order gradient by
�′′(z, y) = σ(yz)(1 − σ(yz)), where σ(z) = 1/(1 + exp(−z)) is the sigmoid function.
Then it is not difficult to show that when |z| ≤ r , we have �′′(z, y) ≥ σ(r)(1 − σ(r)).
Therefore the assumption (1) holds for β(r) = σ(r)(1 − σ(r).

– Possion regression loss. In statistics, Poisson regression is a form of regression analysis
used to model count data and contingency tables. The equivalent loss function is given
by �(z, y) = exp(z) − yz. Then �′′(z, y) = exp(z) ≥ exp(−r) for |z| ≤ r . Therefore the
assumption (1) hold for β(r) = exp(−r).

It is notable that the Assumption 1 does not necessarily indicate that the entire loss
(1/n)

∑n
i=1 �(w�xi , yi ) is a strongly convex function w.r.t w since the second order gradi-

ent, i.e., 1
n

∑m
i=1 �′′(w�xi , yi )xix�

i is not necessarily lower bounded by a positive constant.
Therefore the introduced condition does not change the convergence rates that we have dis-
cussed. The construction of the data preconditioner ismotivated by the following observation.
Given �′′(z, y) ≥ β for any |z| ≤ r , we can define a new loss function φ(z, y) by
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φ(z, y) = �(z, y) − β

2
z2,

and we can easily show that φ(z, y) is convex for |z| ≤ r . Using φ(z, y), we can transform
the problem in (1) into:

min
w∈Rd

1

n

n∑

i=1

φ(w�xi , yi ) + β

2
w� 1

n

n∑

i=1

xix�
i w + λ

2
‖w‖22.

Let C = 1
n

∑n
i=1 xix

�
i denote the sample covariance matrix. We define a smoothed covari-

ance matrix H as

H = ρ I + 1

n

n∑

i=1

xix�
i = ρ I + C,

where ρ = λ/β. Thus, the transformed problem becomes

min
w∈Rd

1

n

n∑

i=1

φ(w�xi , yi ) + β

2
w�Hw. (4)

Using the variable transformation v ← H1/2w, the above problem is equivalent to

min
v∈Rd

1

n

n∑

i=1

φ(v�H−1/2xi , yi ) + β

2
‖v‖22. (5)

It can be shown that the optimal value of the above preconditioned problem is equal to
that of the original problem (1). As a matter of fact, so far we have constructed a data
preconditioner as given by P−1 = H−1/2 that transforms the original feature vector x into
a new vector H−1/2x. It is worth noting that the data preconditioning H−1/2x is similar to
the ZCA whitening transformation, which transforms the data using the covariance matrix,
i.e., C−1/2x such that the data has identity covariance matrix. Whitening transformation has
found many applications in image processing (Petrou and Bosdogianni 1999), and it is also
employed in independent component analysis (Hyvärinen and Oja 2000) and optimizing
deep neural networks (Ranzato et al. 2010; LeCun et al. 1998). A similar idea has been used
decorrelation of the covariate/features in statistics (Mardia et al. 1979). Finally, it is notable
that when original data is sparse the preconditioned data may become dense, which may
increase the per-iteration cost. It would pose stronger conditions for the data preconditioning
to take effect. In our experiments, we focus on dense data sets.

4.2 Condition number

Besides the data, there are two additional alterations: (i) the strong convexity modulus is
changed from λ to β and (ii) the loss function becomes φ(z, y) = �(z, y) − β

2 z
2. Before

discussing the convergence rates of the first-order optimization methods for solving the
preconditioned problem in (5), we elaborate on how the two ingredients of the condition
number are affected: (i) the functional ingredient namely the ratio of the Lipschitz constant
of the loss function to the strong convexity modulus and (ii) the data ingredient namely the
upper bound of the data norm. We first analyze the change of the functional ingredient as
summarized in the following lemma.
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Lemma 1 If �(z, y) is a L-Lipschitz continuous function, then φ(z, y) is (L +βr)-Lipschitz
continuous for |z| ≤ r . If �(z, y) is a L-smooth function, then φ(z, y) is a (L − β)-smooth
function.

