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Abstract Although count data are increasingly ubiquitous, surprisingly little work has
employed probabilistic graphical models for modeling count data. Indeed the univariate case
has beenwell studied, however, in many situations counts influence each other and should not
be considered independently. Standard graphical models such as multinomial or Gaussian
ones are also often ill-suited, too, since they disregard either the infinite range over the natural
numbers or the potentially asymmetric shape of the distribution of count variables. Existing
classes of Poisson graphical models can only model negative conditional dependencies or
neglect the prediction of counts or do not scale well. To ease the modeling of multivariate
count data, we therefore introduce a novel family of Poisson graphical models, called Pois-
son Dependency Networks (PDNs). A PDN consists of a set of local conditional Poisson
distributions, each representing the probability of a single count variable given the others,
that naturally facilitates a simple Gibbs sampling inference. In contrast to existing Poisson
graphical models, PDNs are non-parametric and trained using functional gradient ascent, i.e.,
boosting. The particularly simple form of the Poisson distribution allows us to develop the
first multiplicative boosting approach: starting from an initial constant value, alternatively a
log-linear Poisson model, or a Poisson regression tree, a PDN is represented as products of
regression models grown in a stage-wise optimization. We demonstrate on several real world

Editors: João Gama, Indre Žliobaite, Alípio M. Jorge, and Concha Bielza.

B Kristian Kersting
kristian.kersting@cs.tu-dortmund.de

Fabian Hadiji
fabian.hadiji@cs.tu-dortmund.de

Alejandro Molina
alejandro.molina@cs.tu-dortmund.de

Sriraam Natarajan
natarasr@indiana.edu

1 LS VIII, TU Dortmund University, Dortmund, Germany

2 School of Informatics and Computing, Indiana University, Bloomington, IN, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5506-z&domain=pdf


478 Mach Learn (2015) 100:477–507

datasets that PDNs can model positive and negative dependencies and scale well while often
outperforming state-of-the-art, in particular when using multiplicative updates.

Keywords Graphical models · Dependency networks · Poisson distribution · Learning ·
MAP inference

1 Introduction

The world contains an unimaginably vast amount of information, and much of the data
consists of counts, i.e., observations that can take only non-negative integer values. Without
counting, we cannot know how many people are born and have died; how many men and
women still live in poverty; how many children need education, and how many teachers to
train or schools to build; the prevalence and incidence of diseases; how many customers
arrive in a shop daily and whether demands for products are expanding, and howmany teams
did a team win in the football world championship. Our scientific and digital lives also thrive
on counts. Example data are publication and citation counts, bag-of-X representations of,
e.g., collections of images or text documents, genomic sequencing data, user-ratings data,
spatial incidence data, climate studies, and site visits, among others. Behavioral data of users
visitingweb sites for example are tracked on a large scale, and visits or log-ins are counted and
then used to enrich the user experience and to increase revenue. Or consider computational
social science, a field that leverages the capacity to collect and analyze data at a scale that
may reveal patterns of individual and group behaviors. Here, for instance, the number of
people living in a region and the number of people migrating from one city to another one,
among others, are of great interest to politicians and also influence decisions in education
and research. Finally, counts also play an essential role in statistics. Consider for example
an election analyst interested in the association of gender and voting intentions. Standing on
a street corner for an hour recording data from anyone willing to talk to them, they build
a contingency table, say, with the gender in the rows and and the voting intentions in the
columns. In contrast to interviewing a fixed number of n individuals, there are no constraints
on the row and column totals, and hence the cell entries follow a count distribution.

All these examples share a common attribute in that they require a distribution over counts,
a potentially skewed, discrete distribution over the natural numbers. Indeed, there are several
count distributions. Here we focus on one of the most widely used ones, namely the Poisson
distribution. Poisson distributions are observed in sports data (Karlis and Ntzoufras 2003),
and in natural sciences (Feller 1968). Clarke (1946) even observed that the points of impact of
bombs in flying-bomb attacks are Poisson distributed. However, these classical studies have
only considered the uni- and bivariate cases even though in many situations count variables
may directly influence each other and should not be considered independently. For instance,
if “Neural” appears often in a document then it is also likely that “Network” appears in the
same document. Indeed, one may consider to employ a probabilistic graphical model widely
used for modeling distributions among several random variables. Unfortunately, research has
so far mainly focused on graphical models over binary, multinomial and Gaussian random
variables only. These standard distributions, however, are often ill-suited for modeling count
data1, since they disregard either the infinite range over the natural numbers or the poten-

1 If the mean λ of a Poisson distribution p(x) = (λx e−λ)/(x !) is small, say less than 5, then its probability
histogram is markedly asymmetrical, making a Normal-approximation ill-suited. Using Stirling’s formula for
x !, i.e., x ! ≈ √

2πxe−x xx , as x → ∞, one can see that its probability histogram is essentially symmetric and
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tially asymmetric shape of the distribution of count variables; counts are neither binary nor
continuous, they are discrete with a typically right skewed distribution over an infinite range.

Therefore, it is not surprising that extensions of them to the Poisson case have been
proposed, see e.g., Besag (1974) and Yang et al. (2012, 2013). However, all existing exten-
sions are restricted in that they model only negative conditional dependencies or neglect
the prediction of counts or do not scale well. In particular negative dependencies limit the
expressiveness of the models because one can only represent relationships where the mean
of a variable decreases with increasing neighbors.

To ease the modeling of multivariate count data, we therefore propose a novel family of
Poisson graphical models, called Poisson Dependency Networks (PDNs). A PDN consists
of a set of local conditional Poisson distributions—each representing the probability of a
single count variable given the others—that naturally facilities a Gibbs sampling inference
procedure. Moreover, the family admits simple training procedures induced by a functional
gradient view on training. Specifically, triggered by the recent successes of functional gradi-
ent ascent for representingmultinomial dependency networks, our first technical contribution
is to show that PDNs can be represented as sums of regression models grown in a stage-wise
optimization starting from an initial constant value, or alternatively a log-linear model, or a
Poisson regression tree. In fact, this first functional gradient approach to modeling multivari-
ate Poisson distributions—aswewill show empirically on several real world datasets—scales
well and can model positive and negative dependencies among count variables while often
outperforming state-of-the-art approaches. However, our main technical contribution is the
development of the first multiplicative functional gradient ascent, which is demonstrated
empirically to be able to boost the performance even further, since it essentially implements
an automated step size selection without incurring in computational overhead.

We proceed as follows. We start off by discussing related work in more detail. We then
introduce Poisson Dependency Networks (PDNs) in Sect. 3 and in Sect. 4 we show how to
learn them, in particular, using the multiplicative functional gradient approach. In Sect. 5 we
explain how to perform inference in PDNs and before concluding, Sect. 6 presents our exhaus-
tive experimental evaluation on different synthetic and real-world datasets demonstrating the
effectiveness of PDNs.

2 Related Work and a First Empirical Illustration

Most of the existing machine learning and data mining literature on graphical models—
we refer to Koller and Friedman (2009) for a general introduction to graphical models—is
dedicated to binary, multinominal, or certain classes of continuous (e.g., Gaussian) random
variables. Undirected models, a.k.a. Markov Random Fields (MRFs), such as Ising (binary
randomvariables) and Potts (multinomial randomvariables)models have found a lot of appli-
cations in various fields such as robotics, computer vision and statistical physics, among oth-
ers.WhereasMRFs allow for cycles in the graphical structure, directedmodels, a.k.aBayesian
Networks (BNs), require acyclic directed relationships among the random variables. They
have also been used in a number of applications such as planning, NLP and and information
retrieval, among others. Dependency Networks (DNs), the focus of the present paper, com-
bine concepts from directed and undirected worlds and are due to Heckerman et al. (2000).

Footnote 1 continued
bell-shaped. More precisely, we rewrite p(x) ≈ (

√
2πλxx+0.5)−1ex−λλx+0.5. In the limit of large λ, this

approaches the Normal distribution p(x) ≈ (2πλ)−0.5e−(x−λ)2/2λ. This fact can be traced back to A. De
Moivre, Approximato ad Summam Terminorum Binmoo (a + b)n in Seriem Expansi (London, 1733).
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Specifically, like BNs, DNs have directed arcs but they allow for networks with cycles and bi-
directional arcs, akin to MRFs. This makes DNs quite appealing because, if the data are fully
observed, learning is done locally on the level of the conditional probability distributions for
each variable mixing, directed and indirected as needed. Based on these local distributions,
samples from the joint distribution are obtained via Gibbs sampling (Heckerman et al. 2000;
Bengio et al. 2014). Except for few cases that we will discuss below, however, surprisingly
little attention has been paid to (graphical) models of multivariate count data within the
machine learning and data mining communities.

Indeed, when only one count variable is considered, the literature is vast. A lot of this
can essentially be treated as a Generalized Linear Model (GLM), see McCullagh and Nelder
(1989) for example. In GLMs, the response variable is related to a link function applied to a
linearmodel. One specific instantiation of GLMs is the Poisson regression casewhere the link
function is the logarithm, i.e., the mean of the Poisson distribution is defined by a log-linear
model. Compared to ordinary least squares regression, an advantage of theGLMframework is
the fact that non-Gaussian error structures are possible.When considering jointly two ormore
count variables, however, things become more complicated and there exist much less work.