Proof If �(z, y) is a L-Lipschitz continuous function, the new function φ(z, y) is a (L+βr)-
Lipschitz continuous for |z| ≤ r because

|φ(z1, y) − φ(z2, y)| ≤ L|z1 − z2| + β

2
|z1 − z2|2

≤ (L + βr)|z1 − z2|
If �(z, y) is a L-smooth function, then the following equality holds (Nesterov 2004)

〈�′(z1, y) − �′(z2, y), z1 − z2〉 ≤ L|z1 − z2|2.
By the definition of φ(z, y), we have

〈φ′(z1, y) + βz1 − φ′(z2, y) − βz2, z1 − z2〉 ≤ L|z1 − z2|2

Therefore

〈φ′(z1, y) − φ′(z2, y), z1 − z2〉 ≤ (L − β)|z1 − z2|2

which implies φ(z, y) is a (L − β)-smooth function (Nesterov 2004). ��
Lemma 1 indicates that after the data preconditioning the functional ingredient becomes

(L +βr)2/β for a L-Lipschitz continuous non-smooth loss function and (L − β)/β for a L-
smooth function. Next, we analyze the upper bound of the preconditioned data x̂ = H−1/2x.
Noting that ‖̂x‖22 = x�H−1x, in what follows we will focus on bounding maxi x�

i H−1xi .
We first derive and discuss the bound of the expectation Ei [x�

i H−1xi ] treating i as a random
variable in {1, . . . , n}, which is useful in proving the convergence bound of the objective
in expectation. Many discussions also carry over to the upper bound for individual data.
Let 1√

n
X = 1√

n
(x1, · · · , xn) = U�V� be the singular value decomposition of X , where

U ∈ R
d×d , V ∈ R

n×d and � = diag(σ1, . . . , σd), σ1 ≥ · · · ≥ σd , then C = U�2U� is
the eigen-decomposition of C . Thus, we have

Ei [x�
i H−1xi ] = 1

n

n∑

i=1

x�
i H−1xi = tr(H−1C) =

d∑

i=1

σ 2
i

σ 2
i + ρ

�= γ (C, ρ). (6)

where the expectation is taken over the randomness in the index i , which is also the source
of randomness in stochastic gradient descent methods. We refer to γ (C, ρ) as the numerical
rank ofC with respect to ρ. The first observation is that γ (C, ρ) is amonotonically decreasing
function in terms of ρ. It is straightforward to show that if X is low rank, e.g., rank(X) =
k � d , then γ (C, ρ) < k. IfC is full rank, the value of γ (C, ρ)will be affected by the decay
of its eigenvalues. Bach (2013) has derived the order of γ (C, ρ) in ρ under two different
decays of the eigenvalues of C . The following proposition summarizes the order of γ (C, ρ)

under two different decays of the eigenvalues.

Proposition 1 If the eigenvalues of C follow a polynomial decay σ 2
i = i−2τ , τ ≥ 1/2, then

γ (C, ρ) ≤ O(ρ−1/(2τ)), and if the eigenvalues of C satisfy an exponential decay σ 2
i = e−τ i ,

then γ (C, ρ) ≤ O
(
log

(
1
ρ

))
.

123



66 Mach Learn (2016) 103:57–79

For completeness, we include the proof in the “Appendix 1”. In statistics (Hastie et al. 2001),
γ (C, ρ) is also referred to as the effective degree of freedom. In order to prove high probability
bounds, we have to derive the upper bound for individual x�

i H−1xi . To this end, we introduce
the following measure to quantify the incoherence of V .

Definition 4 The generalized incoherence measure of an orthogonal matrix V ∈ R
n×d w.r.t

to (σ 2
1 , . . . , σ 2

d ) and ρ > 0 is

μ(ρ) = max
1≤i≤n

n

γ (C, ρ)

d∑

j=1

σ 2
j

σ 2
j + ρ

V 2
i j . (7)

Similar to the incoherence measure introduced in the compressive sensing theory (Candes
and Romberg 2007), the generalized incoherence also measures the degree to which the rows
in V are correlated with the canonical bases. We can also establish the relationship between
the two incoherencemeasures. The incoherence of an orthogonal matrix V ∈ R

n×n is defined
as μ = maxi j

√
nVi j (Candes and Romberg 2007). With simple algebra, we can show that

μ(ρ) ≤ μ2. Since μ ∈ [1,√n], therefore μ(ρ) ∈ [1, n]. Given the definition of μ(ρ), we
have the following lemma on the upper bound of x�

i H−1xi .