For instance, one can define a multivariate Poisson distribution by modeling node vari-
ables as sums of independent Poisson variables, see e.g., Karlis (2003) and Ghitany et al.
(2012). Since this is again a Poisson, the marginals are Poisson as well. The resulting joint
distribution, however, can onlymodel positive correlations. There are also bivariate extension
for specific models, e.g., Karlis and Ntzoufras (2003). In general, however, even calculat-
ing probabilities for these multivariate Poisson distributions is computationally challenging
and hence their usage is often limited (Tsiamyrtzis and Karlis 2004). Hoff (2003) proposed
to use Generalized Linear Mixed Model (GLMMs) using Poisson regression and modeling
the dependencies between variables using random effects. Training the resulting GLMM,
however, is computationally demanding because it requires the estimation of the unobserved
mixed effects; nevertheless, GLMMs are often used, for example in studies in ecology and
evolution (Bolker et al. 2009). Using just GLMs, Yang et al. (2012) have recently proposed an
undirected Poisson model, called GLM graphical model, where—close in spirit to PDNs—
each conditional node distribution is assumed to be from the exponential family with the
Poisson distribution as one particular instantiation.

In contrast to the non-parametric functional gradient approach of PDNs, where interac-
tions among variables are introduced only as needed and hence the learner does not explicitly
consider the potentially immense parameter space, they employ a sparsity constrained, para-
metrized conditional MLE approach along the lines of Meinshausen and Bühlmann (2006).
It must be mentioned that Yang et al.’s GLM graphical models—like PDNs—extend the
seminal work by Besag (1974). More precisely, Besag’s Auto-Poisson model can be seen as
an instantiation of GLM graphical models as the latter ones allow for higher-order cliques.
In general, this line of work models the dependencies between the variables directly, instead
of adding mixed effects. That is, the mean of each variable follows a GLM where all neigh-
boring variables are used as explanatory variables. However, to guarantee a consistent joint
probability distribution known in closed form, the parameters are required to be negative, i.e.,
competitive relationships. In the case of arbitrary positive dependencies, the joint distribution
is not guaranteed to be normalizable anymore because the normalization constant becomes
infinite. In contrast, PDNs drop the guarantee of consistency and stay local, allowing for
negative and positive parameters, i.e., competitive and attractive relationships. Alternatively,
Kaiser and Cressie (1997) suggested the use of Winsorized Poisson distributions to remove
the drawback of negative dependencies only. The Winsorized Poisson distribution is the
univariate distribution obtained by truncating the inter-valued Poisson variables at a finite
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Table 1 A comparison of existing Poisson graphical models most similar to PDNs

Auto-Poisson
(Besag 1974)

TPGMs
(Yang et al. 2013)

SPGMs
(Yang et al. 2013)

LPGMs
(Allen and Liu
2013)

PDNs

Consistent joint
distribution

� � � (�) (�)

Arbitrary
parameters

– � � � �

Unbounded range � – – � �
Covers learning � � � � �
Higher-order
potentials

– � � � �

Tree-structured
potentials

– – – – �

Functional
gradient

– – – – �

Investigates
inference

– – – – �

As one can see, PDNs cover all important aspects of modeling count data while facing almost no restrictions
The “(�)” denotes that this is the case given that an unordered Gibbs sampler on the model converges, see
main text for more details

constant. Doing so, however, makes estimation considerably harder than for PDNs that are
naturally equipped with a simple learning approach.

Probably closest in spirit to PDNs are the recent approaches due to Allen and Liu (2013)
and due to Yang et al. (2013). More precisely, Allen and Liu’s Local Poisson Graphical
Models (LPGMs) are also in the tradition of Besag’s Auto-Poisson models and related to
GLM graphical models. They assume that each variable conditioned on all other variables
in the network follows a Poisson distribution. Similar to PDNs, they do not focus on a
consistent joint distribution but consider local conditional probabilitymodels only. In contrast
to PDNs, which employ a well scaling functional gradient ascent, the structure of LPGMs is
learned with a computationally more demanding �1-norm penalized log-linear regression for
neighborhood selection.Assuming the data is fully observed, the neighborhood for every node
is learned separately in the spirit of Gaussian MRFs. Yang et al. (2013) introduced Truncated
Poisson Graphical Models (TPGMs), Quadratic PGM (QPGMs), and Sub-linear PGMs
(SPGMs). TPGMs are a modification of Kaiser and Cressie’s truncated models. QPGMs
are a generalization of the previously introduced Poisson graphical models with quadratic
base measure that features both positive and negative parameters under the restriction that the
pairwise parametermatrix is negative-definite. Instead of changing the basemeasure, SPGMs
use sub-linear sufficient statistics to ensure normalizability. All this makes learning harder
compared to PDNs since parametric �1-norm penalized log-linear regression or proximal
gradient ascent are used to find a single best model. Instead, PDNs are triggered by the
intuition that finding many rough rules of thumb of how count variables interact can be a lot
easier than finding a single, highly accurate local Poisson model.

We have summarized2 the properties of the existing Poisson graphical models that are
most similar to our work and and how they compare to PDNs in Table 1. The “(�)” denotes

2 The table lists the TPGMs fromYang et al. (2013) instead of theWinsorized Poisson model from Kaiser and
Cressie (1997) because TPGMs provide a consistent joint distribution and present the state-of-the-art approach
for truncated Poisson graphical models.

123



482 Mach Learn (2015) 100:477–507

(a) (b) (c)

Fig. 1 Comparison of different count model approaches on synthetic data. Local models (LPGM and PDN)
outperform global models (SPGM). Moreover, PDNs can be an order of magnitude faster. a Scale-free net-
works. b Hub networks. c Runtimes in log-scale (Color figure online)

that this feature does not generally hold but—as already mentioned—Bengio et al.’s (2014,
Proposition 2) recent result suggests the existence of a consistent distribution.More precisely,
Bengio et al. showed that an unordered Gibbs sampler over a DN equipped with evidence
induces a so-calledGenerative Stochastic Network (GSN)Markov chain. As long as this GSN
Markov chain has a stationary distribution, i.e., the Gibbs sampler converges, the DN defines
a joint distribution, which, however, does not have to be known in closed form. Now, since
PDNs (and hence LPGMs) are Dependency Networks (with local Poisson distributions), this
argument should carry over, but a formal analysis is left for future work.

Our, empirical results support this as illustrated in Fig. 1. It summarizes the results of
using the most recent approaches from Table 1 as well as PDNs for a network discovery task.
More precisely, following Yang et al. (2013), two network families were considered that are
commonly used throughout genomics: the hub and scale-free graph structures. As one can
see, the local approaches, i.e., LPGMs and PDNs have competitive performances compared
to the guaranteed consistent SPGMs3. The plots show the F1-scores for structure recovery for
varying problem sizes averaged over five runs; we sampled 1000 graphs per run and problem
size. Moreover, the training of PDNs is considerably faster compared to the state-of-the-art
approaches, often an order of magnitude.

The speedup is likely due to the non-parametric nature of PDNs. In particular, we train
PDNs using functional gradients. That is, we train them in a stage-wise manner at low and
scalable costs following Friedman’s Gradient Tree Boosting (GTB) (Friedman 2001). This
boosting approach has been proven successful in a number of cases, see e.g., Ridgeway
(2006), Kersting and Driessens (2008), Dietterich et al. (2008), Elith et al. (2008), Natarajan
et al. (2012, 2014b, 2013) and Weiss et al. (2012), and since it estimates the parameters
and the structure jointly, it is generally related to structure learning of graphical models, in
particular to approaches that use the local neighborhood of each variable to construct the
entire graph. For example, covariance selection is used in Gaussian models where edges are
added to the graph until a stopping criterion is met. Despite being greedy, the method is not
practical for multivariate distributions with a large number of variables. A popular alternative
is neighborhood selection via Lasso (Meinshausen and Bühlmann 2006). This has also been
used for learning the structure of binary Ising models, see e.g., Ravikumar et al. (2010). In
the case of DNs, Heckerman et al. (2000) originally did neighborhood selection implicitly by
learning probabilistic decision trees for each variable.Also, undirected probabilistic relational

3 We did not compare to TPGMs since they were compared to SPGMs already in Yang et al. (2013).
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models such as Markov Logic Networks were learned with the help of (boosted) decision
trees in Khot et al. (2011), Lowd and Davis (2014) and Natarajan et al. (2014a).

3 Poisson Dependency Networks (PDNs)

The review of related work revealed that modeling multivariate Poisson distributions faces
the following main challenges:

Unrestricted parameters Some approaches only handle negative dependencies which is
a serious limitation because positive dependences are often present as well.
Joint distribution Given local Poisson probability distributions, formulate a joint proba-
bility distribution.
Learning Recovery of the dependencies in the present data, so that an easy interpretation
of the data is possible. A learned model should also quantify the dependences properly
to enable accurate inference on unlabeled instances.
Inference Given a partially observed case, the goal of MAP inference is to predict the
most likely assignment of the unobserved variables. Other probabilistic queries, such as
marginal probabilities, are of great interest as well.

With this in mind, we now develop Poisson Dependency Networks (PDNs) that are different
from existing Poisson graphical models in several ways:

Positive and negative dependencies PDNs are capable of modeling positive and negative
dependencies. Furthermore, we do not have to restrict the weights to be symmetric or
limited in any way.
Non-parametric PDN is the first non-parametric Poisson graphical model, both at the
level of local models as well as at the global level of the overall model. The use of
(Poisson) regression trees for the (initial) conditional distributions are more flexible than
using parametric log-linear models for the mean in the Poisson distribution. Moreover,
finding many rough rules of thumb of how count variables interact can potentially be a
lot easier than finding a single, highly accurate local Poisson model.
Multiplicative GTB We present the very first multiplicative functional gradient ascent.
This implements an automated step size selection and hence avoids an expensive line
search while improving convergence.
Flexible structure learning The learning estimates the structure and parameters simul-
taneously and scales well. PDNs do not require fixing the missing symmetries in the
structure to do inference. The structure learning of PDNs is competitive with consistent
models, has much lower computational costs, and is readily parallelizable.
Predictions PDNs naturally facilitate a simple Gibbs sampling inference.More precisely,
we use aGibbs sampler that provides uswith samples froma joint probability distribution.
This joint distribution allows us to predict counts of unobserved instances easily instead
of solely focusing on structure recovery as done for existing Poisson graphical models.

To introduce PDNs, we use X to denote a random variable and x as its instantiation. Sets
of random variables are written as X and correspondingly their instantiations as x. Given a
set of random variables X = (X1, . . . , Xn) where each variable is defined over the natural
numbers, including 0, then a Poisson Dependency Network (PDN) is a pair (G, P). Here,
G = (V, E) is a directed, possibly cyclic, graph with V being a set of nodes where each
node corresponds to a random variable in X. Hence, we can use nodes in G and the random
variables inX interchangeably. E ⊆ V ×V is a set of directed edges where each edgemodels
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Fig. 2 Illustration of a Poisson Dependency Network (PDN). (Left) Plot of a fitted Poisson distribution. The
number of goals scored in football games is Poisson distributed. The plot shows the distribution of home goals
in the season 2012/13 of the German Bundesliga by the home team. Here, λ = 1.59, stating that the home
team scored on average 1.59 goals per game. (Right) Example PDN. The conditional distribution of each count
variable given its neighbors is a Poisson distribution. Observed variables are denoted by gray shades. Similar
to a Bayesian network a PDN is directed, however, it also contains cycles (Color figure online)

a dependency between variables, i.e., if there is no edge between two variables Xi and X j ,
the variables are conditionally independent given the other variables X\i, j in the network.
Here, X\i, j is shorthand for X \ {Xi , X j }. We refer to the nodes that have an edge pointing
to Xi as the parents of Xi , denoted as pai . P is a set of conditional probability distributions
for every variable in X. For now, we assume that each variable Xi given its parents pai is
Poisson distributed, i.e.,

p(xi |pai ) = p(xi |x\i ) = λi (x\i )xi
xi ! e−λi (x\i ). (1)

Here, λi (x\i ) highlights the fact that the mean can have a functional form that is dependent
on Xi ’s neighbors. Often, we will refer to it simply as λi . An example of such a local Poisson
conditional probability distribution is illustrated in Fig. 2 (left). The construction of the local
conditional probability distribution is similar to the (multinomial) Bayesian network case,
however, in the case of PDNs, the graph is not necessarily acyclic and p(xi |x\i ) has an infinite
range, and hence cannot be represented using a finite table of probability values. Finally, the
full joint distribution is simply defined as the product of local distributions:

p(x) :=
∏

xi∈x
p(xi |x\i ) =

∏

xi∈x

λ
xi
i

xi ! e
−λi . (2)

Note, however, that doing so does not guarantee the existence of a consistent joint distribution,
i.e., a joint distribution of which they are the conditionals. We will come back to this issue
later.

An example of a PDN with three variables is depicted in Fig. 2 (right). The gray shaded
variable X0 can be seen as an observational vector. In the spirit of other graphical models, for
example Conditional Random Fields (Lafferty et al. 2001), we can define a set of observed
variables in advance. It will not be necessary to learn a local model for these variables as
they are always observed. Additionally, we have fewer constraints on these variables. They
do not have to be count variables but instead can be arbitrary features. This allows us to
easily incorporate features that are for example normal distributed, hence, paving the way
for hybrid models with local models of all kind of local distributions. We call this new
formalism Poisson Dependency Networks because they generalize Dependency Networks
(DNs) (Heckerman et al. 2000) for multinomial distributions to the Poisson case.

One crucial part of PDNs that we have not touched upon yet is the encoding of p(Xi |X\i )
and of λi in particular. There are two sensible ways. First, one can follow a parametric
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approach as it has been done before in the literature. Second, as an alternative, we propose a
non-parametric encoding.

More precisely, we show that a PDN can be represented as sums resp. products of regres-
sion models grown in a stage-wise optimization starting from an initial constant value, or
alternatively a log-linear Poisson model, or a Poisson regression tree. Before doing so, let us
touch upon the issue of consistency again. Our non-parametric approach to model the means
can essentially be seen as linear functions with no restrictions on the parameters. In turn, we
will generally not be able to formulate the underlying joint probability distribution of the
PDN in closed-form by means of a standard (pairwise) Poisson graphical model. However,
as we will show later, we can use sampling techniques to draw samples from the joint dis-
tribution as we have access to the conditional probabilities. If this sampling converges, there
exists a consistent distribution, which however does not have to be known in closed form.
We will discuss the question of consistency in greater detail in this work.

4 Learning Poisson Dependency Networks

Learning4 PDNs amounts to determining the conditional probability distributions from a
given set of m trainings instances over n count variables Xi

[
x(j) ∈ N

n
]

j=1,2,...,m
,

which in turn is equal to learning λi for each variable Xi because the Poisson distribution is
completely determined by the mean. However, λi will possibly depend on all other variables
in the network, and these dependences define the structure of the network. We will now
develop a functional gradient ascent approach to learning PDNs, i.e., learning the λi s. We
will do so by starting from parametrized maximum likelihood estimation, extending it to
additive local Poisson models grown in a stage-wise manner, and finally turning this into a
multiplicative update.

Before going into details, let us summarize the resulting high-level approach in Algo-
rithm 1, since it covers all the approaches. The mean λi of each variable is assumed to consist
of a set of local models grown in a stage-wise manner. More precisely, initially the set is a
singleton learned in Line 9. Here, the formula Xi ∼ ∑

X\i denotes that the mean for Xi

can have all other variables potentially as features. Please note that the models used may
include hyper-parameters such as step sizes and pruning parameters (if e.g., using regression
trees)—we will touch upon them along with each approach—that might be estimated using
a grid search and a validation set. After the initial learning, a pre-defined number of gradient
steps (T ) are made to further improve the model (line 11). Thus, the main computational
task is the induction of regression models. More precisely, one regression model per random
variable Xi and per iteration in the stage-wise optimization (lines 9–11). For simplicity, let
us assume that the regression models are trees. Tree-based regression models are known for
their simplicity and efficiency when dealing with domains with large numbers of variables
and cases. With careful implementations, inducing a single regression tree can be realized
with practically linear time complexity, see e.g., Dobra and Gehrke (2002). Hence, the run-
ning time is, practically speaking, linearly dependent on n · T , i.e., on the number of count
variables times the number of stage-wise optimization iterations.

4 For the sake of simplicity we assume the data is fully observed. Together with the Gibbs sampler discussed
later, everything can in principle be extended to the partially observed case.
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Algorithm 1 Gradient Boosting Poisson Dependency Networks (PDNs).
1: function LearnPdn(data)
2: score ← − inf
3: optimalPDN ← none
4: for each αi in HyperparameterSpace do
5: parameterScore ← 0
6: for each train, test in CrossValidationSplit(data) do
7: P ← []
8: for each Xi in X do
9: P[i] ← LearnInitialCondProb(αi , Xi ∼ ∑

X\i )
10: for each t in [1, T ] do
11: GradientBoosting(P[i])
12: parameterScore ←parameterScore + ScoreFunction(test, P)
13: if parameterScore > score then
14: optimalPDN ← P
15: score ← parameterScore

return OptimalPDN

Depending on how we encode the initial models and how we grow the local models
per variable—additive or multiplicative updates—different learning approaches are realized,
which we will now discuss.

4.1 Poisson Log Linear Models

To grasp the idea of functional gradient ascent for training PDNs, it is helpful to first describe
the learning a single parametric Poisson model. Most commonly, as mentioned in the related
work, the mean is modeled using a log-linear model. In its most naive form, without further
regularization, this presents a fully-connected PDN.More precisely, using a log-linearmodel,
the mean of each variable is:

E[Xi ] = λi = exp

⎛

⎝βi +
∑

j 
=i

βi j · x j
⎞

⎠ (3)

In the univariate case, this approach is often referred to asPoisson Regression. The parameters
βi and βi j determine the mean—βi j > 0 models a positive dependency on X j whereas βi j <

0 models a negative dependency—and can be learned via maximum likelihood estimation
(MLE). That is, we assume that the training examples are i.i.d. and we seek for parameters
that maximize the conditional log-likelihood

cll(βi ,β i j ) = log
m∏

k=1

p
(
x (k)
i |x(k)

\i
)

=
m∑

k=1

log p
(
x (k)
i |x(k)

\i
)

.

So, we obtain the partial derivatives

∂ cll

∂βi
= ∂

∂βi

m∑

k=1

x (k)
i log

(
λ

(k)
i

)
− log

(
x (k)
i !

)
− λ

(k)
i =

m∑

k=1

x (k)
i − λ

(k)
i ,

∂ cll

∂βi j
= ∂

∂βi j

m∑

k=1

x (k)
i log

(
λ

(k)
i

)
− log

(
x (k)
i !

)
− λ

(k)
i =

m∑

k=1

(
x (k)
i − λ

(k)
i

)
· x (k)

j .

Since there is no closed form solution for solving this problem, typically, we employ an
iterative approach to improve the conditional log-likelihood. For instance, using a simple
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gradient ascent, we can take a step in the direction of the gradient in each iteration until
convergence:

β t+1 = β t + η · ∇ cll

where ∇ cll denotes the gradient consisting of all partial derivatives. The speed of con-
vergence is influenced by the choice of the step size η which denotes one of the possible
hyper-parameters in Algorithm 1. Besides the simple gradient ascent, algorithms such as (L-
)BFGS are common for solving such optimization problems. However, in the case of Poisson
Regression, iteratively-re-weighted least squares (IRLS) is probably the most popular tech-
nique. We refer to McCullagh and Nelder (1989) for further details on IRLS.