Lemma 2 x�
i H−1xi ≤ μ(ρ)γ (C, ρ), i = 1, . . . , n.

Proof Noting the SVD of X = √
nU�V�, we have xi = √

nU�V�
i,∗, where Vi,∗ is the i-th

row of V , we have

x�
i H−1xi = nVi,∗�U�U (� + ρ I )−1U�U�V�

i,∗

= nVi,∗�(� + ρ I )−1�V�
i,∗ = n

d∑

j=1

σ 2
j

σ 2
j + ρ

V 2
i j

Following the definition of μ(ρ), we can complete the proof

max
1≤i≤n

x�
i H−1xi ≤ μ(ρ)γ (C, ρ)

��
The theorem below states the condition number of the preconditioned problem (5).

Theorem 1 If �(z, y) is a L-Lipschitz continuous function satisfying the condition in
Assumption 1, then the condition number of the optimization problem in (5) is bounded by
(L+βr)2μ(ρ)γ (C,ρ)

β
, where ρ = λ/β. If �(z, y) is a L-smooth function satisfying the condition

in Assumption 1, then the condition number of (5) is (L−β)μ(ρ)γ (C,ρ)
β

.

Following the above theorem and previous discussions on the condition number, we have
the following observations about when the data preconditioning can reduce the condition
number.

Observation 1 1. If �(z, y) is a L-Lipschitz continuous function and

λ(L + βr)2

βL2 ≤ R2

μ(ρ)γ (C, ρ)
(8)

where r is the upper bound of predictions z = w�
t xi during optimization, then the

proposed data preconditioning can reduce the condition number.
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2. If �(z, y) is L-smooth and

λ

β
− λ

L
≤ R2

μ(ρ)γ (C, ρ)
(9)

then the proposed data preconditioning can reduce the condition number.

Remark 1 In the above conditions [(8) and (9)], we make explicit the effect from the loss
function and the data. In the right hand side, the quantity R2/μ(ρ)γ (C, ρ)measures the ratio
between the maximum norm of the original data and that of the preconditioned data. The left
hand side depends on the property of the loss function and the value of λ. Due to the unknown
value of r for non-smooth optimization,we first discuss the indications of the condition for the
smooth loss function and comment on the value of r inRemark 2.Let us considerβ, L ≈ Θ(1)
(e.g. in ridge regression or regularized least square classification) and λ = Θ(1/n). Therefore
ρ = λ/β = Θ(1/n). The condition in (9) for the smooth loss requires the ratio between the
maximum norm of the original data and that of the preconditioned data is larger thanΘ(1/n).
If the eigenvalues of the covariancematrix follow an exponential decay, then γ (C, ρ) = Θ(1)
and the condition indicates that

μ(ρ) ≤ Θ(nR2),

which can be satisfied easily if R > 1 due to the fact μ(ρ) ≤ n. If the eigenvalues follow
a polynomial decay i−2τ , τ ≥ 1/2, then γ (C, ρ) ≤ O(ρ−1/(2τ)) = O(n1/(2τ)), then the
condition indicates that

μ(ρ) ≤ O
(
n1−

1
2τ R2

)
,

whichmeans the faster the decay of the eigenvalues, the easier for the condition to be satisfied.
Actually, several previous works (Talwalkar and Rostamizadeh 2010; Gittens and Mahoney
2013; Yang and Jin 2014) have studied the coherence measure and demonstrated that it is
not rare to have a small coherence measure for real data sets, making the above inequality
easily satisfied.

If β is a small value (e.g., in logistic regression), then the satisfaction of the condition
depends on the balance between the factors λ, L , β, γ (C, ρ), μ(ρ), R2. In practice, if β, L is
knownwecan always check the condition by calculating the ratio between themaximumnorm
of the original data and that of the preconditioned data and comparing it with λ/β −λ/L . If β
is unknown, we can take a trial and error method by tuning β to achieve the best performance.

Remark 2 Next, we comment on the value of r for non-smooth optimization. It was
shown in Shalev-Shwartz et al. (2011) the optimal solution w∗ to (1) can be bounded by
‖w∗‖ ≤ O( 1√

λ
). Theoretically we can ensure |z| = |w�x| ≤ R/

√
λ and thus r2 ≤ R2/λ.

In the worse case r2 = R2/λ, the condition number of the preconditioned problem for non-

smooth optimization is bounded by O
((

L2

β
+ R2

λβ

)
μ(ρ)γ (C, ρ)

)
. Compared to the original

condition number L2R2/λ, theremay be no improvement for convergence. In practice, ‖w∗‖2
could be much less than 1/

√
λ and therefore r < R/

√
λ, especially when λ is very small. On

the other hand, when λ is too small the step sizes 1/(λt) of SGD on the original problem at
the beginning of iterations are extremely large, making the optimization unstable. This issue
can be mitigated or eliminated by data preconditioning.
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Remark 3 We can also analyze the straightforward approach by solving the preconditioned
problem in (3) using P−1 = H−1/2. Then the problem becomes:

min
u∈Rd

1

n

n∑

i=1

�(u�H−1/2xi , yi ) + λ

2
u�H−1u, (10)

The bound of the data ingredient follows the same analysis. The functional ingredient is

Õ

(
L(σ 2

1 +ρ)

λ

)
due to that λu�H−1u ≥ λ/(σ 2

1 + ρ)‖u‖22. If λ � σ 2
1 , then the condition

number of the preconditioned problem still heavily depends on 1/λ. Therefore, solving the
naive preconditioned problem (3) with P−1 = H−1/2 may not boost the convergence, which
is also verified in Sect. 5 by experiments.

Remark 4 Finally, we use the example of SAG for solving least square regression to demon-
strate the benefit of data preconditioning. Similar analysis carries on to other variance
reduced stochastic optimization algorithms (Johnson and Zhang 2013; Shalev-Shwartz and
Zhang 2013). When λ = 1/n the iteration complexity of SAG would be dominated by
O(R2n log(1/ε)) (Schmidt et al. 2013)—tens of epochs depending on the value of R2. How-
ever, after data preconditioning the iteration complexity becomes O(n log(1/ε)) if n ≥ R̂2,
where R̂ is the upper bound of the preconditioned data, which would be just few epochs.
In comparison, Bach and Moulines’ algorithm (Bach and Moulines 2013) suffers from an

O( d+R2

ε
) iteration complexity that could bemuch larger than O(n log(1/ε)), especiallywhen

required ε is small and R is large. Our empirical studies in Sect. 5 indeed verify these results.

4.3 Efficient data preconditioning

Now we proceed to address the third question, i.e., how to efficiently compute the pre-
conditioned data. The data preconditioning using H−1/2 needs to compute the square root
inverse of H times x, which usually costs a time complexity of O(d3). On the other hand,
the computation of the preconditioned data for least square regression is as expensive as
computing the closed form solution, which makes data preconditioning not attractive, espe-
cially for high-dimensional data. In this section, we analyze an efficient data preconditioning
by random sampling. As a compromise, we might lose some gain in convergence. The key
idea is to construct the preconditioner by sampling a subset of m training data, denoted by
D̂ = {̂x1, . . . , x̂m}. Then we construct new loss functions for individual data as,

ψ(w�xi , yi ) =
{

�(w�xi , yi ) − β
2 (w�xi )2, if xi ∈ D̂

�(w�xi , yi ), otherwise

We define β̂ and ρ̂ as

β̂ = m

n
β, ρ̂ = n

m
ρ = nλ

mβ
= λ

β̂
(11)

Then we can show that the original problem is equivalent to

min
v∈Rd

1

n

n∑

i=1

ψ(v�Ĥ−1/2xi , yi ) + β̂

2
‖v‖22. (12)

where Ĥ = ρ̂ I + 1
m

∑m
i=1 x̂i x̂

�
i . Thus, Ĥ−1/2xi defines the new preconditioned data. Below

we show how to efficiently compute Ĥ−1x. Let 1√
m
X̂ = Û �̂V̂� be the SVD of X̂ =
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(̂x1, . . . , x̂m), where Û ∈ R
d×m, �̂ = diag(σ̂1, . . . , σ̂m). Then with simple algebra Ĥ−1/2