Before moving to functional gradient ascent, let us make a further note on the consistency
of PDNs. In general, we may not be consistent, however, using log-linear models, we can fit
our PDNs with log-linear means into the setting of Besag (1974) (and its follow up work) by
restricting the parameters and structure. As Besag showed for the pairwise lattice case, there
exists an undirected graphical model with Poisson local conditional probability distributions
if the parameters β are non-positive. Further it is assumed that βi j = β j i . This was further
generalized for the non-pairwise case in Yang et al. (2012). If our parameters satisfy these
conditions, we can specify the joint distribution for our model and hence we do have a
consistent Poisson MRF as well.

However, we are interested in models with as few limitations as possible on the structure
and the parameters. Hence we do not rely on the existence of a closed form equation for
the joint distribution or even insist on the existence of a consistent distribution. Instead,
we introduce a more general class of Poisson graphical models. This is mainly motivated
by computational concerns. For domains with a large number of count variables and many
dependencies among them, learning a consistent PoissonMRFmight be too costly.Moreover,
not being able to model both positive and negative influences may hurt the performance and
limits the expressiveness. Finally, as the results of our first experimental comparison in Fig. 1
already showed, approaches that are guaranteed to provide an explicit joint distribution are not
necessarily better. Specifically, we follow Heckerman et al. (2000) and Bengio et al. (2014)
and employ the machinery of Markov chains to generate pseudo samples. The generated
samples are used to answer complex probabilistic count queries. For more details on Gibbs
sampling and a justification for its usage we refer to Sect. 5.

4.2 Non-parametric Poisson Models Via Gradient Boosting

Local log-linear models tend to estimate fully connected networks and overfit. Consequently,
they typically donot providemajor insights into the structure of the underlying data generation
process. Hence, regularization or post-processing such as thresholding (Allen and Liu 2013;
Yang et al. 2013) have to be employed to extract the true nature of the network. Moreover,
as demonstrated in our experiments, using log-linear models easily results in PDNs that
overshoot at prediction time leading to overflows and, hence, prediction is not possible at all.

Therefore, we propose an alternative: instead of a single local log-linear model for λi ,
we grow a set of local models in stage-wise manner using gradient information (Line 11 of
Algorithm 1). This waywe avoid considering the large parameter space explicitly and include
interactions among count variables only as needed. We here employ regression trees for this
boosting approach and, hence, call the resulting approach Gradient Tree Boosting (GTB).
Using trees has two significant advantages over standard parametric and non-parametric
regression approaches:
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– By allowing the tree-structure to handlemuch of the overallmodel complexity, themodels
in each leaf can be kept at a low order and, hence, are more easily interpreted.

– Interactions among features are directly conveyed by the structure of the regression tree.
As a result, interactions can be understood and interpreted more easily in qualitative
terms; we will touch upon this later again.

To develop gradient tree boosting, recall that the parameters of a parametrized log-linear
model can be viewed as a sum of gradients. Gradient boosting lifts this intuition to the
function space. That is, using the log link function, the mean λi (x\i ) of a Poisson variable Xi

is viewed as λi (x\i ) = exp
(
ψi (x\i )

)
, i.e., as a function of some (feature-)function ψi . Now,

we perform a gradient ascent in (log) function space for some iterations T in order to estimate
the feature functions ψi (x\i ) for the count variables xi . This corresponds to representing the
local functions of a PDN as a weighted sum:

λti (x\i) = exp
(
ψ t
i (x\i )

) = exp
(
ψ t−1
i (x\i ) + η · ∇ t

i

)
(4)

The initial ψ0
i (x\i ) can be, e.g., a constant, the logarithm of the empirical mean of Xi , or a

more complex model. The ∇ t
i s are functional gradients:

∇ t
i = Ex\i ,xi

[
∂

∂ψ t−1
i (x\i )

log p
(
xi |x\i ;ψ t−1

i (x\i )
)]

(5)

indicating intuitively how we would like the mean model to change in order to increase the
log-likelihood. The expectation E[·] in (5), however, requires access to the joint distribution,
which we do not have.

Fortunately, we can approximate it with the help of the instances in our training dataset,
which are sampled from the true joint distribution anyhow:

∇ t
i ≈ 1

m

∑

j

∂

∂ψ t−1
i (x( j)

\i )
log p

(
x ( j)
i |x( j)

\i ;ψ t−1
i (x( j)

\i )
)

= 1

m

∑

j

∇ t
i (x

( j)
i , x( j)

\i )

Intuitively, as long as we can estimate ∇ t
i (x

( j)
i , x( j)

\i ), they give us point-wise regression
examples

(
x( j)
\i ,∇ t

i (x
( j)
i , x( j)

\i )
)

of the functional gradient. Hence, it is a sensible idea to train a regression model using them
approximating the true functional gradient; following Dietterich et al. (2008), we minimize
the following objective

∑

j

[
hti (x

( j)
\i ) − ∇ t

i (x
( j)
i , x( j)

\i )
]2

(6)

using a regression tree hti (Breiman et al. 1984). Here, j iterates over all instances in our
training dataset, and x( j) is the j th training example. Although fitting a regression model
to (6) is not exactly the same as the desired∇ t

i , it will point into the same direction if we have
enough training examples. So, ascent in the direction of the regression model hti—replacing
∇ t
i by h

t
i in (4)—will approximate the true functional gradient ascent (4) and was empirically

proven to be quite successful for training many probabilistic models. How do the point-wise
gradient regression examples look like for PDNs? For the log link function λi = exp(ψi (x\i ))
with some feature function ψi , where we have now omitted the iteration index t for the sake
of simplicity, we get:
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Theorem 1 (see also e.g., Ridgeway (2006)) The point-wise gradients for the log link func-
tion exp(ψi (x\i )) can be generated using

∂ log p(xi |x\i ;ψi (x\i ))
∂ψi (x\i )

= xi − λi (x\i ).

Proof One can verify the correctness of this gradient as follows:

∂ log p(xi |x\i ;ψi (x\i ))
∂ψi (x\i )

= ∂

∂ψi (x\i )
x · ψi (x\i ) − log(xi !) − exp(ψi (x\i ))

= xi − exp(ψi (x\i )) = xi − λi (x\i )

�

These point-wise gradients are quite intuitive. We want to make the predicted means

λi (x\i ) as similar to the observed count xi as possible.
However, we are still left with the step size parameter η to compute the updated mean

model in (4). For other probabilistic models such as CRFs, performing a line search was
reported to be too expensive (Dietterich et al. 2008). Hence, it was suggested to rely on the
“self-correcting” property of tree boosting to correct any overshoot or undershoot on the
next iteration, i.e., to use a step size of η = 1 . Unfortunately, we have observed in our
experiments that using a fixed step size of η = 1 can lead to very slow convergence or
failures due to overflows for large counts. Consequently, we now develop our main technical
contribution, a multiplicative gradient boosting approach that avoids this without incurring
any computational overhead.

4.3 Multiplicative Gradient Boosting

For non-negative optimization problems, multiplicative update rules for the parameters have
been shown to have much better convergence rates, see e.g., Lee and Seung (2000), Saul and
Lee (2001), Sha et al. (2003) andYang andLaaksonen (2007), andwe confirm this for PDNs in
our experimental section.More importantly, since the tree-structure of the induced regression
trees handle much of the overall PDN complexity, faster convergence implies sparser PDNs.

To derive a multiplicative update, we consider a simpler functional dependency between
λi (x\i) and the feature functionψi . More precisely, triggered by Chen et al. (2009), who have
proven the use of the identity link function to be beneficialwhen using parametrized univariate
Poisson distribution for large-scale behavioral targeting, we assume λi = ψi (again omitting
the iteration index t). For this link function, the point-wise gradients are the following:

Theorem 2 The point-wise gradients of the log-probability assuming the identity link func-
tion are

∂ log p(xi |x\i ;ψi (x\i ))
∂ψi (x\i )

= xi
λi (x\i )

− 1,

and can be used to realize an additive functional gradient ascent.

Proof The correctness of the point-wise gradient can be seen as follows:

∂ log p(xi |x\i ;ψi (x\i ))
∂ψi (x\i )

= ∂

∂ψi (x\i )
xi logψi (x\i ) − log(xi !) − ψi (x\i )

= xi
ψi (x\i )

− 1 = xi
λi (x\i )

− 1

�
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The multiplicative update now follows from Theorem 2 together with a functional step
size.

Corollary 1 The multiplicative functional gradient ascent using the identity link function is

ψ t+1(x\i ) = ψ t (x\i ) · Ex\i,xi
[ xi
λi (x\i )

]
, (7)

and the training instances can be generated using
(
x( j)
\i ,

xi
λi (x\i )

)
. (8)

Proof FromTheorem2 it follows that the point-wise gradients can be split into a negative part,
namely 1, and a positive part, namely xiλ

−1
i (x\i ). Since the functional gradient∇ t

i in (5) is an
expectation,∇ t

i itself can be split into a negative part and a positive part,∇ t−
i = Ex\i,xi [1] = 1

respectively ∇ t+
i = Ex\i,xi

[
xi

ψi (x\i )

]
, with ∇ t

i = ∇ t+
i − ∇ t−

i . Setting now the step size to

η = ψ t
i (x\i )
∇ t−
i

,

the additive gradient boosting (4) can be rewritten as

ψ t+1(x\i ) = ψ t
i (x\i ) + η · ∇ t

i = ψ t (x\i ) + η · (∇ t+
i − ∇ t−

i )

= ψ t
i (x\i ) + ψ t

i (x\i )
∇ t−
i

· (∇ t+
i − ∇ t−

i ) = ψ t (x\i ) · ∇ t+
i

∇ t−
i

= ψ t (x\i ) · ∇ t+
i

1

= ψ t (x\i ) · Ex\i ,xi
[ xi
ψi (x\i )

]
= ψ t (x\i ) · Ex\i ,xi

[ xi
λi (x\i )

]

This proves the correctness of the multiplicative functional gradient (7). Moreover, following
now the same steps as for the additive functional gradient ascent proves the correctness of
point-wise gradients (8). That is, as for the additive update, following the multiplicative
functional gradient (7), approximated using regression trees trained using (8), will increase
the log-likelihood assuming there are enough training examples. �


The point-wisemultiplicative updates are quite intuitive. Instead ofmaking the differences
as small as possible, we want to make the ratio of observed counts xi and predicted means
λi (x\i ) as close to 1 as possible.