can be written as

Ĥ−1/2 = (ρ̂ I + Û�̂2Û�)−1/2 = ρ̂−1/2 I − Û ŜÛ�,

where Ŝ = diag(ŝ1, . . . , ŝm) and ŝi = ρ̂−1/2 − (σ̂ 2
i + ρ̂)−1/2. Then the preconditioned

data Ĥ−1/2xi can be calculated by Ĥ−1/2xi = ρ̂−1/2xi − Û (Ŝ(Û�xi )), which costs O(md)

time complexity. Additionally, the time complexity for computing the SVD of X̂ is O(m2d).
Compared with the preconditioning with full data, the above procedure of preconditioning is
much more efficient. Moreover, the calculation of the preconditioned data given the SVD of
X̂ can be carried out on multiple machines to make the computational overhead as minimal
as possible.

It is worth noting that the random sampling approach has been used previously to construct
the stochastic Hessian (Martens 2010; Byrd et al. 2011). Here, we analyze its impact on the
condition number. The same analysis about the Lipschitz constant of the loss function carries
over toψ(z, y), except thatψ(z, y) is at most L-smooth if �(z, y) is L-smooth. The following
theorem allows us to bound the norm of the preconditioned data using Ĥ.

Theorem 2 Let ρ̂ be defined in (11). For any δ ≤ 1/2, If

m ≥ 2

δ2
(μ(ρ̂)γ (C, ρ̂) + 1)(t + log d),

then with a probability 1 − e−t , we have

x�
i Ĥ−1xi ≤ (1 + 2δ)μ(ρ̂)γ (C, ρ̂), ∀i = 1, . . . , n

The proof of the theorem is presented in “Appendix 2”. The theorem indicates that the
upper bound of the preconditioned data is only scaled up by a small constant factor with
an overwhelming probability compared to that using all data points to construct the precon-
ditioner under moderate conditions when the data matrix X has a low coherence. Before
ending this section, we present a similar theorem to Theorem 1 for using the efficient data
preconditioning.

Theorem 3 If�(z, y) is a L-Lipschitz continuous function satisfying the condition inAssump-
tion 1, then the condition number of the optimization problem in (12) is bounded by
(L+βr)2μ(ρ̂)γ (C,ρ̂)

β̂
. If �(z, y) is a L-smooth function satisfying the condition in Assumption 1,

then the condition number of (12) is Lμ(ρ̂)γ (C,ρ̂)

β̂
.

Thus, similar conditions can be established for the data preconditioning using Ĥ−1/2 to
improve the convergence rate. Moreover, varying m may exhibit a tradeoff between the two
ingredients understood as follows. Suppose the incoherence measure μ(ρ) is bounded by a
constant. Since γ (C, ρ̂) is a monotonically decreasing function w.r.t ρ̂, therefore γ (C, ρ̂) and
the data ingredient x�

i Ĥ−1xi may increase as m increases. On the other hand, the functional
ingredient L/β̂ would decrease as m increases.

5 Experiments

5.1 Synthetic data

We first present some simulation results to verify our theory. To control the inherent data
properties (i.e, numerical rank and incoherence), we generate synthetic data.We first generate
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(a) (b)
Fig. 1 Synthetic data: a compares the condition number of the preconditioned problem (solid lines) with that
of the original problem (dashed lines of the same color) by varying the value of β (a property of the loss
function) and varying the decay of the eigenvalues of the sample covariance matrix (a property of the data);
b compares the condition number by varying the value of λ (measuring the difficulty of the problem) and
varying the decay of the eigenvalues

a standard Gaussian matrix M ∈ R
d×n and then compute its SVD M = USV�. We use U

and V as the left and right singular vectors to construct the datamatrix X ∈ R
d×n . In this way,

the incoherence measure of V is a small constant (around 5). We generate eigenvalues of C
following a polynomial decay σ 2

i = i−2τ (poly-τ ) and an exponential decay σ 2
i = exp(−τ i).

Then we construct the data matrix X = √
nU�V�, where � = diag(σ1, . . . , σd).

We first plot the condition number for the problem in (1) and its data preconditioned
problem in (5) using H−1/2 by assuming the Lipschitz constant L = 1, varying the decay
of the eigenvalues of the sample covariance matrix, and varying the values of β and λ.
To this end, we generate a synthetic data with n = 105, d = 100. The curves in Fig. 1a
show the condition number vs the values of β by varying the decay of the eigenvalues. It
indicates that the data preconditioning can reduce the condition number for a broad range of
values of β, the strong convexity modulus of the scalar loss function. The curves in Fig. 1b
show a similar pattern of the condition number vs the values of λ by varying the decay of
the eigenvalues. It also exhibits that the smaller the λ the larger reduction in the condition
number.

Next, we present some experimental results on convergence. In our experiments we focus
on two tasks namely least square regression and logistic regression, andwe study two variance
reduced SGDs namely stochastic average gradient (SAG) (Schmidt et al. 2013) and stochastic
variance reduced SGD (SVRG) (Johnson and Zhang 2013). For SVRG, we set the step size
as 0.1/L̃ , where L̃ is the smoothness parameter of the individual loss function plus the
regularization term in terms of w. The number of iterations for the inner loop in SVRG is set
to 2n as suggested by the authors. For SAG, the theorem indicates the step size is less than
1/(16L̃)while the authors have reported that using large step sizes like 1/L̃ could yield better
performances. Therefore we use 1/L̃ as the step size unless otherwise specified. Note that
we are not aiming to optimize the performances by using pre-trained initializations (Johnson
and Zhang 2013) or by tuning the step sizes. Instead, the initial solution for all algorithms
are set to zeros and the step sizes used in our experiments are either suggested in previous
papers or have been observed to perform well in practice. In all experiments, we compare
the convergence vs the number of epochs.
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(a) (b)

(c) (d)

Fig. 2 Convergence of two SGDvariants w/ andw/o data preconditioning for solving the least square problem
(a, b) and logistic regression problem on the synthetic data with the eigenvalues following a polynomial decay.
The value of λ is set to 10−5. The condition numbers of the two problems are reduced from =2,727,813 and
681,953 to c′ = 1.88, and 32,506, respectively

We generate synthetic data as described above. For least square regression, the response
variable is generated by y = w�x + ε, where wi ∼ N (0, 100) and ε ∼ N (0, 0.01). For
logistic regression, the label is generated by y = sign(w�x+ ε). Fig. 2 shows the objective
curves for minimizing the two problems by SVRG, SAG w/ and w/o data preconditioning.
The results clearly demonstrate data preconditioning can significantly boost the convergence.

To further justify the proposed theory of data preconditioning, we also compare with
the straightforward approach that solves the preconditioned problem in (3) with the same
data preconditioner. The results are shown in Fig. 3. These results verify that using the
straightforward data preconditioning may not boost the convergence.

Finally, we validate the performance of the efficient data preconditioning presented in
Sect. 4.3.We generate a synthetic data as before with d = 5000 features andwith eigenvalues
following the poly-0.5 decay, and plot the convergence of SVRG for solving least square
regression and logistic regressionwith different preconditioners, including H−1/2 and Ĥ−1/2

with different values of m. The results are shown in Fig. 4, which demonstrate that using a
small number m (m = 100 for regression and m = 500 for logistic regression) of training
samples for constructing the data preconditioner is sufficient to gain substantial boost in the
convergence.
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(a) (b)

(c) (d)

Fig. 3 Comparison of the proposed data preconditioning with the straightforward approach by solving (3)
(simple-precond) on the synthetic regression data generated with different decay of eigen-values

(a) (b)

Fig. 4 Comparison of convergence of SVRG using full data and sub-sampled data for constructing the
preconditioner on the synthetic data with d = 5000 features for regression (left) and logistic regression (right)
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Table 1 The statistics of real
data sets

Data set n d Task

Covtype 581,012 54 Classification

MSD 463,715 90 Regression

CIFAR-10 10,000 1024 Classification

E2006-tfidf 19,395 150,350 Regression

Fig. 5 Comparison of convergence on covtype. The value of λ is set to 1/n, and the value of β is 0.01 for
classification