Finally, we comment on the choice of the identity link function. Using it, we make the
assumption that the expected means are greater than zero. This is sensible, since a count vari-
able should be observable. Second, positive and negative dependencies can still be expressed
in single regression models induced over the iterations. Third, one can naturally realize
Laplace smoothing by adding constants αi and βi to the point-wise gradients:

xi + αi

λi (x\i ) + βi
. (9)

That is, αi/βi gives the default Poisson mean of new configurations not encountered during
training. Finally, the identity and log link functions are weakly connected. Following the
same steps as in the proof of Corollary 1 but now using Theorem 1, we arrive at the following
multiplicative functional gradient ascent for the log link function

ψ t+1(x\i ) = ψ t (x\i ) · Ex\i ,xi [xi ]
Ex\i ,xi

[
λi (x\i )

] = ψ t (x\i ) · Ex\i ,xi
[ x̄i
λi (x\i )

]
, (10)
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Fig. 3 Example of a Poisson regression tree for the Communities and Crime data set from our experimental
evaluation

since Ex\i ,xi [xi ] is the empirical mean x̄i of xi . This multiplicative update, however, is not
valid for all cases. For example, in cases where the empirical mean of a variable is smaller
one, we cannot initialize with this mean because we have ψ0

i < 0 due to λ0i = exp(ψ0
i ). In

such a setting, the direction of the gradient step is not correct anymore. Nevertheless, since x̄i
is a constant for all iterations, we can move the expectation out of the ratio. Approximating
the expectation using the training samples now yields Ex\i,xi [x̄i · λ−1

i (x\i )]

≈ 1

m

∑

j

[ x̄

λi (x
( j)
\i )

]
= 1

m2

∑

j

[ ∑
l x

(l)
i

λi (x
( j)
\i )

]
≥ 1

m2

∑

j

[ x ( j)
i

λi (x
( j)
\i )

]
(11)

because x̄i is the empirical mean of non-negative values and, hence, it is always larger than
any particular xi . Since the number of training examples m is a constant, this proves that the
multiplicative point-wise gradients for the identity link function establish a lower bound for
a multiplicative update for the log link function.

4.4 Model Compression, Initial Count Models, and Dependency Recovery

So far,we have specifically assumed twonatural candidates for the initialmeanmodelλ0i (x\i ),
namely a constant or the empirical mean of Xi . Both models might not be very precise and,
in turn, may require many iterations of optimization, even when using adaptive step sizes
via multiplicative updates, resulting in a large number of regression trees and a tendency to
overfit.

One additional way to avoid overfitting next to Laplace estimates is model compression
(Bucila et al. 2006). Here, we collapse the trained additive resp. multiplicative model into a
single model. To do so, we evaluate it on the training set and learn a single Poisson model per
count variable. Since we are dealing with count data, we should use e.g., a Poisson regression
tree (Chaudhuri et al. 1995) as shown in Fig. 3; that is, the compressed PDNmodel consists of
a set of local Poisson regression trees, one for each variable Xi , where we train treei (Xi |X\i )
and evaluate λ0i (x\i ) = treei (x\i ).

More precisely, a Poisson regression tree partitions the training examples in the space
of the dependent variables X\i in order to best fit the response variable Xi . It is a binary
tree whose leaves represent the λi of that given partition, all other nodes represent the
splitting criterion on a variable X j ∈ X\i . We use the Poisson regression tree implemen-
tation of rpart (Therneau et al. 2011) where the splitting criterion is given by the likelihood
ratio test for two Poisson groups Dparent − (Dleftson + Drightson) with the deviance given by
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D = ∑[
xi log

(
xi
λ̂

)
− (xi − λ̂)

]
, where λ̂ is the sample mean5 of count variable Xi . This

splitting is recursively applied until each subgroup reaches a minimum size or there are no
improvements. To avoid overfitting, the depth of a tree is typically limited a priori, alterna-
tively post-pruning can be used after the tree has been learned. In the rpart-implementation
the pre-pruning is controlled by a complexity parameter cp. This parameter (which we con-
sider to be part of the hyper-parameter space of our algorithm) controls the size of the initial
tree. A secondary step is executed where the tree is pruned back using cross validation after
the initial tree has been learned. The height of the final tree will be the one that reduces the
cross validation error and in our experiments it generalizes well.

Compression is not the only advantage of Poisson regression trees. Obviously, we can also
use them as initial models, providing us with a potential head start. Moreover, interactions
among count variables are directly conveyed by the structure of the compressed PDN and,
as a result, interactions can be understood and interpreted more easily in qualitative terms.
More precisely, since after compression there is only one local tree model per count variable,
we simply look at the count variables used in the inner split nodes of the trees; they indicate
relevant features of the PDN. It is important to note that one tree can use a variable Xk

multiple times with different splitting criteria. This indicates that the variable is important in
the PDN. Also, count variables closer to the root of a tree are more important than a variable
further down the tree. This is e.g., captured by Breiman et al.’s (1984) notation of relative
influence saying how important the value of xv is for predicting the value for xu :

I 2(u|v; λu) =
L−1∑

l=1

i2l · δ
(
v(l) = u

)
,

where l iterates over the levels of the Poisson tree λu of u, the value i2l is the maximal
estimated improvement over a constant fit over the entire region of the current node v(l), and
δ is an indicator function selecting all splits involving xv .

To summarize, in contrast to other Poisson graphical models, compressed PDNs return
local models that are likely to be sparse and therefore easier to interpret.

5 Making Predictions Using Poisson Dependency Networks

In many applications, we obtain only partially observed instances and we want to use prob-
abilistic inference to predict the values of the missing variables. To be more precise, assume
that X = Y ∪ E, where Y and E are disjoint. Y amounts to the unobserved variables and
E describes the evidence. Then we want to answer queries of the form p(y|e), p(yi |e), or
argmaxy p(Y = y|e). The latter query corresponds to MAP inference and finds the most
likely assignment to the unobserved variables. In an univariate Poisson model, MAP infer-
ence consists of just reading off the mode of the Poisson distribution which is equal to �λi�.
Othermarginal probabilities, e.g., p(Xi = k), can also be read off the distribution because the
Poisson distribution is completely defined based on the mean. The same holds for a variable
Xi in a PDN if all neighbors of this variable are observed. However, PDNs with unobserved
variables require an inference machinery to account for the dependencies. We here resort to
Gibbs sampling (Geman and Geman 1984) to do so.

Since we do not know explicitly the underlying joint distribution, the Gibbs sampler pro-
vides us only with pseudo samples, and hence it is called Pseudo Gibbs sampler (Heckerman

5 For stability reasons the implementation uses a revised Bayes estimate of λ̂.
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et al. 2000) due to the potentially inconsistencies arising from conflicting local and joint
distributions. Specifically, the Pseudo Gibbs sampler starts with an arbitrary initialization
of the unobserved variables and then iterates over each variable for a previously defined
number of sweeps. Each sweep produces a new sample by first calculating the conditional
probability distribution for every variable Xi . That is calculating the mean λi based on the
current states of its parent variables pai . Based on the Poisson distribution parameterized by
λi , a new state for Xi is sampled. This procedure will sample from the joint distribution after
an adequate burn-in phase which removes early samples because they are heavily biased by
the initial values. In terms of computations, this algorithm does not distinguish itself from
a standard Gibbs sampler. However, in the case of an inconsistent set of local probability
distributions, it is referred to as a “Pseudo” Gibbs sampler to stress the fact that it may not
produce samples from a joint distribution consistent with the PDN. Its run time is identical
to the one a standard Gibbs sampler. Besides the number of variables in the PDN and the
number samples, the run time also depends on the number of trees used in the stage-wise
optimization. However, evaluating regression trees is done rapidly and hence, calculating λi
can be done efficiently.

From the collected samples we can then compute an approximate marginal distribution
or MAP assignment. If we are interested in the MAP assignment, we simply select the
configuration occurring most often in our samples. Due to the nature of count variables, the
number of different configurations can be fairly large in several cases. We can then also
approximate the MAP assignment by looking at the marginal probabilities and picking the
most probable state for each variable individually.

The order of theGibbs, however, actually doesmatter in the case of PDNsdue to conflicting
βi j and β j i .Consequently, we followBengio et al. (2014) and use an unordered PseudoGibbs
sampler in which in each step one randomly chooses a Xi . Bengio et al. showed that this
unordered Pseudo Gibbs sampler induces a so-called Generative Stochastic Network (GSN)
Markov chain. As long as thisGSNMarkov chain has a stationary distribution, theDNdefines
a joint distribution, which, however, also does not have to be known in closed form. This is
for example the case, if the chain is ergodic.