5.2 Real data

Next, we present some experimental results on real data sets. We choose four data sets, the
million songs data (MSD) (Bertin-Mahieux et al. 2011) and the E2006-tfidf data 3 (Kogan
et al. 2009) for regression, and the CIFAR-10 data (Krizhevsky 2009) and the covtype data
(Blackard 1998) for classification. The task on covtype is to predict the forest cover type from
cartographic variables. The task on MSD is to predict the year of a song based on the audio
features. Following the previous work, we map the target variable of year from 1922 to 2011
into [0, 1]. The task on CIFAR-10 is to predict the object in 32× 32 RGB images. Following
Krizhevsky (2009), we use the mean centered pixel values as the input. We construct a binary
classification problem to classify dogs from cats with a total of 10,000 images. The task on
E2006-tfidf is to predict the volatility of stock returns based on the SEC-mandated financial
text report, represented by tf-idf. The size of these data sets are summarized in Table 1.
We minimize regularized least square loss and regularized logistic loss for regression and
classification, respectively.

The experiment results and the setup are shown in Figs. 5, 6, 7 and 8, in which we also
report the convergence of Bach andMoulines’ ASG algorithm (Bach andMoulines 2013) on
the original problem with a step size c/R2, where c is tuned in a range from 1 to 10. The step
size for both SAG and SVRG is set to 1/L̃ . In all figures, we plot the relative objective values 4

either in log-scale or standard scale versus the epochs. For obtaining the optimal objective
value, we run the fastest algorithm sufficiently long until the objective value keeps the same
or is within 10−8 precision. On MSD and CIFAR-10, the convergence curves of optimizing

3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html.
4 the distance of the objective values to the optimal value.
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Fig. 6 Comparison of convergence on MSD. The value of λ is set to 2× 10−6, and the value of β is 0.99 for
regression

Fig. 7 Comparison of convergence on CIFAR-10. The value of λ is set to 10−5, and the value of β is 0.01
for classification

the preconditioned data problem using both the full data preconditioning and the sampling
based data preconditioning are plotted. On covtype, we only plot the convergence curve for
optimization using the full data preconditioning, which is efficient enough. On E2006-tfidf,
we only conduct optimization using the sampling based data preconditioning because the
dimensionality is very large which renders the full data preconditioning very expensive.
These results again demonstrate that the data preconditioning could yield significant speed-
up in convergence, and the sampling based data preconditioning could be useful for high-
dimensional problems.

Finally, we report some results on the running time. The computational overhead of the
data preconditioning on the four data sets 5 running on Intel Xeon 3.30GHZ CPU is shown
in Table 2. These computational overhead is marginal or comparable to running time per-
epoch. Since the convergence on the preconditioned problem is faster than that on the original
problem by tens of epochs, therefore the training on the preconditioned problem is more
efficient than that on the original problem. As an example, we plot the relative objective
value versus the running time on E2006-tfidf dataset in Fig. 9, where for SAG/SVRG with
efficient preconditioning we count the preconditioning time at the beginning.

5 The running time on MSD, CIFAR-10, and E2006-tfidf is for the sampling based data preconditioning and
that on covtype is for the full data preconditioning.
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Fig. 8 Comparison of convergence on E2006-tfidf. The value of λ is set to 1/n, and the value of β is 0.99
for regression

Fig. 9 comparison of convergence versus running time on E2006-tfidf. The value of λ is set to 1/n, and the
value of β is 0.99 for regression

Table 2 running time of
preconditioning (p-time)

Covtype MSD CIFAR-10 E2006-tfidf

p-time (s) 1.18 0.30 0.56 12

6 Conclusions

Wehave presented a theory of data preconditioning for boosting the convergence of first-order
optimization methods for the regularized loss minimization. We characterized the conditions
on the loss function and the data under which the condition number of the regularized loss
minimization problem can be reduced and thus the convergence can be improved. We also
presented an efficient sampling based data preconditioning which could be useful for high
dimensional data, and analyzed the condition number. Our experimental results validate our
theory and demonstrate the potential advantage of the data preconditioning for solving ill-
conditioned regularized loss minimization problems.
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Appendix 1: Proof of Proposition 1

We first prove for the case of polynomial decay σ 2
i = i−2τ , τ ≥ 1/2.

d∑

i=1

σ 2
i

σ 2
i + ρ

=
d∑

i=1

1

1 + i2τ ρ
≤

∫ d

0

1

1 + t2τ ρ
dt

=
∫ ρd2τ

0

1

1 + s
ρ−1/(2τ)s1/(2τ)−1 1

2τ
ds (with the change of variable s = ρt2τ )