From this perspective, PDNs aim to estimate the generating distribution of multivariate
count data indirectly, by boosting the transition operator of a Markov chain rather directly.
Since all means are positive, and hence p(x) > 0, the chain is ergodic and we will arrive at
a consistent estimator of the associated joint distribution.

6 Experimental Evaluation

Our intention here is to investigate the usefulness of PDNs and to show its benefits in compar-
ison to other Poisson graphical models. To this aim, we investigated the following questions:

Q1 Can PDNs learn both positive and negative dependences?
Q2 Can Gibbs sampling predict good counts?
Q3 Can PDNs outperform existing Poisson graphical models?
Q4 Are PDNs easy to interpret?
Q5 Is the strength of the learned dependencies robust to data perturbations?
Q6 Can gradient tree boosting improve the quality of an initial model?
Q7 Can multiplicative updates speed up training, without sacrificing performance?

If all questions can be answered affirmatively, PDNs have the potential to be a valid alternative
to existing Poisson graphical models.
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We implemented PDNs using a combination of Python and R, and conducted several
experiments on synthetic and real-world datasets on a standard single-core Linux machine
with 32GB RAM. To measure the quality of the trained models, we used several measures.
Given a training dataset (x(k))k=1,2,...,m , the log-likelihood score on the training data is defined
as follows:

ll_score(x(1), . . . , x(m)|θ) = −(m · n)−1
m∑

j=1

n∑

i=1

ln p(x ( j)
i |x( j)\i ; θi ). (12)

Here, θi amounts to the set of parameters that define the conditional probability distribu-
tions. This can be the β in the case of log-linear models or the set of learned trees in the
case of boosted models. This also subsumes the initial model, for example the initializing
Poisson regression tree. The score on the test data can be calculated accordingly. However,
sometimes it is more informative to consider the scores separately for each count variable
x j , i.e., ll_score j (x(1), . . . , x(m)|θ) = −m−1 ∑m

i=1 ln p(x (i)
j |x(i)\ j ; θ j ). Both measures can

also be used to measure the performance of the predicted counts from the Gibbs sampler.
Assuming that x̂ ( j)

i denotes the predicted value of variable Xi for the data case j and x ( j)
i

is the true observation of variable Xi , we can calculate the predictive log-likelihood score:
ll_score(x(1), . . . , x(m); x̂(1), . . . , x̂(m)|θ)

= −(m · n)−1
m∑

j=1

n∑

i=1

ln p(x ( j)
i |x̂( j)

\i ; θi ).

Following convention, we also consider a performance score based on the average rooted-
mean-square error

RMSE =
⎛

⎝(m · n)−1
m∑

j=1

n∑

i=1

(
x̂ ( j)
i − x ( j)

i

)2
⎞

⎠

1
2

,

where x̂ ( j)
i again denotes the predicted value of variable Xi for the data case j and x ( j)

i is
the true observation of variable Xi . However, especially in the case of Poisson distributed
variables with small values, the RMSE is not a good measurement because it assumes a
symmetrically shaped error. Moreover, it takes only point predictions into account. A slightly
better loss for our task is the normalized RMSE:

NRMSE = n−1
n∑

i

(
m−1 ∑m

j (x̂ ( j)
i − x ( j)

i )2
) 1

2

xmax
i − xmin

i

.

6.1 Network Discovery from Simulated Data (Q1, Q2, Q3)

In order to investigate whether PDNs can model positive and negative dependences we used
the simple PDN that was shown already earlier in Fig. 2. This PDN consists of three variables
where one variable, namely X0, only acts as a dummy variable for the constant parameter.
The means of X1 and X2 are described by log-linear models, e.g., λ1 = exp(β1 + β12X2).
Because X0 corresponds to the constant feature with value 1, we can omit it from the sum. In
turn, this PDN is an LPGM as introduced by Allen and Liu (2013). We chose βi = log(10),
which means that we expect an average value of 10 in the completely independent model. For
different choices of the pairwise parameters, we use this PDN to sample 200 instances from
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Fig. 4 (Top) A log-linear Poisson model. a Model without dependencies between X1 and X2. The data
points (blue circles) are close to β0 = log(10). b Model with positive dependencies. The data points (green
triangles) are now shifted towards the upper right corner. cModel with negative dependencies. The data points
(red triangles) are pushed to the lower corner. (Bottom) A boosted PDN. We re-learned a boosted PDN from
the samples generated by the log-linear model. One can see that all three groups are well separated by the
tree-based model as well (Color figure online)

the joint distribution after a burn-in phase. We consider three different parameter choices
of the PDN in total: (i) the independent case (blue circles), (ii) cooperative interactions
(green triangles) (iii) competitive interactions (red triangles). For (ii) and (iii) we assumed
β12 = β21. The obtained samples are plotted in the top row of Fig. 4 (top). As can be
observed, the samples drawn with the different parameter settings are well separated and all
three types of dependences are captured well. Now we estimated PDNs on this data using
additive updates. We then used this model to generate 200 new samples. The results are
summarized in the bottom row of Fig 4. Again, it can be observed that the three groups
are well separated, highlighting that boosted PDNs can model both positive and negative
dependencies. This clearly answers Q1 affirmatively. In addition, this also highlights the
fact that the (pseudo) Gibbs sampler does generate good samples for boosted PDN models.
This already provides an affirmative answer to questionQ2, but we will additionally use the
experiments in the next subsection to answer this question using real world datasets.

Before doing so, we will return to the experiments already shown in Sect. 2. For this
structure recovery task, we used the code provided by Yang et al. (2013) for both, the data
generation and the algorithmic comparison. We employed the “PGM”6 R-package. The code
contains several implementations of the models described in Yang et al. (2013), including
SPGMs and LPGMs, and additionally also provides code to sample instances from Win-
sorized PGMs.

The datasets were generated as follows. First, with the help of the R-package “huge”7

a graph with n = 10, 25, 50, 75, 100 nodes was generated. This data generation process is
based on multivariate normal distributions for different graph structures; we created “hub”
and “scale-free” graphs. The adjacency matrix of this true graph was used to construct the

6 http://github.com/zhandong/XFam/tree/master/PGMs/Package_Trial/T2.
7 http://cran.r-project.org/web/packages/huge/.
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Table 2 Comparison of network discovery performance based on F1-scores (the higher, the better)

Hub Scale-free

10 25 50 75 100 10 25 50 75 100

PDNs 0.614 0.599 0.558 0.493 0.463 0.415 0.489 0.548 0.472 0.412

LPGMs (0.222) 0.400 0.530 0.545 0.554 (0.100) 0.262 0.372 0.376 0.286

SPGMs (0.316) 0.310 0.415 0.515 0.473 (0.000) 0.194 0.286 0.327 0.271

Results are averaged over five graphs for each size. LPGMs are the locally learned models of Allen and Liu
(2013) and SPGMs are the consistent Poisson PGMs introduced in Yang et al. (2013)
The F1-scores in brackets “(·)” indicate that SPGMs and LPGMs failed to converge on several graphs and
hence did not return results for every graph
Bold values indicate best performance

neighborhoods in the PGMmodel. Togetherwith an unary (βi = 0) and a pairwise (βi j = 0.1)
parameter, we then obtained the PGMmodel.We used theWinsorized PGMGibbs Simulator
contained in the “PGM” package to generate m = 1000 samples. This resulted in an m × n
matrix with count values used to learn a model for the original neighborhood graph. More
precisely, we used the relative influence to construct an adjacency matrix from our learned
models by setting a cell to 1 whenever I 2(u|v; λu) > 0. Similarly, an adjacencymatrix can be
read off from the parameter matrix of LPGMs and SPGMs. The results in terms of F1-scores
are shown in Table 2 and correspond to Fig. 1. As can be seen, PDNs achieve competitive
results on the hub graphs and outperform LPGMs and SPGMs on the scale-free networks;
the latter ones may even not converge. Moreover, as already shown in Fig. 1c, PDNs can be
an order of a magnitude faster.

Because of this, we only compared PDNs to LPGMs in the remaining experiments. In
fact, we did ran SPGMs, but on some of the more complex datasets they were not only an
order of magnitude slower but did not terminate after days of running; while learning a PDN
took less than 30min. Moreover, we note that in the following LPGMs refer to local Poisson
models with GLM mean models learned without regularization. To cover regularization, we
also present results for PDNs with Poisson regression trees as mean models, which can be
seen as a regularized model.

6.2 Cell Counts and Bibliography Data (Q2, Q3, Q6)

To investigate the quality of predicted counts returned by the Gibbs sampler, we used two
different datasets, namely cell counts and counts of publications.