≤
∫ ∞

0

1

1 + s
ρ−1/(2τ)s1/(2τ)−1 1

2τ
ds

= O(ρ−1/(2τ)) (since the integral is finite)

For the exponential decay σ 2
i = e−τ i , we have

d∑

i=1

σ 2
i

σ 2
i + ρ

=
d∑

i=1

e−τ i

e−τ i + ρ
≤

∫ d

0

e−τ t

e−τ t + ρ
dt

= 1

τ

∫ 1

e−τd

s

s + ρ
ds (with the change of variable s = e−τ t )

≤ 1

τ

∫ 1

0

s

s + ρ
ds ≤ 1

τ

∫ 1

0

1

s + ρ
ds

= 1

τ
[log(1 + ρ) − log(ρ)] = O

(
log

(
1

ρ

))

Appendix 2: Proof of Theorem 2

Proof Let us re-define H = ρ̂ I+C .We first show that the upper bound of the preconditioned
data norm using Ĥ−1 is only scaled-up by a constant factor (e.g., 2) compared to that using
H−1. We can first bound x�

i Ĥ−1xi by x�
i H−1xi

x�
i Ĥ−1xi = x�

i H−1/2 (
H1/2Ĥ−1H1/2) H−1/2xi

≤ λmax
(
H1/2Ĥ−1H1/2) x�

i H−1xi , i = 1, . . . , n.

So the crux of bounding x�
i Ĥ−1xi is to bound λmax

(
H1/2Ĥ−1H1/2

)
, i.e., the largest eigen-

value of H1/2Ĥ−1H1/2. To proceed the proof, we need the following Lemma. ��

Lemma 3 [Tropp (2011)] Let X be a finite set of PSD matrices with dimension k, and
suppose that

max
X∈X λmax(X) ≤ B.

Sample {X1, . . . , X�} uniformly at random from X without replacement. Compute

μmax = �λmax(E[X1]), μmin = �λmin(E[X1])
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Then

Pr
{
λmax

(
X̄

) ≥ (1 + δ)μmax
} ≤ k

[
eδ

(1 + δ)1+δ

] μmax
B

Pr
{
λmin

(
X̄

) ≤ (1 − δ)μmax
} ≤ k

[
e−δ

(1 − δ)1−δ

] μmax
B

where X̄ = ∑l
i=1 Xi .

Let us define S = �2 + ρ̂ I and

X =
{
Xi = H−1/2

(
xix�

i + ρ̂ I
)
H−1/2, i = 1, . . . , n

}

First we show that

λmax(Xi ) ≤ μ(ρ̂)γ (C, ρ̂) + 1.

Since

μmax = mλmax(Ei [Xi ]) = m

This can be proved by noting that

λmax(H
−1/2ρ̂ I H−1/2) = max

i

ρ̂

ρ̂ + σ 2
i

≤ 1

λmax(H
−1/2xix�

i H−1/2) ≤ x�
i H−1xi ≤ μ(ρ̂)γ (C, ρ̂)

where the second inequality is due to Lemma 2 and the new definition of H . By applying the
above Lemma and noting that X̄ = 1

m

∑m
i=1 Xi = H−1/2ĤH−1/2, we have

Pr
{
λmin

(
H−1/2ĤH−1/2) ≤ 1 − δ

}

≤ d exp

(
− m

μ(ρ̂)γ (C, ρ̂) + 1

[
(1 − δ) log(1 − δ) + δ

])

Using the fact that

(1 − δ) log(1 − δ) ≥ −δ + δ2

2

and by setting m = 2(μ(ρ̂)γ (C, ρ̂) + 1)(log d + t)/δ2, we have with a probability 1− e−t ,

λmin
(
H−1/2ĤH−1/2) ≥ 1 − δ

As a result, we have with a probability 1 − e−t ,

λmax
(
H1/2Ĥ−1H1/2) ≤ 1

λmin
(
H−1/2ĤH−1/2

)

≤ 1

1 − δ
≤ 1 + 2δ, ∀δ ≤ 1/2.

Therefore, we have with a probability 1 − e−t for any δ ≤ 1/2,

x�
i Ĥ−1xi ≤ (1 + 2δ)μ(ρ̂)γ (C, ρ̂), i = 1, . . . , n
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