Cell CountsThe analysis ofmicroscope images has become a popular application combin-
ing biology and computer vision. One particular application is counting the number of cells
in an image. To do so, we used the SIMCEP-tool8, which is described in Lehmussola et al.
(2007), to generate 100 microscope images showing cells. An example image is depicted in
Fig. 5a.We split each image into 25 patches of equal size, and the cells within each patchwere
counted (see Fig. 5b). This gives us a dataset with 25 count values per image. We employed
tenfold cross validation. More precisely, we used 90 images to train PDNs in various ways
over these counts and used the remaining 10 images to do predictions based on the learned
model. We are primarily interested in constructing a simple use case for our PDNs and show-
ing that reasonable predictions are possible. Therefore, we randomly removed the counts of
five patches in each image for prediction, as depicted in Fig. 5c, and used the trained PDNs to

8 www.cs.tut.fi/sgn/csb/simcep/tool.html.
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Fig. 5 Prediction of cell counts. We partitioned the original image a into 25 patches of equal size. We then
counted the number of cells in each patch as depicted in (b). To measure the predictive power of our PDNs,
we removed the counts of five random patches in the images (c) and ran the Gibbs sampler of the partially
observed image. We then read off the most likely counts of each missing patch as shown in (d) (Color figure
online)

Table 3 Tenfold cross validation comparison of the log-scores (the lower, the better) on training and test data
for the cell count images (top) and publication data (bottom)

Boost. Iters. Train LL LOO LL

PDN- Aconst,log (w/ η = 1) 1.91 1.026 1.541 Cells

PDN- Aconst,log (w/ selected η) 5.60 1.046 1.428•

PDN- Mconst,id 1.26 1.167 1.547

PDN- Mconst,id (Laplace) 1.75 1.074 1.511

PDN- Mtree,id 0.85 1.134 1.655

PDN- Mtree,id (Laplace) 1.18 1.049 1.590

PDNtree – 1.219 1.525

LPGM (Allen and Liu 2013) – 0.963 1.117◦

PDN- Aconst,log (w/ η = 1) x x x Publications

PDN- Aconst,log (w/ ParamILS η) 31.50 0.980 1.182�

PDN- Mconst,id 1.95 1.069 1.248

PDN- Mconst,id (Laplace) 2.68 0.994 1.228

PDN- Mtree,id 0.23 0.998 1.232

PDN- Mtree,id (Laplace) 0.83 0.955 1.235

PDNtree – 1.004 1.212

LPGM (Allen and Liu 2013) – 1.137 1.233

The “x” indicates that training did not finish properly due to oscillation or overflows. For LOO LL, a “•”
denotes that boosted PDNs are significantly better then non-boosted PDNs, a “◦” that LPGMs are significantly
better than PDNs, and a “�” that PDNs are significantly better than LPGM
Bold values indicate best performance

infer the cell counts for the missing patches. We ran the Gibbs sampler for 50,000 iterations,
with an initial burn-in of 5000 iterations which amounts to 10% of the generated samples,
and determined the MAP configuration of the missing patches from the samples produced,
cf. Fig. 5d.

The results are summarized in Tables 3 (top rows) and 4 (top rows). As can be seen,
additively boosted PDNs—denoted by “A”—produced the lowest NRMSE, followed bymul-
tiplicatively boostedPDNs—denoted by “M”.Due to the structure of the problem, an identical
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Table 4 Tenfold cross validation comparison of collective prediction performances (the lower, the better)
made by the Gibbs sampler on cell count images (top) and publication data (bottom)

Pred. LL NRMSE

PDN- Aconst,log (w/ selected η) 1.429• 0.396• Cells

PDN- Mconst,id 1.570 0.408

PDN- Mconst,id (Laplace) 1.503 0.410

PDN- Mtree,id 1.619 0.455

PDN- Mtree,id (Laplace) 1.576 0.448

PDNtree 1.511 0.439

LPGM (Allen and Liu 2013) – –

PDN- Aconst,log (w/ ParamILS η) 0.446• 0.262 Publications

PDN- Mconst,id 0.609 0.320

PDN- Mconst,id (Laplace) 0.610 0.268

PDN- Mtree,id 0.525 0.256

PDN- Mtree,id (Laplace) 0.550 0.254

PDNtree 0.508 0.249

LPGM (Allen and Liu 2013) – –

A “–” indicates that PDNs with log-linear mean were not able to predict the counts for all instances due to
overflows
A “•” denotes that boosted PDN are significantly better than non-boosted PDNs
Bold values indicate best performance

step size was chosen for all variables in PDN- A. It must be mentioned that, we determined a
step size of 0.25 by systematic search. Nevertheless we also present experimental results for
a step size of 1.0. It can be observed that simply setting η = 1.0 leads to worse performance
and the learning algorithms is not capable of improving over more than two iterations as too
large steps are taken. We also tested Laplace smoothing with αi = 0.1 and βi = 0.2 in the
cases of multiplicative updates. It can be seen that this smoothing improves the quality of
the predictions in terms of the predictive log-score. Although PDNs with a log-linear mean
model, i.e., LPGMs, produced the best log-score on the test data (LOO LL), they were not
able to make meaningful predictions due to overflows. This is mainly due to the fact that
patches are often correlated with strong positive weights. Using the Gibbs sampler quickly
produces (too) large counts which are meaningless. In comparison, using Poisson regression
trees—PDNtree—helps accommodating for highly varying counts and in turn to limit the
predicted counts.

Publication Data It has been shown in Hadiji et al. (2013) that migration data based on
bibliographic entries exhibits interesting phenomena. Here, we used the AAN (Radev et al.
2009) corpus instead of DBLP and moved from descriptive to predictive models. The goal
is to predict the number of publications of a researcher in future years. The AAN corpus
at hand contains 19,410 publications written by 15,397 authors from the NLP community.
We observe the first 6years of a researchers’ publication record and predict the number of
publications for the following 4years. We take only active researchers into account, i.e.,
researchers who had publications in the first 3years of their career. For this experiment, we
ran the Gibbs sampler for 40,000 iterations, with an initial burn-in of 4000 iterations (10%),
to obtain predictions on the number of publications of an author.
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The tenfold cross-validated results for the training and test likelihoods are summarized
in Table 3. Here, boosted PDNs with additive updates achieve the best results. However,
one should note that these results were obtained by optimizing the step size for each class
separately. Instead of a simple grid search, we used ParamILS (Hutter et al. 2009) to find
the best step sizes. In our setting, we obtained step sizes of 0.5, 0.075, 0.05, and 0.075 for the
4years to predict. Although Allen et al.’s LPGMs—PDNs with log-linear mean-models—do
a full maximum likelihood optimization for the parameters, they are not able to outperform
the boosted approaches. Most importantly, with only a few iterations of optimization and no
ParamILS, multiplicative updates achieved a better train likelihood than LPGMs, without
sacrificing the test likelihood much.

Evenmore interesting are the collective prediction performances as summarized inTable 4.
As one can clearly see, PDNtree, i.e., PDNs with PRTs, do the best job. On first sight, it is
striking that boosted PDNs with initial tree models and multiplicative updates perform worse
than standard PDNtree.We attribute this to the rather small validation set used during boosting
and in turn to overfitting.

This is also confirmed by the boosting results using Laplace smoothing with αi = 0.1 and
βi = 0.2. It significantly reduced the error for PDN- Mconst,id. In any case, LPGMs, the only
model not developed in the present paper, are not capable of predicting all tests instances due
to overflows in the Gibbs sampling.

To summarize, both experiments answer questionQ2 affirmatively.Moreover, they already
indicate that Q7 may also be answered affirmatively.

6.3 Bag-of-Word PDNs (Q4, Q5)

To investigate whether PDNs are easy to interpreted, we trained a PDN on a text corpus.
Specifically, we used the NIPS bag-of-words data set from the UCI repository9 containing
1500 documents with a vocabulary above 12k words. We considered the 100 most fre-
quent words in the corpus only and trained an additively boosted PDN on this data, i.e.,
PDN- Aconst,log. Fig. 6 shows the dependency structure among the words extracted from the
trained PDN using the relative influence I 2. The strength of an edge indicates the value of the
relative influence, and the size of a node is relative to the occurrence of the word in the cor-
pus. As one can see, the word dependencies are rather sparse and reflect natural groupings of
words. Words such as “neural”, “net”, “network”, “weight”, “input”, and “unit” respectively
“learning”, “algorithm”,“loss” and “function” are inter-related as indicated by the strength
of the edges. Generally, the interactions are asymmetric. Even if X j is important for Xi , i.e.,
we have an arc from X j to Xi , there must not necessarily be an arc in the opposite direction.
This is due to the fact that the trees for X j can possibly ignore Xi . For instance, the frequency
of “training” has an impact on how often we read “error”. However, words such as “model”
and “data” are connected by edges of similar weights in both directions. This suggest that
they often co-occur.

To investigate the robustness of the relative influence amongwords extracted from thePDN
(Q5), we shuffled theNIPS dataset randomly ten times and for each reorderingwe removed 5,
10 and 15% of documents from the end. We learned PDNs for each of the subsets of reduced
size, and considered the mean and standard deviation of the normalized relative influences
among the words induced by the PDNs. The results are depicted in Fig. 7. Here, the strength
of the edges represent the mean, and the gray shade is the standard deviation of the relative
influence with darker tones indicating small values. As one can see, strong dependencies

9 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words.
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Fig. 6 Dependencies among words of the NIPS corpus induced by the relative influence extracted from the
learned PDN. The network reflects natural groupings of words as illustrated for some cases by the colors
(Color figure online)

are less affected by removing documents from the corpus but the variance indeed increases,
mostly by deviation on the strong edges or new small ones.

Overall, the extracted dependency structure in terms of relative influence shows that PDNs
can be easily interpreted and used to gain non-trivial insights; an affirmative answer to Q4.
Furthermore, we can also see that themost important dependencies extracted are rather robust
even when removing 15% of the documents; this answers Q5 affirmatively.

6.4 Communities and Crime and Click-Stream Data (Q6, Q7)

Finally, to investigate the overall performance of PDNs as well as to compare additive and
multiplicative updates, we used two real-world datasets, namely the Communities and Crime
dataset and a click-stream dataset.

Communities and Crime This dataset from the UCI repository10 was obtained from 2215
communities in the United States, reporting different crime statistics. It contains 125 observa-
tional features presenting different demographics such as the population of a community but
also statistics such as the unemployment rate. There are also eight different target statistics
per community and we focus on the count values specifying crimes such as the number of
robberies, burglaries, and others. The dataset contains missing values for some of the features
and for some target variables. For our evaluation we removed communities with incomplete
data as well as features that are not available for all communities11. Our cleaned data dataset
contains 1902 communities with 101 features.

10 http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized.
11 As one further exception, we also removed New York City from the data as it presents an extreme outlier
in terms of size.
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(a) PDN on NIPS corpus. (b) PDNs on 95% of the corpus.

(c) PDNs on 90% of the corpus. (d) PDNs on 85% of the corpus.

Fig. 7 Relative influences among words extracted from PDNs learned on subsets of the NIPS corpus of
reduced sizes. For ease of comparison, a shows the influence structure of the full model as shown in Fig. 6
but without labels. The size of the edges in b, c and d reflect the mean relative influence, and the gray scale is
the standard deviation with darker tones indicating lower values. As one can see, the learned influences only
vary little as more documents are removed. a PDN on NIPS corpus. b PDNs on 95% of the corpus. c PDNs
on 90% of the corpus. d PDNs on 85% of the corpus (Color figure online)

For a comparison of the additive and multiplicative updates for PDNs, we used a tenfold
cross validation based on the folds defined in the dataset. The bottom plots in Fig. 8 shows
the learning curves for the eight different crimes. The plots are averaged over the tenfolds
using a maximum of 50 iterations and measure the effectiveness of the learning rate in terms
of the log-score per class. For the additive models, PDN- A, we used a step size of η = 0.01
in case of the identity link function and the log link case used η = 1−5. Both step sizes
were found based on a systematic search. We started with η = 1.0 and decreased the step
size until no more oscillation was observed during the training. In particular, when using a
constantmean-model for initialization, one can see that themultiplicative update outperforms
the additive ones: it is significantly faster and achieves better test performance. It must be
mentioned that this was achieved without a time consuming selection of an adequate step
size at all. In case of the additive updates, the log link function learns faster in cases of crimes
with high counts such as “larcenies” with data mean around 1999 per community. For means
with small values such as “murders” having an empirical mean of around 6.4, however,
we see that additive updates using the identity link function learned faster. Moreover, the
additive updates always required the maximum of 50 iterations to obtain the best value. We
determined the optimal iteration based on a validation set during the learning. On the other
hand, multiplicative updates required only a fraction of the iterations, while not sacrificing
predictive performance. Averaged over all experiments and classes, multiplicative updates
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Fig. 8 Comparison of gradient tree boosting PDNs on the CnC-dataset with initial mean or Poisson regression
tree models. (top, left) The boxplot shows the average best iteration found by cross validation. For easier
comparison, each column shows the median in the top area of the plot. (top, right) The boxplot shows the
average ll_score of the best iteration on the test dataset. The results show that the multiplicative updates,
PDN- M, require only very few iterations to achieve comparable, or even better, results than the additive
updates, PDN- A. This holds for both types of initializations, mean and tree models, even though the step sizes
were carefully chosen for PDN- A. (bottom) The two bottom plots show the learning curves in terms of the
ll_scorei for the eight different crime types in the dataset. The first eight plots show the curves for constant
initial models. The curves highlight that multiplicative updates learn much faster than the additive updates.
The second eight plots show the learning curves for initial regression tree models and indicate that the trees
can give an head start (Color figure online)

require far less than ten iterations and the log likelihood score on the test data is significantly
better than for the additive case with mean initialization. This clearly shows the advantage
of multiplicative updates.

What about usingPoisson regression trees for initialization?Looking at the learning curves
for PDNs with Poisson regression trees (second set of eight plots in Fig. 8, bottom), we first
see that the initial value of the log-score is drastically lower compared to initializing with
a constant mean. This is not surprising as the tree can represent the data initially already
much better than a single mean value. The number of iterations required drops as well. This
is also emphasized in the boxplot that compares the number of iterations (Fig. 8, top, left).
On average, the multiplicative updates, PDN- M, add only less than four trees to the initial
tree and achieve comparable performance.

Finally, we investigated the robustness of the learned PDNsw.r.t. the numbers of iterations
of the stepwise optimization. To this end, we computed the gain in normalized relative
influence over the iterations for each fold in theCnC-dataset. The summarized results in Fig. 9
show that the gain in influence decreases with later iterations. That is, the learner focuses
on important dependencies first. Influences added at later iterations are less important. The
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Fig. 9 The gain in normalized
relative influence for PDNs over
the number of learning iterations.
Each line represents onefold in
the CnC-dataset. The decrease in
gain indicates that later iterations
have a decreasing influence on
the overall model (Color figure
online)

important influences are robust w.r.t. to the number of iterations set. This agrees with the
robustness results obtained in Sect. 6.3.

To summarize, PDNsoutperform their univariate counterpart, boosting improves the initial
model, andmultiplicative updates outperform additive updates. These are affirmative answers
to our initial questions (Q6, Q7).

Click-Stream-Data. To reaffirm the results of the last experiment, we created a count
dataset based on theMSNBC.comdataset from theUCI repository12. The data gives sequences
corresponding to a user’s page views for an entire day, which are grouped into 17 categories.
Instead of the original dataset, we used the post-processed version from the SMPF library13,
which removed very short click sequences. In total, this dataset contains information of
about 31,790 users. We discard the sequence information and instead analyzed solely the
frequencies of the visited categories. In contrast to the CnC dataset, the means of the 17
categories have all low mean values. To be more precise, the category “frontpage” has the
highest mean (3.62) and the category “msn-news” has the lowest mean (0.03). We also note
that the variance in the data is much lower than in the CnC-dataset.

First, we considered boosted PDNs with the empirical mean as initial model again. Since
the learning curves were qualitatively identical to the CnC-experiment, we omit them here.
Due to the low means and variance of the categories, the simple initial models themselves
achieve already a low average log-score of 1.22. Still, boosting was able to improve themodel
with both, additive and multiplicative updates. Additive updates achieved log-scores of 1.14
(PDN- Aconst,id) and 1.08 (PDN- Aconst,log), however, requiring more than 40 iterations. With
less than four iterations on average, multiplicative updates achieved an average log-score
of 1.09. That is, again, multiplicative updates can be an order of magnitude faster, without
sacrificing predictive performance. Initialization using Poisson regression trees gives a head
start for the additive updates but not for the multiplicative ones; they are still significantly
faster. These are affirmative answers to questions (Q3–7).

Taking all results together, the experimental evaluation clearly shows that all six questions
(Q1–7) can be answered affirmatively and indicate that PDNs have the potential to be a fast
alternative to existing Poisson graphical models.

7 Conclusion

Count data are increasingly ubiquitous in data science settings. Example data are bag-of-X
representations of, e.g., collections of images or text documents, genomic sequencing data,

12 https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
13 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php.
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user-ratings data, spatial incidence data, climate studies, and site visits, among others. Unfor-
tunately, standard graphical models such as multinomial or Gaussian ones are often ill-suited
formodeling this data.We have therefore introduced PoissonDependencyNetworks (PDNs),
a new graphical model for multivariate count data. Its representation naturally facilitates a
Gibbs sampler and a very simple, non-parametric training procedure: starting from a simple
initial model, which in the simplest case can be a constant value, log-linear Poisson model or
a Poisson regression tree, PDNs are represented as sums resp. products of regression models
grown in a stage-wise optimization. On several real-world datasets we have demonstrated
empirically that PDNs are competitive multivariate count models, both in terms of efficiency
and predictive performance, although they do not guarantee a consistent joint distribution in
closed form.

The intent of our paper has been to introduce and explore the basic idea of non-parametric
dependency networks for multivariate count data. Consequently, there is significant addi-
tional work to be done. More work is needed to characterize the set of consistent PDNs,
i.e., PDNs with a consistent joint distribution in closed form. This would allow one to char-
acterize the complexity of inference in terms of tree-width, adapt other inference methods,
e.g., based on message-passing-like inference, and other learning methods, e.g., based on
Expectation Maximization. As another example, additional work is needed to understand
when the joint distribution of an (inconsistent) PDN has low predictive accuracy. Gener-
ally, one should explore PDNs within other machine learning tasks such as characterizing
neural dependencies (Berkes et al. 2008), training topic models (Gehler et al. 2006) also
capturing word dependencies within each topic (Inouye et al. 2014a, b), predicting user
behavior such as retention and churn (Hadiji et al. 2014), and recommendation (Gopalan
et al. 2014). Another interesting avenue for future work is to exploit functional gradients
for learning hybrid multivariate models. Along the way, one should investigate dependency
networks for the complete family of generalized linear models; for instance, Dobra (2009)
has shown that hybrid dependency networks among Gaussian and logistic variables perform
well for discovering genetic networks, and Guo and Gu have shown logistic (conditional)
dependency networks to perform well for multi-label classification (Guo and Gu 2011).
Upgrading the resulting non-parametric, hybrid dependency networks to relational domains
may provide novel structure learning approaches for BLOG (Milch et al. 2005) and prob-
abilistic programming languages (Goodman 2013), who feature Poisson distributions, and
would complement relational Gaussian models (Singla and Domingos 2007; Choi and Amir
2010; Ahmadi et al. 2011) as well as relational copulas as proposed by Xiang and Neville
(2013) for relational collective classification; additionally this line of research could pave
the way to novel evaluation methods for statistical relational models. In general, copula
models for multivariate count data (Hee Lee 2014) are an interesting option, in particular
extending them to the relational case based on Xiang and Neville (2013). All this could
lead to better methods for mining web-populated knowledge bases such as TextRunner,
NELL, YAGO, and KnowledgeGraph. In such open information retrieval tasks, one cannot
easily assume a fixed number of “entities” and in turn use existing probabilistic relational
models such as Markov Logic Networks: we have to deal with multivariate count distribu-
tions.
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